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Abstract

Recently, state-of-the-art NLP models gained
an increasing syntactic and semantic under-
standing of language, and explanation meth-
ods are crucial to understand their decisions.
Occlusion is a well established method that
provides explanations on discrete language
data, e.g. by removing a language unit from an
input and measuring the impact on a model’s
decision. We argue that current occlusion-
based methods often produce invalid or syntac-
tically incorrect language data, neglecting the
improved abilities of recent NLP models. Fur-
thermore, gradient-based explanation methods
disregard the discrete distribution of data in
NLP. Thus, we propose OLM: a novel expla-
nation method that combines occlusion and
language models to sample valid and syntac-
tically correct replacements with high likeli-
hood, given the context of the original input.
We lay out a theoretical foundation that alle-
viates these weaknesses of other explanation
methods in NLP and provide results that under-
line the importance of considering data likeli-
hood in occlusion-based explanation.1

1 Introduction

Explanation methods are a useful tool to analyze
and understand the decisions made by complex non-
linear models, e.g. neural networks. For example,
they can attribute relevance scores to input features
(e.g. word or sub-word units in NLP). Nevertheless,
explanation methods can be misleading (Adebayo
et al., 2018) and they need to be analyzed for their
well-foundedness.

Gradient-based methods provide explanations by
analyzing local infinitesimal changes to determine
the shape of a network’s function. The implicit
assumption is that the local shape of a function is

1Our experiments are available at https://github.
com/DFKI-NLP/OLM
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It 's a classic .

It 's a masterpiece .

It 's a <UNK> .

It 's a .

Figure 1: Schematic display of data likelihood in NLP.
There are discrete inputs, i.e. combination of tokens,
with a data likelihood greater than zero. All other in-
puts in the embedding space have likelihood zero be-
cause they have no corresponding tokens. Occlusion
methods (green) create unlikely input. Gradient-based
explanation methods (red arrow) consider infinitesimal
changes to the input and thus data with no likelihood.

indicative or useful to calculate the relevance of an
input feature for a model’s prediction. In computer
vision, for example, infinitesimal changes to an
input image still produce another valid image and
the change in prediction is a valid tool to analyze
what led to it (e.g., Zintgraf et al., 2017). The same
applies to methods that analyze the function’s gradi-
ent at multiple points, such as Integrated Gradients
(Sundararajan et al., 2017).

In NLP, however, the input consists of natural
language, which is discrete, i.e., the data that has
positive likelihood is a discrete distribution (see
Figure 1). This means that local neighborhoods
need not be indicative of the model’s prediction be-
haviour and a model’s prediction function at points
with zero likelihood need not be relevant to the
model’s decision. Thus, we argue that black-box

https://github.com/DFKI-NLP/OLM
https://github.com/DFKI-NLP/OLM
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Method Relevances Max. value

OLM (ours) forced , familiar and thoroughly condescending . 0.76

OLM-S (ours) forced , familiar and thoroughly condescending . 0.47

Delete forced , familiar and thoroughly condescending . 1

UNK forced , familiar and thoroughly condescending . 0.35

Sensitivity Analysis forced , familiar and thoroughly condescending . 0.025

Gradient*Input forced , familiar and thoroughly condescending . 0.00011

Integrated Gradients forced , familiar and thoroughly condescending . 0.68

Table 1: Relevance scores of different gradient- and occlusion-based explanation methods for a sentence from
the SST-2 dataset, correctly classified as negative sentiment by RoBERTa. Red indicates an input token, with a
contribution to the true label (negative sentiment), blue indicates a detraction from the true label. Coloring are
normalized for each method for visibility, the maximum value of each method is indicated in the last column. The
relevances of the first four and last method can be interpreted as prediction difference if that token is missing
(see Sensitivity-1 in 2.1). The first token “forced” only has high relevance for our methods, the most commonly
resampled tokens can be found in Table 2. Punctuation marks have less relevance than words for our method
compared to gradient methods.

models in NLP should be analyzed only at inputs
of non-zero likelihood and explanation methods
should not rely on gradients.

Occlusion is a well suited method due to its abil-
ity to produce explanations on data with discrete
likelihood. For example, by replacing or deleting a
language unit in the original input and measuring
the impact on the model’s prediction. However, the
likelihood of the replacement data is usually low.
Consider, for example, a sentiment classification
task and assume a model that assigns syntactically
incorrect inputs a negative sentiment. It correctly
predicts “It ’s a masterpiece .” as positive, but as-
signs negative sentiment to syntactically incorrect
inputs produced by occlusion, e.g. “It ’s a .” or

“It ’s a <UNK> .”, which have low data likelihood
(see Figure 1). This may result in a large prediction
difference for many tokens in a positive sentiment
example and no prediction difference for many to-
kens in a negative sentiment example (see Table 1),
independent of whether they carry any sentiment
information and thus may be relevant to the model.
This example shows that the relevance attributed
by current occlusion-based methods may depend
solely on the model’s syntactic understanding in-
stead of the input feature’s information regarding
the task.

We argue that current NLP state-of-the-art mod-
els have increasing syntactic (Hewitt and Manning,
2019) and hierarchical (Liu et al., 2019a) under-
standing. Therefore, methods that explain these

models should consider syntactically correct re-
placement that is likely given the unit’s context,
e.g. in Figure 1 “classic” or “failure” as replace-
ments for “masterpiece” in “It ’s a masterpiece .”
Our experiments show that presenting these models
with perturbed ungrammatical input changes the
explanations.

1.1 Contributions

• We present OLM, a novel black-box relevance
explanation method which considers syntactic
understanding. It is suitable for any model that
performs an NLP classification task and we an-
alyze which axioms for explanation methods it
fulfills.
• We introduce the class zero-sum axiom for ex-

planation methods.
• We experimentally compare the relevances pro-

duced by our method to those of other black-box
and gradient-based explanation approaches.

2 Methods

In this section, we introduce our novel explana-
tion method that combines occlusion with language
modeling. Instead of deleting or replacing a linguis-
tic unit in the input with an unlikely replacement,
OLM substitutes it with one generated by a lan-
guage model. This produces a contextualized dis-
tribution of valid and syntactically likely reference
inputs and allows a more faithful analysis of mod-
els with increasing syntactic capabilities. This is
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followed by an axiomatic analysis of OLM’s prop-
erties. Finally, we introduce OLM-S, an extension
that measures sensitivity of a model at a feature’s
position.

For our approach we employ the difference of
probabilities formula from Robnik-Šikonja and
Kononenko (2008). Let xi be an attribute of in-
put x and x\i the incomplete input without this
attribute. Then the relevance r given the prediction
function f and class c is

rf,c(xi) = fc(x)− fc(x\i). (1)

Note that fc(x\i) is not accurately defined and
needs to be approximated, as x\i is an incomplete
input. For vision, Zintgraf et al. (2017) approxi-
mate fc(x\i) by using the input data distribution
pdata to sample x̂i independently of x or use a
Gaussian distribution for x̂i conditioned on sur-
rounding pixels. We argue sampling should be
conditioned on the whole input and depend on the
probability of the data distribution. We argue that
in NLP a language model pLM generates input that
is as natural as possible for the model and thus
approximate

fc(x\i) ≈
∑
x̂i

pLM (x̂i|x\i)fc(x\i, x̂i). (2)

In general, xi should be units of interest such as
phrases, words or subword tokens. Thus, OLM’s
relevance for a language unit is the difference in
prediction between the original input and inputs
with the unit resampled by conditioning on infor-
mation in its context. The relevance of every lan-
guage unit is in the interval [−1, 1], with the sign
indicating contradiction or support, and can be in-
terpreted as the value of information added by the
unit for the model.

2.1 Axiomatic Analysis
Sundararajan et al. (2017) introduced axiomatic
development and analysis of explanation meth-
ods. We follow their argument that an explanation
method should be derived theoretically, not experi-
mentally, as we want to analyze a model, not our
understanding of it. First, we introduce a new ax-
iom. Then we discuss which existing axioms our
method fulfills.2

Class Zero-Sum Axiom. We introduce an ax-
iom that follows from the intuition that for a nor-
malized DNN every input feature contributes as

2Proofs for the following analysis can be found in Ap-
pendix A.

token freq. pred. token freq. pred.
familiar 9 1 old 2 1
warm 4 7e-4 perfect 2 3.9e-4
ancient 3 0.074 quiet 2 1
cold 3 1 real 2 6.5e-3
beautiful 2 1.4e-4 sweet 2 1.9e-4
bold 2 0.63 wonderful 2 3.1e-4
low 2 1 yes 2 1
nice 2 8.3e-4 young 2 0.99

Table 2: Most frequently resampled words for “forced”
in “forced , familiar and thoroughly condescending .”
from Table 1. The last column indicates the prediction
of the negative sentiment neuron, which is the true la-
bel. We sample 100 times per token, the prediction
is rounded to two significant digits. Many resampled
words (pred. < 0.5) lead to a positive sentiment classi-
fication. The high variance of the model prediction for
replacements of this token is not captured by another
method.

much to a specific class as it detracts from all other
classes. Let f be a prediction function where the
output is normalized over all classes C. Every
input feature contributes as much to the classifi-
cation of a specific class as it detracts from other
classes. A relevance method that gives a feature
positive relevance for every class is not helpful in
understanding the model. An explanation method
satisfies Class Zero-Sum if the summed relevance
of each input feature xi over all classes is zero.∑

c∈C
rf,c(xi) = 0 (3)

This axiom can be seen as an alternative to the
Completeness axiom given by Bach et al. (2015).
Completeness states that the sum of the relevances
of an input is equal to its prediction. They can not
be fulfilled simultaneously. Gosiewska and Biecek
(2019) show that a linear distribution of relevance
as with Completeness is not necessarily desirable
for non-linear models. They argue that explana-
tions that force the sum of relevances to be equal
to the prediction do not capture the interaction of
features faithfully. OLM fulfills Class Zero-Sum, as
do other occlusion methods and gradient methods.
Other axioms OLM fulfills are:

Implementation Invariance. Two neural net-
works that represent the same function, i.e. give the
same output for each possible input, should receive
the same relevances for every input (Sundararajan
et al., 2017).

Linearity. A network, which is a linear com-
bination of other networks, should have explana-
tions which are the same linear combination of the
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original networks explanations (Sundararajan et al.,
2017).

Sensitivity-1. The relevance of an input variable
should be the difference of prediction when the
input variable is occluded (Ancona et al., 2018).

2.2 OLM-S

From our approach we can also deduce a method
that describes the sensitivity of the classification
at the position of an input feature. To this end,
we compute the standard deviation of the language
model predictions.

sf,c(xi) =

√∑
x̂i

pLM (x̂i|x\i)
(
fc(x\i, x̂i)− µ

)2
,

(4)
where µ is the mean value from equation 2. We
call this OLM-S(ensitivity). Note that this measure
is independent of xi and only describes the sen-
sitivity of the feature’s position. This means that
it measures a model’s sensitivity at a given lan-
guage unit’s position given the context. OLM and
OLM-S are thus using mean and standard deviation,
respectively, of the prediction when resampling a
token.

3 Experiments

In our experiments, we aim to answer the following
question: Do relevances produced by our method
differ from those that either ignore the discrete
structure of language data or produce syntactically
incorrect input, and if so, how?

We first train a state-of-the-art NLP model
(RoBERTa, Liu et al., 2019b) on three sentence
classification tasks (Section 3.2). We then compare
the explanations produced by OLM and OLM-S to
five occlusion and gradient-based methods (Sec-
tion 3.1). To this end, we calculate the relevances
of words over a whole input regarding the true label.
We calculate the Pearson correlation coefficients
of these relevances for every sentence and average
this over the whole development set of each task. In
our experiments we use BERT base (Devlin et al.,
2019) for OLM resampling.

3.1 Baseline Methods

We compare OLM with occlusion (Robnik-Šikonja
and Kononenko, 2008; Zintgraf et al., 2017) in
two variants. One method of occlusion is deletion
of the word. The other method is replacing the
word with the <UNK> token for unknown words.

These methods can produce ungrammatical input,
as we argue in Section 1.

Furthermore, we compare with the following
gradient-based methods. Sensitivity Analysis (Si-
monyan et al., 2013) is the absolute value of the
gradient. Gradient*Input (Shrikumar et al., 2016)
is simple component-wise multiplication of an in-
put with its gradient. Integrated Gradients (Sun-
dararajan et al., 2017) integrate the gradients from
a reference input to the current input. As these
gradient-based methods provide relevance for ev-
ery word vector value, we sum up all vector values
belonging to a word. Gradient-based methods do
not consider likelihood in NLP (see Section 1) and
are thus also merely a comparison and not a gold
standard.

3.2 Tasks

We select a representative set of NLP sentence clas-
sification tasks that focus on different aspects of
context and linguistic properties:

MNLI (matched) The Multi-Genre Natural
Language Inference Corpus (Williams et al., 2018)
contains 400k pairs of premise and hypothesis sen-
tences and the task is to predict whether the premise
entails the hypothesis. We re-use the RoBERTa
large model fine-tuned on MNLI (Liu et al., 2019b),
with a dev set accuracy of 90.2.

SST-2 The Stanford Sentiment Treebank
(Socher et al., 2013) contains 70k sentences labeled
with positive or negative sentiment. We fine-tune
the pre-trained RoBERTa base to the classification
task and achieve an accuracy of 94.5 on the dev set.

CoLA The Corpus of Linguistic Acceptability
(Warstadt et al., 2018) contains 10k sentences la-
beled as grammatical or ungrammatical, e.g. ‘They
can sing.’ (acceptable) vs. ‘many evidence was
provided.’ (unacceptable). Similar to SST-2, we
fine-tune RoBERTa base to the task and achieve a
Matthew’s corr. of 61.3 on the dev set.

3.3 Results

Table 3 shows the correlation of our two proposed
occlusion methods (OLM and OLM-S) with other
explanation methods on three NLP tasks. For
OLM-S we only report correlation to Sensitivity
because both inform about the magnitude of possi-
ble change. They both provide non-negative values
and therefore are not necessarily comparable to the
other methods. We find that across all tasks OLM
correlates the most with the two occlusion-based
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MNLI SST-2 CoLA
OLM OLM-S OLM OLM-S OLM OLM-S

Delete 0.60 - 0.52 - 0.25 -
UNK 0.58 - 0.47 - 0.21 -
Sensitivity Analysis 0.27 0.35 0.30 0.37 0.20 0.29
Gradient*Input -0.03 - 0.02 - 0.02 -
Integrated Gradients 0.28 - 0.35 - 0.15 -

Table 3: Correlation between explanation methods on MNLI, SST-2, and CoLA development sets. OLM correlates
with every method except for Gradient*Input. The correlation is highest with the other Occlusion methods for
MNLI and SST-2 but not close to 1. For all methods, the correlation is lowest on CoLA.

methods (Unk and Delete) but the overall corre-
lation is low, with a maximum of 0.6 on MNLI.
Also the level differs greatly between tasks, rang-
ing from 0.21 and 0.25 (Unk, Delete) on CoLA
to 0.58 and 0.6 on MNLI. As this is an average
of correlations, this shows that resampling creates
distinctive explanations that can not be approxi-
mated by other occlusion methods. An example
input from SST-2 can be found in Table 1, which
clearly highlights the difference in explanations.
Table 2 shows the corresponding tokens resampled
by OLM, using BERT base as the language model.
For gradient-based methods the correlation with
OLM is even lower, ranging from -0.03 for Gradi-
ent*Input on MNLI to 0.35 for Integrated Gradi-
ents on SST-2. For OLM-S we observe a correlation
between 0.29 (CoLA) and 0.35 (MNLI), which is
still low. Gradient*Input shows almost no corre-
lation to OLM across tasks. The overall low cor-
relation of gradient-based methods with OLM and
OLM-S suggests that ignoring the discrete structure
of language data might be problematic in NLP.

4 Related Work

There exist many other popular black-box expla-
nation methods for DNNs. SHAP (Lundberg and
Lee, 2017) is a framework that uses Shapley Values
which are a game-theoretic black-box approach to
determining relevance by occluding subsets of all
features. They do not necessarily consider the like-
lihood of data. The occlusion SHAP employs may
be combined with OLM but the approximation er-
ror of the language model could increase with more
features occluded. LIME (Ribeiro et al., 2016) ex-
plains by learning a local explainable model. LIME
tries to be locally faithful to a model, which is,
as we argue, not as important as likely data for
explanations in NLP.

There are also explanation methods for DNNs
which give layer-specific rules to retrieve relevance.
LRP (Bach et al., 2015) propagates relevance from
the output to the input such that Completeness is sat-
isfied for every layer. DeepLIFT (Shrikumar et al.,
2017) compares the activations of an input with
activations reference inputs. In contrast to OLM,
these layer-specific explanation methods have been
shown not to satisfy Implementation Invariance
(Sundararajan et al., 2017).

Most state-of-the-art models in NLP are trans-
formers which use attention. There is a discus-
sion on whether attention weights (Bahdanau et al.,
2015; Vaswani et al., 2017) should be considered
as explanation method in Jain and Wallace (2019)
and Wiegreffe and Pinter (2019). They are not
based on an axiomatic attribution of relevances.
It is unclear whether they satisfy any axiom. An
advantage to analyzing attention weights is that
attention weights naturally show what the model
does. Thus, even if they do not always provide a
faithful explanation, their analysis might be helpful
for a specific input.

5 Conclusion

We argue that current black-box and gradient-based
explanation methods do not yet consider the like-
lihood of data and present OLM, a novel expla-
nation method, which uses a language model to
resample occluded words. It is especially suited for
word-level relevance of sentence classification with
state-of-the-art NLP models. We also introduce the
Class Zero-Sum Axiom for explanation methods,
compare it with an existing axiom. Furthermore,
we show other axioms that OLM satisfies. We ar-
gue that with this more solid theoretical foundation
OLM can be regarded as an improvement over ex-
isting NLP classification explanation methods. In
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our experiments, we compare our methods to other
occlusion and gradient explanation methods. We
do not consider these experiments to be exhaustive.
Unfortunately, there is no general evaluation for
explanation methods.

We show that our method adds value by showing
distinctive results and better founded theory. A
practical difficulty of OLM is the approximation
with a language model. First, a language model
can create syntactically correct data, that does not
make sense for the task. Second, even state-of-
the-art language models do not always produce
syntactically correct data. However, we argue that
using a language model is a suitable way for finding
reference inputs.

In the future, we want to extend this method to
language features other than words. NLP tasks
with longer input are probably not very sensitive to
single word occlusion, which could be measured
with OLM-S.
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A Proof Appendix

Let f be a neural network that predicts a probability
distribution over classes C, i.e.

∑
c∈C fc(x) = 1.

Let x = (x1, ..., xn) be a input split into n input
features.

1. Class Zero-Sum and Completeness rule
each other out. Assume rf,c fulfills both, then we
have

n∑
i=1

∑
c∈C

rf,c(xi) = 0 (5)

from Class Zero-Sum and∑
c∈C

n∑
i=1

rf,c(xi) = 1 (6)

from Completeness. Contradiction.
2. OLM satisfies Class Zero-Sum. Let rf,c

now be the OLM relevance method from equations
(1) and (2) in the paper.∑

c∈C
rf,c(xi)

=
∑
c∈C

fc(x)−∑
x̂i

pLM (x̂i|x\i)fc(x\i, x̂i)


=
∑
c∈C

fc(x)−
∑
x̂i

pLM (x̂i|x\i)
∑
c∈C

fc(x\i, x̂i)

=1−
∑
x̂i

pLM (x̂i|x\i) = 0.

(7)

3. OLM satisfies Implementation Invariance.
OLM is a black box method and only evaluates
the function of the neural network. Thus, it has to
satisfy Implementation Invariance.

4. OLM satisfies Sensitivity-1. OLM is defined
as an Occlusion method, so it necessarily gives the
difference of prediction when an input variable is
occluded.

5. OLM satisfies Linearity. Let f =∑n
j=1 αjg

j be a linear combination of models.
Then we have

rf,c(xi) =fc(x)−
∑
x̂i

pLM (x̂i|x\i)fc(x\i, x̂i)

=
n∑

j=1

αjg
j
c(x)−

∑
x̂i

pLM (x̂i|x\i)
n∑

j=1

αjg
j
c(x\i, x̂i)

=

n∑
j=1

αjrgj ,c(xi).

(8)


