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Abstract

Text classification tends to be difficult when data are inadequate considering the amount of man-
ually labeled text corpora. For low-resource agglutinative languages including Uyghur, Kazakh,
and Kyrgyz (UKK languages), in which words are manufactured via stems concatenated with
several suffixes and stems are used as the representation of text content, this feature allows in-
finite derivatives vocabulary that leads to high uncertainty of writing forms and huge redundant
features. There are major challenges of low-resource agglutinative text classification the lack of
labeled data in a target domain and morphologic diversity of derivations in language structures.
It is an effective solution which fine-tuning a pre-trained language model to provide meaningful
and favorable-to-use feature extractors for downstream text classification tasks. To this end, we
propose a low-resource agglutinative language model fine-tuning AgglutiF iT , specifically, we
build a low-noise fine-tuning dataset by morphological analysis and stem extraction, then fine-
tune the cross-lingual pre-training model on this dataset. Moreover, we propose an attention-
based fine-tuning strategy that better selects relevant semantic and syntactic information from
the pre-trained language model and uses those features on downstream text classification tasks.
We evaluate our methods on nine Uyghur, Kazakh, and Kyrgyz classification datasets, where
they have significantly better performance compared with several strong baselines.

1 Introduction

Text classification is the backbone of most natural language processing tasks such as sentiment anal-
ysis, classification of news topics, and intent recognition. Although deep learning models have reached
the most advanced level on many Natural Language Processing(NLP) tasks, these models are trained
from scratch, which makes them require larger datasets. Still, many low-resource languages lack rich
annotated resources that support various tasks in text classification. For UKK languages, words are de-
rived from stem affixes, so there is a huge vocabulary. Stems represent of text content and affixes provide
semantic and grammatical functions. Diversity of morphological structure leads to transcribe speech
as they pronounce while writing and suffer from high uncertainty of writing forms on these languages
which causes the personalized spelling of words especially less frequent words and terms Ablimit et al.
(2017). Data collected from the Internet are noisy and uncertain in terms of coding and spelling Ablimit
et al. (2016). The main problems in NLP tasks for UKK languages are uncertainty in terms of spelling
and coding and annotated datasets inadequate poses a big challenge for classifying short and noisy text
data.

Data augmentation can effectively solve the problem of insufficient marker corpus in low-resource
language datasets. Şahin and Steedman (2019) present two simple text augmentation techniques using
“crops” sentences by removing dependency links, and “rotates” sentences by moving the tree fragments
around the root. However, this may not be sufficient for several other tasks such as cross-language
text classification due to irregularities across UKK languages in these kinds of scenarios. Pre-trained
language models such asBERT Devlin et al. (2018) orXLM Conneau and Lample (2019) have become
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Figure 1: High-level illustration of AgglutiFiT

an effective way in NLP and yields state-of-the-art results on many downstream tasks. These models
require only unmarked data for training, so they are especially useful when there is very little market
data. Fully exploring fine-tuning can go a long way toward solving this problem Xu et al. (2020). Sun et
al. (2019) conduct an empirical study on fine-tuning, although these methods achieve better performance,
they did not perform well on UKK low-resource agglutinative languages due to the morphologic diversity
of derivations.

The significant challenge of using language model fine-tuning on low-resource agglutinative languages
is how to capture feature information. To apprehend rich semantic patterns from plain text, Zhang et al.
(2019a) incorporating knowledge graphs (KGs), which provide rich structured knowledge facts for better
language understanding. Zhang et al. (2019b) propose to incorporate explicit contextual semantics from
pre-trained semantic role labeling (SemBERT) which can provide rich semantics for language represen-
tation to promote natural language understanding. UKK languages are a kind of morphologically rich
agglutinative languages, in which words are formed by a root (stem) followed by suffixes. These meth-
ods are difficult to capture the semantic information of UKK languages. As the stems are the notionally
independent word particles with a practical meaning, and affixes provide grammatical functions in UKK
languages, morpheme segmentation can enable us to separate stems and remove syntactic suffixes as stop
words, and reduce noise and capture rich feature in UKK languages texts in the classification task.

In this paper, as depict in Figure-1, we propose a low-resource agglutinative language model fine-
tuning model: AgglutiF iT that is capable of addressing these issues. First, we use XLM − R pre-
train a language model on a large cross-lingual corpus. Then we build a fine-tuning dataset by stem
extraction and morphological analysis as the target task dataset to fine-tune the cross-lingual pre-training
model. Moreover, we introduce an attention-based fine-tuning strategy that selects relevant semantic and
syntactic information from the pre-trained language model and uses discriminative fine-tuning to capture
different types of information on different layers. To evaluate our model, we collect and annotate nine
corpora for text classification of UKK low-resource agglutinative language, including topic classification,
sentiment analysis, intention classification. The experimental results showAgglutiF iT can significantly
improve the performance with a small number of labeled examples.

The contributions of this paper are summarized as follows:

• We collect three low-resource agglutinative languages including Uyghur, Kazakh, and Kyrgyz nine
datasets, each of languages datasets contains topic classification, sentiment analysis, and intention
classification three common text classification tasks.

• We propose a fine-tuning strategy on low-resource agglutinative language that builds a low-noise
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fine-tuning dataset by stem extraction and morphological analysis to fine-tune the cross-lingual pre-
training model.

• We propose an attention-based fine-tuning method that better select relevant semantic and syntac-
tic information from the pre-trained language model and uses discriminative fine-tuning capture
different types of information different layers.

2 Related work

In the field of natural language processing, low-resource text processing tasks receives increasing
attention. We briefly reviewed three related directions: data augmentation, language model pre-training,
and fine-tuning.

Data Augmentation Data Augmentation is that solves the problem of insufficient data by creating
composite examples that are generated from but not identical to the original document. Wei and Zou
(2019) present EDA, easy data augmentation techniques to improve the performance of text classifi-
cation task. For a given sentence in the training set, EDA randomly chooses and performs one of the
following operations: synonym replacement, random insertion, random swap, random deletion. UKK
languages have few synonyms for a certain word, so the substitution of synonyms cannot add much data.
Its words are formed by a root (stem) followed by suffixes, and as the powerful suffixes can reflect se-
mantically and syntactically, random insertion, random swap, random deletion may change the meaning
of a sentence and cause the original tags to become invalid. In the text classification, training documents
are translated into another language by using an external system and then converted back to the original
language to generate composite training examples, this technology known as backtranslation. Shleifer
(2019) work experiments with backtranslation as data augmentation strategies for text classification.
The translation service quality of Uyghur is not good, and Kazakh and Kyrgyz do not have mature and
robust translation service, so it is difficult to use the three languages in backtranslation. Şahin and
Steedman (2019) propose an easily adaptable, multilingual text augmentation technique based on de-
pendency trees. It augments the training sets of these low-resource languages which are known to have
extensive morphological case-marking systems and relatively free word order including Uralic, Turkic,
Slavic, and Baltic language families.

Cross-lingual Pre-trained Language Model Recently, Pre-training language models such as BERT
Devlin et al. (2019) and GPT-2 Radford et al. (2019) have achieved enormous success in various tasks
of natural language processing such as text classification, machine translation, question answering, sum-
marization, etc. The early work in the field of cross-language understanding has proven the effectiveness
of cross-language pre-trained models on cross-language understanding. The multilingual BERT model
is pre-trained on Wikipedia in 104 languages using a shared vocabulary of word blocks. LASER Artetxe
and Schwenk (2019) is trained on parallel data of 93 languages and those languages share BPE vocabu-
lary. Conneau and Lample (2019) also use parallel data to pre-train BERT . These models can achieve
zero distance migration, but the effect is poor compared with the monolingual model. The XLM − R
Conneau et al. (2019) uses filtered common-crawled data over 2TB to demonstrate that using a large-
scale multilingual pre-training model can significantly improve the performance of cross-language mi-
gration tasks.

Fine-tuning When we adapt the pre-training model to NLP tasks in a target domain, a proper fine-
tuning strategy is desired. Howard and Ruder (2018) proposes the universal language model fine-tuning
(ULMFiT ) with several novel fine-tuning techniques. ULMFiT consists of three steps, namely general-
domain LM pre-training, target task LM fine-tuning, and target task classifier fine-tuning. Eisenschlos
et al. (2019) combines the ULMFiT with the quasi-recurrent neural network (QRNN ) Bradbury et
al. (2018) and subword tokenization Kudo (2018) to propose multi-lingual language model fine-tuning
(MultiF it) to enable practitioners to train and fine-tune language models efficiently. The MultiF iT
language model consists of one subword embedding layer, four QRNN layers, one aggregation layer,
and two linear layers. Moreover, a bootstrapping method Ruder and Plank (2018) is applied to reduce
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the complexity of training. Although those approaches are general enough and have achieved state-of-
the-art results on various classification datasets, the method is considered can not solve the problem of
morphologic diversity of derivations in language structures on low-resource agglutinative language. Tao
et al. (2019) proposes an attention-based fine-tuning algorithm. With this algorithm, the customers can
use the given language model and fine-tune the target model by their own data, but that does not capture
different levels of syntactic and semantic information on different layers of a neural network. In this
paper, we use a new fine-tuning strategy that provides a feature extractor to extract features and use these
features for downstream text classification tasks.

3 Methodology

In this section, we will explain our methodology, which is also shown in Figure-1. Our training con-
sists of four stages. We first pre-train a language model on a large scale cross-lingual text corpus. Then
the pre-trained model is fine-tuned by the fine-tuning dataset on unsupervised language modeling tasks.
The fine-tuning dataset is constructed by means of stem extraction and morpheme analysis on the down-
stream classification datasets. Moreover, we use an attention-based fine-tuning to build our classification
model and uses discriminative fine-tuning to capture different types of information on different layers.
Finally, train the classifier using target task datasets.

3.1 LM fine-tuning based on UKK characteristics
When we apply the pre-training model to text classification tasks in a target domain, a proper fine-

tuning strategy is desired. In this paper, we employ two fine-tuning methods as below.

3.1.1 Fine-tuning datasets based on morphemic analysis
UKK languages are agglutinative languages, meaning that words are formed by a stem augmented

by an unlimited number of suffixes. The stem is an independent semantic unit while the suffixes are
auxiliary functional units. Both stems and suffixes are called morphemes. Morphemes are the smallest
functional units in agglutinative languages. Because of this agglutinative nature, the number of words
of these languages can be almost infinite, and most of the words appear very rarely in the text corpus.
Modeling based on a smaller unit like morpheme can provide stronger statistics hence robust models.
The total number of suffixes in each of UKK languages is around 120. New suffixes may be created, but
this is the typical case.

Figure 2: Morpheme segmentation flow chart

As shown in Figure-2, we use a semi-supervised morpheme segmenter based on the suffix set Ablimit
et al. (2017). For a candidate word, this tool designs an iterative searching algorithm to produce all pos-
sible segmentation results by matching the stem-set and the suffix set. The phonemes on the boundaries
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change their surface forms according to the phonetic harmony rules when the morphemes are merged
into a word. Morphemes will harmonize each other, and appeal to the pronunciation of each other. When
the pronunciation is precisely represented, the phonetic harmony can be clearly observed in the text. An
independent statistical model can be adopted to pick the best result from N-best results in the UKK text
classification task.

We adopt this tool to train a statistical model using word-morpheme parallel training corpus, extrac-
tion and greatly improved the UKK text classification task. which included 10,000 Uyghur sentences,
5000 Kazakhh sentences, and 5000 Kyrgyz sentences. We selected 80% of them as the training corpus.
The remainder is used as the testing corpus to execute morpheme segmentation and stem extraction ex-
periments. We can collect necessary terms compose a less noise fine-tuning datasets by extracting stems
in the UKK languages classification task. Then fine-tuning with XLM-R on this fine-tuning datasets for
better performance. For example in Table-1, a stem can grasp the features of other words, and the feature
will be greatly reduced.

Stem Words Affixes 

شىئ  
work 

worker ىچشىئ = ىچ+شىئ ىچ   
office اناخشىئ = اناخ+شىئ اناخ   

position تاتشىئ = تات +شىئ تات   

ۇقوئ  
read 

go to school شۇقوئ = ش +ۇقوئ  ش 
student ىچۇغۇقوئ = ىچۇغ+ۇقوئ ىچۇغ   

teach تۇقوئ = ت +ۇقوئ  ت 
 

Table 1: Examples of Uyghur word variants.

3.1.2 Discriminative Fine-tuning
Different layers of a neural network can capture different levels of syntactic and semantic information

Yosinski et al. (2014; Howard and Ruder (2018). Naturally, the lower layers of the XLM − R model
may contain more general information. Therefore, we can fine-tune them with assorted learning rates.
Following Howard and Ruder (2018), we use the discriminative fine-tuning method. We separate the
parameters θ into {θ1, ..., θL}, where θl contains the parameters of the l-th layer. Then the parameters
are updated as follows:

θlt = θlt−1 − ηl · ∇θlJ(θ), (1)

where ηl represents the learning rate of the l − th layer and t denotes the update step. Following Sun et
al. (2019), we set the base learning rate to ηL and use ηk−1 = ξ · ηk, where ξ is a decay factor and less
than or equal to 1. When ξ < 1, the lower layer has a slower learning rate than the higher layer. When ξ
= 1, all layers have the same learning rate, which is equivalent to the regular stochastic gradient descent
(SGD).

3.1.3 Attention-based Fine-tuning
For classification tasks, we adopt an attention-based encoder-decoder structure. As the encoder, our

pre-trained model learns the contextualized features from inputs of the dataset. Then the hidden states
over time steps, denoted as H = h1, h2, ..., hT , can be viewed as the representation of the data to be
classified, which are also the input of the attention layer. Since we do not have any additional infor-
mation from the decoder, we use the self-attention to extract the relevant aspects from the input states.
Specifically, the alignment is computed as

ut = tanh(Wuht + bu) (2)
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for t = 1, 2, ..., T , where Wu and bu are the weight matrix and bias term to be learned. Then the
alignment scores are given by the following soft-max function:

αt =
exp(Wαut)∑T
i=1 exp(Wαut)

(3)

The final context vector, which is also the input of the classifier, is computed by

c =
T∑
i=1

αtut (4)

3.2 Text Classifier
For the classifier, we add two linear blocks with batch normalization and dropout, and ReLU activa-

tions for the intermediate layer and a Softmax activation for the output layer that calculates a probability
distribution over target classes. Consider the output of the last linear block is So. Further, denote by
C = c1, c2, ..., cM = XxY the target classification data, where ci = (xi, yi), xi is the input sequence
of tokens and yi is the corresponding label. The classification loss we use to train the model can be
computed by:

L2(C) =
∑

(x,y)∈C

log p(y|x) (5)

where

p(y|x) = p(y|x1, x2, ..., xm) := softmax(Wso) (6)

4 Datasets

4.1 Data Collection
We construct nine low-resource agglutinative language datasets including Uyghur, Kazakh, and Kyr-

gyz, these datasets cover common text classification tasks: topic classification, sentiment analysis, and
intention classification. We use the web crawler technology to collect our text data, and download from
the Uyghur, Kazakh and Kyrgyz’s official websites as well as other main websites.1

4.2 Corpus Statistics
In this section, we introduce the detailed information of the corpus. We divided them into morpheme

sequences and used morpheme segmentation tools to extract word stems. The method of subword ex-
traction based on stem affix has achieved a good performance on the reduction of feature space. As a
result, the vocabulary of morpheme is greatly reduced to about 30%, as shown in Table 2, Table 3 and
Table 4. In addition, when the types and numbers of corpora increase, the accumulation of morphemes
is only one-third of the accumulation of words.

Topic Classification The corpus for the Uyghur language cover 9 topics: law, finance, sports, culture,
health, tourism, education, science, and entertainment. Each category has 1,200 texts, resulting in a total
of 10,800 texts. We name this corpus as ug-topic. The corpus for the Kazakh language cover 8 topics:
law, finance, sports, culture, tourism, education, science, and entertainment. Each of them contains 1,200
texts, so there are 9,600 texts totally. We name this corpus as kz-topic. The corpus for the Kyrgyz
language cover 7 topics: law, finance, sports, culture, tourism, education. Each category contains 1,200
texts (totally 8,400 texts). We name this corpus as ky-topics. The details are shown in Table-2.

Sentiment Analysis We constructed 3 sentiment analysis datasets for three-category classification,
namely positive, negative, and neutral. Each language is related to 900 texts and each category contains
300 texts. We name these datasets as ug-sen, kz-sen and ky-sen as shown in Table-3.

1www.uyghur.people.com.cn, uy.ts.cn, Kazakhh.ts.cn, www.hawar.cn, Sina Weibo, Baidu Tieba and
WeChat.
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Intention Classification We construct 3 datasets of five-class user intent identification: news, life,
travel, entertainment, and sports. Each language contains 200 texts. We name these datasets as
ug-intent, kz-intent and ky-intent as shown in Table-4.

Corpus of Class Average text
length

Word
Vocabulary

Morpheme
Vocabulary

Morpheme-Word
Vocabulary Ratio (%)

ug-topic 9 148.3 79,126 23,364 29.5%
kz-topic 8 130.9 68,334 20,600 30.1%
ky-topic 7 145.7 58,137 18,487 31.7%

Table 2: Statistics of the topic classification dataset.

Corpus of Class Average text
length

Word
Vocabulary

Morpheme
Vocabulary

Morpheme-Word
Vocabulary Ratio (%)

ug-sen 3 23.6 8,791 2,794 31.1%
kz-sen 3 20.7 7,933 2,403 30.3%
ky-sen 3 21.3 7,385 2,274 30.8%

Table 3: Statistics of the sentiment analysis datasets.

Corpus of Class Average text
length

Word
Vocabulary

Morpheme
Vocabulary

Morpheme-Word
Vocabulary Ratio (%)

ug-intent 5 18.9 12,651 3,997 31.6%
kz-intent 5 16.0 10,368 3,182 30.7%
ky-intent 5 15.4 11,343 3,720 32.8%

Table 4: Statistics of the intention classification datasets.

4.3 Corpus Examples

In this section, we present some examples of various language categorization tasks. Different from
Kazakhstan and Kyrgyzstan, in China, the Kazakh language used by the Kazakh people and the Kyrgyz
language borrowed from the Arabic alphabet. The red keywords indicate the words that have the same
meaning. The blue keywords represent their meaning in English.

5 Experiment

5.1 Datasets and Tasks

We evaluate our method on nine agglutinative language datasets which we construct of three common
text classification tasks: topic classification, sentiment analysis, and intention classification. We use 75%
of the data as the training set, 10% as the validation set, and 15% as the test set.

5.2 Baselines

We compare our method with the cross-lingual classification model ULMFiT Howard and Ruder
(2018), which introduces key techniques for fine-tuning language models, and SemBERT Zhang et al.
(2019b), which is capable of explicitly absorbing contextual semantics over a BERT backbone. More-
over, we compare against the cross-lingual embedding model, namely LASER Artetxe and Schwenk
(2019), which uses a large parallel corpus. We also compare against BWEs Hangya et al. (2018), a
cross-lingual domain adaptation method for classification text. For cross-lingual pre-training language
models, the XLM − R model used in this paper is loaded from the torch.Hub. XLM − R shows the
possibility of training one model for many languages while not sacrificing per-language performance.
It is trained on 2.5TB of CommonCrawl data, in 100 languages and uses a large vocabulary size of
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Topic 

Law 

Uyghur شۇرۇت ڭىچ اتشىلىق ەرادىئ ھچىیوب نۇناق ىنتھلۆد  
Kazakh ۋلوب ىدنابات اعۋراقساب نھمڭاز ىتتھكھلمھم  
Kyrgyz ۇۇلاس ۅگنۅج اچنۇیوب نوكاز ىتتھكھلمام  
English Ensuring every dimension of governance is law-based 

Finance 

Uyghur COVID-19 ؟ۇدمھتىسرۆك رىسھت اغىداسىتقىئ اكىرېمائ  
Kazakh ؟ھمھتە لاپقى انىساكیمونوكە اكیرھما ىسوریۆ اشرادیا ھپكو ىتپىیتء اڭاج  
Kyrgyz ۉبۅتۅستۅك رىسااتانىداسىتقى اكىرھما سۇرىۋ ناماسىجات اچىڭاج  
English Will the COVID-19 pandemic affect the US economy? 

Sports 

Uyghur ىسىچتھكىرھھنھت لوبتېكساۋ غۇلۇئ رىب ىبوك . 
Kazakh ىسىشتروپس لوبتھكساب ىلۇ ھبوك  
Kyrgyz ىرھبھچ لوبتىكساۋ ۇۇلۇ رئب نھگەد ىبوگ  
English Kobe is a great basketball player. 

Sentiment 

Positive 

Uyghur لەزۈگ كھتتەرۈس ىسىرىزنھم ڭىنڭاجنىش  
Kazakh مھكروك يھتتەرۋس ىسىنىروك ڭىنڭایجنیش  
Kyrgyz مۅكرۅك يۅتتۅرۉس ۉرۅتشۉنۉرۅك نىدڭاجنئش  
English Xinjiang is a picturesque landscape 

Neutral 

Uyghur زىمىتاۋىزېی ھلاقام يىملىئ زىب . 
Kazakh زىمرىتاج پىزاج لااقام يملىع زىبء  
Kyrgyz زىباتاج پىزاجلااقام زئب  
English We are writing a paper 

Negative 

Uyghur ؟زىسیامنۇسیوب اقشىمېن زىس  
Kazakh ؟ڭىسیابنىسیوب ھگھن نھس  
Kyrgyz زىسیابنۇس نۇیوم ھگھن زىس  
English Why are you disobedient? 

 

Table 5: Example from the UKK datasets

250K. For the ULMFiT and BWEs model, we use English as the source language. XLM − R and
ULMFiT are fine-tuned on target task datasets rather than the fine-tuning datasets that we built.

5.3 Hyperparameters
In our experiment, we use theXLM−RBase model, which uses aBERTBase architecture Vaswani et

al. (2017) with a hidden size of 768, 12 Transformer blocks and 12 self-attention heads. We fine-tune the
XLM −RBase model on 4 Tesla K80 GPUs and set the batch size to 24 to ensure that the GPU memory
is fully utilized. The dropout probability is always 0.1. We use Adam with β1 = 0.9 and β2 = 0.999.
Following Sun et al. (2019), we use the discriminative fine-tuning method Howard and Ruder (2018),
where the base learning rate is 2e − 5, and the warm-up proportion is 0.1. We empirically set the max
number of the epoch to 20 and save the best model on the validation set for testing.

5.4 Results and Analysis
In this section, we demonstrate the effectiveness of our low-resource agglutinative language fine-

tuning model. Our approach significantly outperforms the previous work on cross-lingual classification.
Separately, the best results in the metric are bold, respectively.

As given in Table-6, Table-7, and Table-8, We show results for topic classification, sentiment analysis,
and intention classification. Our AgglutiF iT outperform their cross-lingual and domain adaptation
method. Pre-training is most beneficial for tasks with low-resource datasets and enables generalization
even with 100 labeled examples when fine-tuning with fine-tuning dataset, our approach has a greater
performance boost.

Compared with ULMFiT , we perform better on all three tasks, although ULMFiT introduces tech-
niques that are key for fine-tuning a language model including discriminative fine-tuning and target task
classifier fine-tuning. The reason can be partly explained as we adopt a less noisy datasets in the fine-

CC
L 
20
20

Proceedings of the 19th China National Conference on Computational Linguistics, pages 994-1005,  
Hainan, China, October 30 - Novermber 1, 2020. (c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China



Computational Linguistics

Model ug-topic kz-topic ky-topic
ULMFiT 92.99% 92.93% 92.34%
LASER 83.19% 82.32% 82.13%

SemBERT 91.53% 90.12% 90.24%
BWEs 59.24% 59.12% 58.89%

AgglutiFiT 96.45% 95.39% 94.89%

Table 6: Results on topic classification accuracy.

Model ug-sen kz-sen ky-sen
ULMFiT 90.49% 90.39% 90.38%
LASER 74.32% 73.99% 72.13%

SemBERT 86.37% 88.47% 86.94%
BWEs 56.59% 56.39% 56.03%

AgglutiFiT 92.81% 92.89% 92.23%

Table 7: Results on sentiment analysis accuracy.

tuning phase and attention-based fine-tuning which makes it possible to obtain a closer distribution of
data in the general domain to the target domain. LASER obtain strong results in multilingual similarity
search for low-resource languages, but we work better thanLASER contribute to we use attention-based
fine-tuning and different learning rates at a different layer, which allows us to capture more syntactic and
semantic information at each layer, moreover, LASER has no learn joint multilingual sentence represen-
tations for UKK languages. Experimental results on methods SemBERT are lower than AgglutiF iT
on account of lack of the necessary semantic role labels to embedding in the parallel lead to does not
capture more accurate semantic information. BWEs is significantly lower than other models, we con-
jecture is that the source language of method BWEs is English, which is quite different from the UKK
languages in data distribution, more importantly, the datasets of UKK languages are too inadequacy to
create good BWEs. Our three task experiments also show that using more high-quality datasets to
fine-tune the results would be better.

5.5 Ablation Study
To evaluate the contributions of key factors in our method, we perform an ablation study as shown

in Figure-3. We run experiments on nine corpora that are representative of different tasks, genres, and
sizes.
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Figure 3: Explore the influence of important factors on accuracy
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Model ug-intent kz-intent ky-intent
ULMFiT 90.97% 91.23% 91.13%
LASER 77.21% 77.89% 77.33%

SemBERT 89.79% 87.28% 89.13%
BWEs 57.50% 57.48% 57.39%

AgglutiFiT 93.47% 93.81% 93.28%

Table 8: Results on intention classification accuracy.

The effect of morphemic Analysis In order to gauge the impact of fine-tuning datasets quality, we
compare the fine-tuning on the constructed fine-tuning datasets with the target task datasets without stem-
word extraction. The experimental results show that the performance of all tasks is greatly improved by
using our fine-tuning datasets. Stem is a practical unit of vocabulary. Stem extraction enables us to
capture effective and meaningful features and greatly reduce the repetition rate of features.

The effect of attention-based fine-tuning As given in Figure-3, we can observe that by adding an
attention fine-tuning, our model advances accuracies. Attention-based fine-tuning relies on a semantic
between words that would influence the overall model performance. In order to see the effectiveness of
the attention-based fine-tuning more clearly, we visualize the attention scores with respect to the input
texts on Uyghur. The randomly chosen examples of visualization with respect to different classes are
given in Figure-4, where darker color means higher attention scores.

نىكمۇم ىشۇلۇرۇدلاق نىدلھمھئ ھتىساۋىب مىكلھب ىسىقىباسۇم تھكىرھھنھت كىپمىلوئ ویكوت :ىسىئەر ڭىنىتېتىموك شھللىكشھت كىپمىلوئ ویكوت         
In English:  Chairman of the Tokyo Olympic Organizing Committee: The Tokyo Olympics may be canceled directly. 

(a) Sports 
ىدلاق پۇلوب ىشخای ىلېخ مىتایىپیھك پىلېك ھگرھی ۇب ،ياج لەزۈگ ڭاجنىش . 

In English: Xinjiang is a beautiful place and My mood feels very happy when I come here. 
(b) Positive 

زىسیھملىب ۈگڭھم ىنزىڭىقىلناغىدىشىرېئ ھگىمېن زىس ،ۇدیاشخوئ اغنان ىددۇخ شۇمرۇت . 
In English: Life is like bread, you never know what you will get. 

(c) Life 

Figure 4: Examples of attention visualization on Uyghur with respect to different classes

The effect of discriminative fine-tuning We compare with and without discriminative fine-tuning on
the model. Discriminative fine-tuning improve performance across all three tasks, however, the role of
improvement is limited, we still need a better optimization method to explore how discriminative fine-
tuning can be better applied in the model.

6 Conclusion

We propose AgglutiF iT , an effective language model fine-tuning method that can be applied to a
low-resource agglutinative language classification tasks. This novel fine-tuning technique that via stem
extraction and morphological analysis builds a low-noise fine-tuning dataset as the target task dataset
to fine-tune the cross-lingual pre-training model. Moreover, we propose an attention-based fine-tuning
strategy that better selects relevant semantic and syntactic information from the pre-trained language
model to provide meaningful and favorable-to-use feature for downstream text classification tasks. We
also use discriminative fine-tuning to capture different types of information on different layers. Our
method significantly outperformed existing strong baselines on nine low-resource agglutinative language
datasets of three representative low-resource agglutinative text classification tasks. We hope that our
results will catalyze new developments in low-resource agglutinative languages task for NLP.
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