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Abstract

This paper shows that pretraining multilingual
language models at scale leads to significant
performance gains for a wide range of cross-
lingual transfer tasks. We train a Transformer-
based masked language model on one hundred
languages, using more than two terabytes of fil-
tered CommonCrawl data. Our model, dubbed
XLM-R, significantly outperforms multilingual
BERT (mBERT) on a variety of cross-lingual
benchmarks, including +14.6% average accu-
racy on XNLI, +13% average F1 score on
MLQA, and +2.4% F1 score on NER. XLM-R
performs particularly well on low-resource lan-
guages, improving 15.7% in XNLI accuracy
for Swahili and 11.4% for Urdu over previ-
ous XLM models. We also present a detailed
empirical analysis of the key factors that are
required to achieve these gains, including the
trade-offs between (1) positive transfer and ca-
pacity dilution and (2) the performance of high
and low resource languages at scale. Finally,
we show, for the first time, the possibility of
multilingual modeling without sacrificing per-
language performance; XLM-R is very compet-
itive with strong monolingual models on the
GLUE and XNLI benchmarks. We will make
our code, data and models publicly available.1

1 Introduction

The goal of this paper is to improve cross-lingual
language understanding (XLU), by carefully study-
ing the effects of training unsupervised cross-
lingual representations at a very large scale. We
present XLM-R a transformer-based multilingual
masked language model pre-trained on text in 100
languages, which obtains state-of-the-art perfor-
mance on cross-lingual classification, sequence la-
beling and question answering.

∗Equal contribution.
Correspondence to {aconneau,kartikayk}@fb.com

1https://github.com/facebookresearch/(fairseq-py,pytext,xlm)

Multilingual masked language models (MLM)
like mBERT (Devlin et al., 2018) and XLM (Lam-
ple and Conneau, 2019) have pushed the state-
of-the-art on cross-lingual understanding tasks
by jointly pretraining large Transformer mod-
els (Vaswani et al., 2017) on many languages.
These models allow for effective cross-lingual
transfer, as seen in a number of benchmarks in-
cluding cross-lingual natural language inference
(Bowman et al., 2015; Williams et al., 2017; Con-
neau et al., 2018), question answering (Rajpurkar
et al., 2016; Lewis et al., 2019), and named en-
tity recognition (Pires et al., 2019; Wu and Dredze,
2019). However, all of these studies pre-train on
Wikipedia, which provides a relatively limited scale
especially for lower resource languages.

In this paper, we first present a comprehensive
analysis of the trade-offs and limitations of multi-
lingual language models at scale, inspired by re-
cent monolingual scaling efforts (Liu et al., 2019).
We measure the trade-off between high-resource
and low-resource languages and the impact of lan-
guage sampling and vocabulary size. The experi-
ments expose a trade-off as we scale the number
of languages for a fixed model capacity: more lan-
guages leads to better cross-lingual performance
on low-resource languages up until a point, after
which the overall performance on monolingual and
cross-lingual benchmarks degrades. We refer to
this tradeoff as the curse of multilinguality, and
show that it can be alleviated by simply increas-
ing model capacity. We argue, however, that this
remains an important limitation for future XLU
systems which may aim to improve performance
with more modest computational budgets.

Our best model XLM-RoBERTa (XLM-R) out-
performs mBERT on cross-lingual classification by
up to 23% accuracy on low-resource languages. It
outperforms the previous state of the art by 5.1% av-
erage accuracy on XNLI, 2.42% average F1-score

https://github.com/facebookresearch/(fairseq-py,pytext,xlm)
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on Named Entity Recognition, and 9.1% average
F1-score on cross-lingual Question Answering. We
also evaluate monolingual fine tuning on the GLUE
and XNLI benchmarks, where XLM-R obtains re-
sults competitive with state-of-the-art monolingual
models, including RoBERTa (Liu et al., 2019).
These results demonstrate, for the first time, that
it is possible to have a single large model for all
languages, without sacrificing per-language perfor-
mance. We will make our code, models and data
publicly available, with the hope that this will help
research in multilingual NLP and low-resource lan-
guage understanding.

2 Related Work

From pretrained word embeddings (Mikolov et al.,
2013b; Pennington et al., 2014) to pretrained con-
textualized representations (Peters et al., 2018;
Schuster et al., 2019) and transformer based lan-
guage models (Radford et al., 2018; Devlin et al.,
2018), unsupervised representation learning has
significantly improved the state of the art in nat-
ural language understanding. Parallel work on
cross-lingual understanding (Mikolov et al., 2013a;
Schuster et al., 2019; Lample and Conneau, 2019)
extends these systems to more languages and to the
cross-lingual setting in which a model is learned in
one language and applied in other languages.

Most recently, Devlin et al. (2018) and Lam-
ple and Conneau (2019) introduced mBERT and
XLM - masked language models trained on multi-
ple languages, without any cross-lingual supervi-
sion. Lample and Conneau (2019) propose transla-
tion language modeling (TLM) as a way to leverage
parallel data and obtain a new state of the art on the
cross-lingual natural language inference (XNLI)
benchmark (Conneau et al., 2018). They further
show strong improvements on unsupervised ma-
chine translation and pretraining for sequence gen-
eration. Wu et al. (2019) shows that monolingual
BERT representations are similar across languages,
explaining in part the natural emergence of multi-
linguality in bottleneck architectures. Separately,
Pires et al. (2019) demonstrated the effectiveness
of multilingual models like mBERT on sequence la-
beling tasks. Huang et al. (2019) showed gains over
XLM using cross-lingual multi-task learning, and
Singh et al. (2019) demonstrated the efficiency of
cross-lingual data augmentation for cross-lingual
NLI. However, all of this work was at a relatively
modest scale, in terms of the amount of training

data, as compared to our approach.
The benefits of scaling language model pretrain-

ing by increasing the size of the model as well as
the training data has been extensively studied in the
literature. For the monolingual case, Jozefowicz
et al. (2016) show how large-scale LSTM models
can obtain much stronger performance on language
modeling benchmarks when trained on billions of
tokens. GPT (Radford et al., 2018) also highlights
the importance of scaling the amount of data and
RoBERTa (Liu et al., 2019) shows that training
BERT longer on more data leads to significant
boost in performance. Inspired by RoBERTa, we
show that mBERT and XLM are undertuned, and
that simple improvements in the learning procedure
of unsupervised MLM leads to much better perfor-
mance. We train on cleaned CommonCrawls (Wen-
zek et al., 2019), which increase the amount of data
for low-resource languages by two orders of magni-
tude on average. Similar data has also been shown
to be effective for learning high quality word em-
beddings in multiple languages (Grave et al., 2018).

Several efforts have trained massively multilin-
gual machine translation models from large par-
allel corpora. They uncover the high and low re-
source trade-off and the problem of capacity dilu-
tion (Johnson et al., 2017; Tan et al., 2019). The
work most similar to ours is Arivazhagan et al.
(2019), which trains a single model in 103 lan-
guages on over 25 billion parallel sentences. Sid-
dhant et al. (2019) further analyze the representa-
tions obtained by the encoder of a massively multi-
lingual machine translation system and show that it
obtains similar results to mBERT on cross-lingual
NLI. Our work, in contrast, focuses on the unsuper-
vised learning of cross-lingual representations and
their transfer to discriminative tasks.

3 Model and Data

In this section, we present the training objective,
languages, and data we use. We follow the XLM
approach (Lample and Conneau, 2019) as closely
as possible, only introducing changes that improve
performance at scale.

Masked Language Models. We use a Trans-
former model (Vaswani et al., 2017) trained with
the multilingual MLM objective (Devlin et al.,
2018; Lample and Conneau, 2019) using only
monolingual data. We sample streams of text from
each language and train the model to predict the
masked tokens in the input. We apply subword tok-
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Figure 1: Amount of data in GiB (log-scale) for the 88 languages that appear in both the Wiki-100 corpus used for
mBERT and XLM-100, and the CC-100 used for XLM-R. CC-100 increases the amount of data by several orders
of magnitude, in particular for low-resource languages.

enization directly on raw text data using Sentence
Piece (Kudo and Richardson, 2018) with a unigram
language model (Kudo, 2018). We sample batches
from different languages using the same sampling
distribution as Lample and Conneau (2019), but
with α = 0.3. Unlike Lample and Conneau (2019),
we do not use language embeddings, which allows
our model to better deal with code-switching. We
use a large vocabulary size of 250K with a full soft-
max and train two different models: XLM-R Base (L
= 12, H = 768, A = 12, 270M params) and XLM-R
(L = 24, H = 1024, A = 16, 550M params). For all
of our ablation studies, we use a BERTBase architec-
ture with a vocabulary of 150K tokens. Appendix B
goes into more details about the architecture of the
different models referenced in this paper.

Scaling to a hundred languages. XLM-R is
trained on 100 languages; we provide a full list of
languages and associated statistics in Appendix A.
Figure 1 specifies the iso codes of 88 languages
that are shared across XLM-R and XLM-100, the
model from Lample and Conneau (2019) trained
on Wikipedia text in 100 languages.

Compared to previous work, we replace some
languages with more commonly used ones such
as romanized Hindi and traditional Chinese. In
our ablation studies, we always include the 7 lan-
guages for which we have classification and se-
quence labeling evaluation benchmarks: English,
French, German, Russian, Chinese, Swahili and
Urdu. We chose this set as it covers a suitable range
of language families and includes low-resource lan-
guages such as Swahili and Urdu. We also consider
larger sets of 15, 30, 60 and all 100 languages.
When reporting results on high-resource and low-
resource, we refer to the average of English and
French results, and the average of Swahili and Urdu
results respectively.

Scaling the Amount of Training Data. Follow-
ing Wenzek et al. (2019) 2, we build a clean Com-
monCrawl Corpus in 100 languages. We use an
internal language identification model in combina-
tion with the one from fastText (Joulin et al., 2017).
We train language models in each language and use
it to filter documents as described in Wenzek et al.
(2019). We consider one CommonCrawl dump for
English and twelve dumps for all other languages,
which significantly increases dataset sizes, espe-
cially for low-resource languages like Burmese and
Swahili.

Figure 1 shows the difference in size between
the Wikipedia Corpus used by mBERT and XLM-
100, and the CommonCrawl Corpus we use. As
we show in Section 5.3, monolingual Wikipedia
corpora are too small to enable unsupervised rep-
resentation learning. Based on our experiments,
we found that a few hundred MiB of text data is
usually a minimal size for learning a BERT model.

4 Evaluation

We consider four evaluation benchmarks. For cross-
lingual understanding, we use cross-lingual natural
language inference, named entity recognition, and
question answering. We use the GLUE benchmark
to evaluate the English performance of XLM-R and
compare it to other state-of-the-art models.

Cross-lingual Natural Language Inference
(XNLI). The XNLI dataset comes with ground-
truth dev and test sets in 15 languages, and a
ground-truth English training set. The training set
has been machine-translated to the remaining 14
languages, providing synthetic training data for
these languages as well. We evaluate our model
on cross-lingual transfer from English to other lan-

2https://github.com/facebookresearch/cc net

https://github.com/facebookresearch/cc_net
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guages. We also consider three machine translation
baselines: (i) translate-test: dev and test sets are
machine-translated to English and a single English
model is used (ii) translate-train (per-language):
the English training set is machine-translated
to each language and we fine-tune a multiligual
model on each training set (iii) translate-train-all
(multi-language): we fine-tune a multilingual
model on the concatenation of all training sets
from translate-train. For the translations, we use
the official data provided by the XNLI project.

Named Entity Recognition. For NER, we con-
sider the CoNLL-2002 (Sang, 2002) and CoNLL-
2003 (Tjong Kim Sang and De Meulder, 2003)
datasets in English, Dutch, Spanish and German.
We fine-tune multilingual models either (1) on the
English set to evaluate cross-lingual transfer, (2)
on each set to evaluate per-language performance,
or (3) on all sets to evaluate multilingual learning.
We report the F1 score, and compare to baselines
from Lample et al. (2016) and Akbik et al. (2018).

Cross-lingual Question Answering. We use the
MLQA benchmark from Lewis et al. (2019), which
extends the English SQuAD benchmark to Spanish,
German, Arabic, Hindi, Vietnamese and Chinese.
We report the F1 score as well as the exact match
(EM) score for cross-lingual transfer from English.

GLUE Benchmark. Finally, we evaluate the En-
glish performance of our model on the GLUE
benchmark (Wang et al., 2018) which gathers mul-
tiple classification tasks, such as MNLI (Williams
et al., 2017), SST-2 (Socher et al., 2013), or
QNLI (Rajpurkar et al., 2018). We use BERTLarge
and RoBERTa as baselines.

5 Analysis and Results

In this section, we perform a comprehensive anal-
ysis of multilingual masked language models. We
conduct most of the analysis on XNLI, which we
found to be representative of our findings on other
tasks. We then present the results of XLM-R on
cross-lingual understanding and GLUE. Finally,
we compare multilingual and monolingual models,
and present results on low-resource languages.

5.1 Improving and Understanding
Multilingual Masked Language Models

Much of the work done on understanding the cross-
lingual effectiveness of mBERT or XLM (Pires
et al., 2019; Wu and Dredze, 2019; Lewis et al.,

2019) has focused on analyzing the performance of
fixed pretrained models on downstream tasks. In
this section, we present a comprehensive study of
different factors that are important to pretraining
large scale multilingual models. We highlight the
trade-offs and limitations of these models as we
scale to one hundred languages.

Transfer-dilution Trade-off and Curse of Mul-
tilinguality. Model capacity (i.e. the number of
parameters in the model) is constrained due to prac-
tical considerations such as memory and speed dur-
ing training and inference. For a fixed sized model,
the per-language capacity decreases as we increase
the number of languages. While low-resource lan-
guage performance can be improved by adding sim-
ilar higher-resource languages during pretraining,
the overall downstream performance suffers from
this capacity dilution (Arivazhagan et al., 2019).
Positive transfer and capacity dilution have to be
traded off against each other.

We illustrate this trade-off in Figure 2, which
shows XNLI performance vs the number of lan-
guages the model is pretrained on. Initially, as we
go from 7 to 15 languages, the model is able to
take advantage of positive transfer which improves
performance, especially on low resource languages.
Beyond this point the curse of multilinguality kicks
in and degrades performance across all languages.
Specifically, the overall XNLI accuracy decreases
from 71.8% to 67.7% as we go from XLM-7 to
XLM-100. The same trend can be observed for
models trained on the larger CommonCrawl Cor-
pus.

The issue is even more prominent when the ca-
pacity of the model is small. To show this, we
pretrain models on Wikipedia Data in 7, 30 and
100 languages. As we add more languages, we
make the Transformer wider by increasing the hid-
den size from 768 to 960 to 1152. In Figure 4, we
show that the added capacity allows XLM-30 to be
on par with XLM-7, thus overcoming the curse of
multilinguality. The added capacity for XLM-100,
however, is not enough and it still lags behind due
to higher vocabulary dilution (recall from Section 3
that we used a fixed vocabulary size of 150K for
all models).

High-resource vs Low-resource Trade-off.
The allocation of the model capacity across
languages is controlled by several parameters: the
training set size, the size of the shared subword
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Figure 2: The transfer-
interference trade-off: Low-
resource languages benefit from
scaling to more languages, until
dilution (interference) kicks in
and degrades overall performance.
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Figure 3: Wikipedia versus Com-
monCrawl: An XLM-7 obtains
significantly better performance
when trained on CC, in particular
on low-resource languages.
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Figure 4: Adding more capacity to
the model alleviates the curse of
multilinguality, but remains an is-
sue for models of moderate size.

0.01 0.3 0.7 1.0
Language sampling

40
50
60
70
80

A
cc

ur
ac

y

Low res. High res. All

Figure 5: On the high-resource
versus low-resource trade-off: im-
pact of batch language sampling
for XLM-100.
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Figure 6: On the impact of vocabu-
lary size at fixed capacity and with
increasing capacity for XLM-100.
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Figure 7: On the impact of large-
scale training, and preprocessing
simplification from BPE with tok-
enization to SPM on raw text data.

vocabulary, and the rate at which we sample
training examples from each language. We study
the effect of sampling on the performance of high-
resource (English and French) and low-resource
(Swahili and Urdu) languages for an XLM-100
model trained on Wikipedia (we observe a similar
trend for the construction of the subword vocab).
Specifically, we investigate the impact of varying
the α parameter which controls the exponential
smoothing of the language sampling rate. Similar
to Lample and Conneau (2019), we use a sampling
rate proportional to the number of sentences in
each corpus. Models trained with higher values
of α see batches of high-resource languages more
often. Figure 5 shows that the higher the value
of α, the better the performance on high-resource
languages, and vice-versa. When considering
overall performance, we found 0.3 to be an optimal
value for α, and use this for XLM-R.

Importance of Capacity and Vocabulary. In
previous sections and in Figure 4, we showed the
importance of scaling the model size as we increase
the number of languages. Similar to the overall
model size, we argue that scaling the size of the

shared vocabulary (the vocabulary capacity) can
improve the performance of multilingual models on
downstream tasks. To illustrate this effect, we train
XLM-100 models on Wikipedia data with different
vocabulary sizes. We keep the overall number of
parameters constant by adjusting the width of the
transformer. Figure 6 shows that even with a fixed
capacity, we observe a 2.8% increase in XNLI av-
erage accuracy as we increase the vocabulary size
from 32K to 256K. This suggests that multilingual
models can benefit from allocating a higher pro-
portion of the total number of parameters to the
embedding layer even though this reduces the size
of the Transformer. For simplicity and given the
softmax computational constraints, we use a vocab-
ulary of 250k for XLM-R.

We further illustrate the importance of this pa-
rameter, by training three models with the same
transformer architecture (BERTBase) but with dif-
ferent vocabulary sizes: 128K, 256K and 512K.
We observe more than 3% gains in overall accuracy
on XNLI by simply increasing the vocab size from
128k to 512k.
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Larger-scale Datasets and Training. As shown
in Figure 1, the CommonCrawl Corpus that we col-
lected has significantly more monolingual data than
the previously used Wikipedia corpora. Figure 3
shows that for the same BERTBase architecture, all
models trained on CommonCrawl obtain signifi-
cantly better performance.

Apart from scaling the training data, Liu et al.
(2019) also showed the benefits of training MLMs
longer. In our experiments, we observed similar
effects of large-scale training, such as increasing
batch size (see Figure 7) and training time, on
model performance. Specifically, we found that
using validation perplexity as a stopping criterion
for pretraining caused the multilingual MLM in
Lample and Conneau (2019) to be under-tuned.
In our experience, performance on downstream
tasks continues to improve even after validation
perplexity has plateaued. Combining this observa-
tion with our implementation of the unsupervised
XLM-MLM objective, we were able to improve
the performance of Lample and Conneau (2019)
from 71.3% to more than 75% average accuracy
on XNLI, which was on par with their supervised
translation language modeling (TLM) objective.
Based on these results, and given our focus on
unsupervised learning, we decided to not use the
supervised TLM objective for training our models.

Simplifying Multilingual Tokenization with
Sentence Piece. The different language-specific
tokenization tools used by mBERT and XLM-100
make these models more difficult to use on raw
text. Instead, we train a Sentence Piece model
(SPM) and apply it directly on raw text data for
all languages. We did not observe any loss in per-
formance for models trained with SPM when com-
pared to models trained with language-specific pre-
processing and byte-pair encoding (see Figure 7)
and hence use SPM for XLM-R.

5.2 Cross-lingual Understanding Results

Based on these results, we adapt the setting of Lam-
ple and Conneau (2019) and use a large Trans-
former model with 24 layers and 1024 hidden
states, with a 250k vocabulary. We use the multi-
lingual MLM loss and train our XLM-R model for
1.5 Million updates on five-hundred 32GB Nvidia
V100 GPUs with a batch size of 8192. We leverage
the SPM-preprocessed text data from Common-
Crawl in 100 languages and sample languages with
α = 0.3. In this section, we show that it out-

performs all previous techniques on cross-lingual
benchmarks while getting performance on par with
RoBERTa on the GLUE benchmark.

XNLI. Table 1 shows XNLI results and adds
some additional details: (i) the number of models
the approach induces (#M), (ii) the data on which
the model was trained (D), and (iii) the number of
languages the model was pretrained on (#lg). As
we show in our results, these parameters signifi-
cantly impact performance. Column #M specifies
whether model selection was done separately on
the dev set of each language (N models), or on
the joint dev set of all the languages (single model).
We observe a 0.6 decrease in overall accuracy when
we go from N models to a single model - going
from 71.3 to 70.7. We encourage the community to
adopt this setting. For cross-lingual transfer, while
this approach is not fully zero-shot transfer, we
argue that in real applications, a small amount of
supervised data is often available for validation in
each language.

XLM-R sets a new state of the art on XNLI. On
cross-lingual transfer, XLM-R obtains 80.9% accu-
racy, outperforming the XLM-100 and mBERT
open-source models by 10.2% and 14.6% aver-
age accuracy. On the Swahili and Urdu low-
resource languages, XLM-R outperforms XLM-100
by 15.7% and 11.4%, and mBERT by 23.5% and
15.8%. While XLM-R handles 100 languages, we
also show that it outperforms the former state of
the art Unicoder (Huang et al., 2019) and XLM
(MLM+TLM), which handle only 15 languages, by
5.5% and 5.8% average accuracy respectively. Us-
ing the multilingual training of translate-train-all,
XLM-R further improves performance and reaches
83.6% accuracy, a new overall state of the art for
XNLI, outperforming Unicoder by 5.1%. Multi-
lingual training is similar to practical applications
where training sets are available in various lan-
guages for the same task. In the case of XNLI,
datasets have been translated, and translate-train-
all can be seen as some form of cross-lingual data
augmentation (Singh et al., 2019), similar to back-
translation (Xie et al., 2019).

Named Entity Recognition. In Table 2, we re-
port results of XLM-R and mBERT on CoNLL-
2002 and CoNLL-2003. We consider the LSTM
+ CRF approach from Lample et al. (2016) and
the Flair model from Akbik et al. (2018) as base-
lines. We evaluate the performance of the model
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Model D #M #lg en fr es de el bg ru tr ar vi th zh hi sw ur Avg

Fine-tune multilingual model on English training set (Cross-lingual Transfer)

Lample and Conneau (2019) Wiki+MT N 15 85.0 78.7 78.9 77.8 76.6 77.4 75.3 72.5 73.1 76.1 73.2 76.5 69.6 68.4 67.3 75.1
Huang et al. (2019) Wiki+MT N 15 85.1 79.0 79.4 77.8 77.2 77.2 76.3 72.8 73.5 76.4 73.6 76.2 69.4 69.7 66.7 75.4
Devlin et al. (2018) Wiki N 102 82.1 73.8 74.3 71.1 66.4 68.9 69.0 61.6 64.9 69.5 55.8 69.3 60.0 50.4 58.0 66.3
Lample and Conneau (2019) Wiki N 100 83.7 76.2 76.6 73.7 72.4 73.0 72.1 68.1 68.4 72.0 68.2 71.5 64.5 58.0 62.4 71.3
Lample and Conneau (2019) Wiki 1 100 83.2 76.7 77.7 74.0 72.7 74.1 72.7 68.7 68.6 72.9 68.9 72.5 65.6 58.2 62.4 70.7
XLM-RBase CC 1 100 85.8 79.7 80.7 78.7 77.5 79.6 78.1 74.2 73.8 76.5 74.6 76.7 72.4 66.5 68.3 76.2
XLM-R CC 1 100 89.1 84.1 85.1 83.9 82.9 84.0 81.2 79.6 79.8 80.8 78.1 80.2 76.9 73.9 73.8 80.9

Translate everything to English and use English-only model (TRANSLATE-TEST)

BERT-en Wiki 1 1 88.8 81.4 82.3 80.1 80.3 80.9 76.2 76.0 75.4 72.0 71.9 75.6 70.0 65.8 65.8 76.2
RoBERTa Wiki+CC 1 1 91.3 82.9 84.3 81.2 81.7 83.1 78.3 76.8 76.6 74.2 74.1 77.5 70.9 66.7 66.8 77.8

Fine-tune multilingual model on each training set (TRANSLATE-TRAIN)

Lample and Conneau (2019) Wiki N 100 82.9 77.6 77.9 77.9 77.1 75.7 75.5 72.6 71.2 75.8 73.1 76.2 70.4 66.5 62.4 74.2

Fine-tune multilingual model on all training sets (TRANSLATE-TRAIN-ALL)

Lample and Conneau (2019)† Wiki+MT 1 15 85.0 80.8 81.3 80.3 79.1 80.9 78.3 75.6 77.6 78.5 76.0 79.5 72.9 72.8 68.5 77.8
Huang et al. (2019) Wiki+MT 1 15 85.6 81.1 82.3 80.9 79.5 81.4 79.7 76.8 78.2 77.9 77.1 80.5 73.4 73.8 69.6 78.5
Lample and Conneau (2019) Wiki 1 100 84.5 80.1 81.3 79.3 78.6 79.4 77.5 75.2 75.6 78.3 75.7 78.3 72.1 69.2 67.7 76.9
XLM-RBase CC 1 100 85.4 81.4 82.2 80.3 80.4 81.3 79.7 78.6 77.3 79.7 77.9 80.2 76.1 73.1 73.0 79.1
XLM-R CC 1 100 89.1 85.1 86.6 85.7 85.3 85.9 83.5 83.2 83.1 83.7 81.5 83.7 81.6 78.0 78.1 83.6

Table 1: Results on cross-lingual classification. We report the accuracy on each of the 15 XNLI languages and the
average accuracy. We specify the dataset D used for pretraining, the number of models #M the approach requires
and the number of languages #lg the model handles. Our XLM-R results are averaged over five different seeds.
We show that using the translate-train-all approach which leverages training sets from multiple languages, XLM-R
obtains a new state of the art on XNLI of 83.6% average accuracy. Results with † are from Huang et al. (2019).

Model train #M en nl es de Avg

Lample et al. (2016) each N 90.74 81.74 85.75 78.76 84.25
Akbik et al. (2018) each N 93.18 90.44 - 88.27 -

mBERT†
each N 91.97 90.94 87.38 82.82 88.28
en 1 91.97 77.57 74.96 69.56 78.52

XLM-RBase

each N 92.25 90.39 87.99 84.60 88.81
en 1 92.25 78.08 76.53 69.60 79.11
all 1 91.08 89.09 87.28 83.17 87.66

XLM-R
each N 92.92 92.53 89.72 85.81 90.24
en 1 92.92 80.80 78.64 71.40 80.94
all 1 92.00 91.60 89.52 84.60 89.43

Table 2: Results on named entity recognition on
CoNLL-2002 and CoNLL-2003 (F1 score). Results
with † are from Wu and Dredze (2019). Note that
mBERT and XLM-R do not use a linear-chain CRF, as
opposed to Akbik et al. (2018) and Lample et al. (2016).

on each of the target languages in three different
settings: (i) train on English data only (en) (ii) train
on data in target language (each) (iii) train on data
in all languages (all). Results of mBERT are re-
ported from Wu and Dredze (2019). Note that we
do not use a linear-chain CRF on top of XLM-R
and mBERT representations, which gives an advan-
tage to Akbik et al. (2018). Without the CRF, our
XLM-R model still performs on par with the state
of the art, outperforming Akbik et al. (2018) on
Dutch by 2.09 points. On this task, XLM-R also
outperforms mBERT by 2.42 F1 on average for
cross-lingual transfer, and 1.86 F1 when trained
on each language. Training on all languages leads
to an average F1 score of 89.43%, outperforming

cross-lingual transfer approach by 8.49%.

Question Answering. We also obtain new state
of the art results on the MLQA cross-lingual ques-
tion answering benchmark, introduced by Lewis
et al. (2019). We follow their procedure by training
on the English training data and evaluating on the
7 languages of the dataset. We report results in
Table 3. XLM-R obtains F1 and accuracy scores of
70.7% and 52.7% while the previous state of the art
was 61.6% and 43.5%. XLM-R also outperforms
mBERT by 13.0% F1-score and 11.1% accuracy.
It even outperforms BERT-Large on English, con-
firming its strong monolingual performance.

5.3 Multilingual versus Monolingual

In this section, we present results of multilingual
XLM models against monolingual BERT models.

GLUE: XLM-R versus RoBERTa. Our goal is
to obtain a multilingual model with strong perfor-
mance on both, cross-lingual understanding tasks
as well as natural language understanding tasks
for each language. To that end, we evaluate XLM-
R on the GLUE benchmark. We show in Table 4,
that XLM-R obtains better average dev performance
than BERTLarge by 1.6% and reaches performance
on par with XLNetLarge. The RoBERTa model out-
performs XLM-R by only 1.0% on average. We
believe future work can reduce this gap even fur-
ther by alleviating the curse of multilinguality and
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Model train #lgs en es de ar hi vi zh Avg

BERT-Large† en 1 80.2 / 67.4 - - - - - - -
mBERT† en 102 77.7 / 65.2 64.3 / 46.6 57.9 / 44.3 45.7 / 29.8 43.8 / 29.7 57.1 / 38.6 57.5 / 37.3 57.7 / 41.6
XLM-15† en 15 74.9 / 62.4 68.0 / 49.8 62.2 / 47.6 54.8 / 36.3 48.8 / 27.3 61.4 / 41.8 61.1 / 39.6 61.6 / 43.5
XLM-RBase en 100 77.1 / 64.6 67.4 / 49.6 60.9 / 46.7 54.9 / 36.6 59.4 / 42.9 64.5 / 44.7 61.8 / 39.3 63.7 / 46.3
XLM-R en 100 80.6 / 67.8 74.1 / 56.0 68.5 / 53.6 63.1 / 43.5 69.2 / 51.6 71.3 / 50.9 68.0 / 45.4 70.7 / 52.7

Table 3: Results on MLQA question answering We report the F1 and EM (exact match) scores for zero-shot
classification where models are fine-tuned on the English Squad dataset and evaluated on the 7 languages of
MLQA. Results with † are taken from the original MLQA paper Lewis et al. (2019).

vocabulary dilution. These results demonstrate the
possibility of learning one model for many lan-
guages while maintaining strong performance on
per-language downstream tasks.

Model #lgs MNLI-m/mm QNLI QQP SST MRPC STS-B Avg

BERTLarge
† 1 86.6/- 92.3 91.3 93.2 88.0 90.0 90.2

XLNetLarge
† 1 89.8/- 93.9 91.8 95.6 89.2 91.8 92.0

RoBERTa† 1 90.2/90.2 94.7 92.2 96.4 90.9 92.4 92.8
XLM-R 100 88.9/89.0 93.8 92.3 95.0 89.5 91.2 91.8

Table 4: GLUE dev results. Results with † are from
Liu et al. (2019). We compare the performance of XLM-
R to BERTLarge, XLNet and RoBERTa on the English
GLUE benchmark.

XNLI: XLM versus BERT. A recurrent criti-
cism against multilingual models is that they obtain
worse performance than their monolingual coun-
terparts. In addition to the comparison of XLM-R
and RoBERTa, we provide the first comprehen-
sive study to assess this claim on the XNLI bench-
mark. We extend our comparison between multilin-
gual XLM models and monolingual BERT models
on 7 languages and compare performance in Ta-
ble 5. We train 14 monolingual BERT models on
Wikipedia and CommonCrawl (capped at 60 GiB),
and two XLM-7 models. We increase the vocab-
ulary size of the multilingual model for a better
comparison. We found that multilingual models
can outperform their monolingual BERT counter-
parts. Specifically, in Table 5, we show that for
cross-lingual transfer, monolingual baselines out-
perform XLM-7 for both Wikipedia and CC by
1.6% and 1.3% average accuracy. However, by
making use of multilingual training (translate-train-
all) and leveraging training sets coming from mul-
tiple languages, XLM-7 can outperform the BERT
models: our XLM-7 trained on CC obtains 80.0%
average accuracy on the 7 languages, while the
average performance of BERT models trained on
CC is 77.5%. This is a surprising result that shows
that the capacity of multilingual models to leverage
training data coming from multiple languages for a

particular task can overcome the capacity dilution
problem to obtain better overall performance.

Model D #vocab en fr de ru zh sw ur Avg

Monolingual baselines

BERT
Wiki 40k 84.5 78.6 80.0 75.5 77.7 60.1 57.3 73.4
CC 40k 86.7 81.2 81.2 78.2 79.5 70.8 65.1 77.5

Multilingual models (cross-lingual transfer)

XLM-7
Wiki 150k 82.3 76.8 74.7 72.5 73.1 60.8 62.3 71.8
CC 150k 85.7 78.6 79.5 76.4 74.8 71.2 66.9 76.2

Multilingual models (translate-train-all)

XLM-7
Wiki 150k 84.6 80.1 80.2 75.7 78 68.7 66.7 76.3
CC 150k 87.2 82.5 82.9 79.7 80.4 75.7 71.5 80.0

Table 5: Multilingual versus monolingual models
(BERT-BASE). We compare the performance of mono-
lingual models (BERT) versus multilingual models
(XLM) on seven languages, using a BERT-BASE archi-
tecture. We choose a vocabulary size of 40k and 150k
for monolingual and multilingual models.

5.4 Representation Learning for
Low-resource Languages

We observed in Table 5 that pretraining on
Wikipedia for Swahili and Urdu performed sim-
ilarly to a randomly initialized model; most likely
due to the small size of the data for these languages.
On the other hand, pretraining on CC improved
performance by up to 10 points. This confirms our
assumption that mBERT and XLM-100 rely heav-
ily on cross-lingual transfer but do not model the
low-resource languages as well as XLM-R. Specifi-
cally, in the translate-train-all setting, we observe
that the biggest gains for XLM models trained on
CC, compared to their Wikipedia counterparts, are
on low-resource languages; 7% and 4.8% improve-
ment on Swahili and Urdu respectively.

6 Conclusion

In this work, we introduced XLM-R, our new state
of the art multilingual masked language model
trained on 2.5 TB of newly created clean Com-
monCrawl data in 100 languages. We show that it
provides strong gains over previous multilingual



8448

models like mBERT and XLM on classification,
sequence labeling and question answering. We ex-
posed the limitations of multilingual MLMs, in
particular by uncovering the high-resource versus
low-resource trade-off, the curse of multilinguality
and the importance of key hyperparameters. We
also expose the surprising effectiveness of multilin-
gual models over monolingual models, and show
strong improvements on low-resource languages.
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Appendix

A Languages and statistics for CC-100 used by XLM-R

In this section we present the list of languages in the CC-100 corpus we created for training XLM-R. We
also report statistics such as the number of tokens and the size of each monolingual corpus.

ISO code Language Tokens (M) Size (GiB) ISO code Language Tokens (M) Size (GiB)

af Afrikaans 242 1.3 lo Lao 17 0.6
am Amharic 68 0.8 lt Lithuanian 1835 13.7
ar Arabic 2869 28.0 lv Latvian 1198 8.8
as Assamese 5 0.1 mg Malagasy 25 0.2
az Azerbaijani 783 6.5 mk Macedonian 449 4.8
be Belarusian 362 4.3 ml Malayalam 313 7.6
bg Bulgarian 5487 57.5 mn Mongolian 248 3.0
bn Bengali 525 8.4 mr Marathi 175 2.8
- Bengali Romanized 77 0.5 ms Malay 1318 8.5

br Breton 16 0.1 my Burmese 15 0.4
bs Bosnian 14 0.1 my Burmese 56 1.6
ca Catalan 1752 10.1 ne Nepali 237 3.8
cs Czech 2498 16.3 nl Dutch 5025 29.3
cy Welsh 141 0.8 no Norwegian 8494 49.0
da Danish 7823 45.6 om Oromo 8 0.1
de German 10297 66.6 or Oriya 36 0.6
el Greek 4285 46.9 pa Punjabi 68 0.8
en English 55608 300.8 pl Polish 6490 44.6
eo Esperanto 157 0.9 ps Pashto 96 0.7
es Spanish 9374 53.3 pt Portuguese 8405 49.1
et Estonian 843 6.1 ro Romanian 10354 61.4
eu Basque 270 2.0 ru Russian 23408 278.0
fa Persian 13259 111.6 sa Sanskrit 17 0.3
fi Finnish 6730 54.3 sd Sindhi 50 0.4
fr French 9780 56.8 si Sinhala 243 3.6
fy Western Frisian 29 0.2 sk Slovak 3525 23.2
ga Irish 86 0.5 sl Slovenian 1669 10.3
gd Scottish Gaelic 21 0.1 so Somali 62 0.4
gl Galician 495 2.9 sq Albanian 918 5.4
gu Gujarati 140 1.9 sr Serbian 843 9.1
ha Hausa 56 0.3 su Sundanese 10 0.1
he Hebrew 3399 31.6 sv Swedish 77.8 12.1
hi Hindi 1715 20.2 sw Swahili 275 1.6
- Hindi Romanized 88 0.5 ta Tamil 595 12.2

hr Croatian 3297 20.5 - Tamil Romanized 36 0.3
hu Hungarian 7807 58.4 te Telugu 249 4.7
hy Armenian 421 5.5 - Telugu Romanized 39 0.3
id Indonesian 22704 148.3 th Thai 1834 71.7
is Icelandic 505 3.2 tl Filipino 556 3.1
it Italian 4983 30.2 tr Turkish 2736 20.9
ja Japanese 530 69.3 ug Uyghur 27 0.4
jv Javanese 24 0.2 uk Ukrainian 6.5 84.6
ka Georgian 469 9.1 ur Urdu 730 5.7
kk Kazakh 476 6.4 - Urdu Romanized 85 0.5
km Khmer 36 1.5 uz Uzbek 91 0.7
kn Kannada 169 3.3 vi Vietnamese 24757 137.3
ko Korean 5644 54.2 xh Xhosa 13 0.1
ku Kurdish (Kurmanji) 66 0.4 yi Yiddish 34 0.3
ky Kyrgyz 94 1.2 zh Chinese (Simplified) 259 46.9
la Latin 390 2.5 zh Chinese (Traditional) 176 16.6

Table 6: Languages and statistics of the CC-100 corpus. We report the list of 100 languages and include
the number of tokens (Millions) and the size of the data (in GiB) for each language. Note that we also include
romanized variants of some non latin languages such as Bengali, Hindi, Tamil, Telugu and Urdu.
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B Model Architectures and Sizes

As we showed in section 5, capacity is an important parameter for learning strong cross-lingual represen-
tations. In the table below, we list multiple monolingual and multilingual models used by the research
community and summarize their architectures and total number of parameters.

Model #lgs tokenization L Hm Hff A V #params

BERTBase 1 WordPiece 12 768 3072 12 30k 110M
BERTLarge 1 WordPiece 24 1024 4096 16 30k 335M
mBERT 104 WordPiece 12 768 3072 12 110k 172M
RoBERTaBase 1 bBPE 12 768 3072 8 50k 125M
RoBERTa 1 bBPE 24 1024 4096 16 50k 355M
XLM-15 15 BPE 12 1024 4096 8 95k 250M
XLM-17 17 BPE 16 1280 5120 16 200k 570M
XLM-100 100 BPE 16 1280 5120 16 200k 570M
Unicoder 15 BPE 12 1024 4096 8 95k 250M
XLM-R Base 100 SPM 12 768 3072 12 250k 270M
XLM-R 100 SPM 24 1024 4096 16 250k 550M
GPT2 1 bBPE 48 1600 6400 32 50k 1.5B
wide-mmNMT 103 SPM 12 2048 16384 32 64k 3B
deep-mmNMT 103 SPM 24 1024 16384 32 64k 3B
T5-3B 1 WordPiece 24 1024 16384 32 32k 3B
T5-11B 1 WordPiece 24 1024 65536 32 32k 11B

Table 7: Details on model sizes. We show the tokenization used by each Transformer model, the number of layers
L, the number of hidden states of the model Hm, the dimension of the feed-forward layer Hff , the number of
attention heads A, the size of the vocabulary V and the total number of parameters #params. For Transformer
encoders, the number of parameters can be approximated by 4LH2

m + 2LHmHff + V Hm. GPT2 numbers
are from Radford et al. (2019), mm-NMT models are from the work of Arivazhagan et al. (2019) on massively
multilingual neural machine translation (mmNMT), and T5 numbers are from Raffel et al. (2019). While XLM-R
is among the largest models partly due to its large embedding layer, it has a similar number of parameters than
XLM-100, and remains significantly smaller that recently introduced Transformer models for multilingual MT and
transfer learning. While this table gives more hindsight on the difference of capacity of each model, note it does
not highlight other critical differences between the models.


