@inproceedings{wang-etal-2020-learning-multi,
title = "Learning a Multi-Domain Curriculum for Neural Machine Translation",
author = "Wang, Wei and
Tian, Ye and
Ngiam, Jiquan and
Yang, Yinfei and
Caswell, Isaac and
Parekh, Zarana",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.acl-main.689",
doi = "10.18653/v1/2020.acl-main.689",
pages = "7711--7723",
abstract = "Most data selection research in machine translation focuses on improving a single domain. We perform data selection for multiple domains at once. This is achieved by carefully introducing instance-level domain-relevance features and automatically constructing a training curriculum to gradually concentrate on multi-domain relevant and noise-reduced data batches. Both the choice of features and the use of curriculum are crucial for balancing and improving all domains, including out-of-domain. In large-scale experiments, the multi-domain curriculum simultaneously reaches or outperforms the individual performance and brings solid gains over no-curriculum training.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wang-etal-2020-learning-multi">
<titleInfo>
<title>Learning a Multi-Domain Curriculum for Neural Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ye</namePart>
<namePart type="family">Tian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiquan</namePart>
<namePart type="family">Ngiam</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yinfei</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Isaac</namePart>
<namePart type="family">Caswell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zarana</namePart>
<namePart type="family">Parekh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-jul</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Most data selection research in machine translation focuses on improving a single domain. We perform data selection for multiple domains at once. This is achieved by carefully introducing instance-level domain-relevance features and automatically constructing a training curriculum to gradually concentrate on multi-domain relevant and noise-reduced data batches. Both the choice of features and the use of curriculum are crucial for balancing and improving all domains, including out-of-domain. In large-scale experiments, the multi-domain curriculum simultaneously reaches or outperforms the individual performance and brings solid gains over no-curriculum training.</abstract>
<identifier type="citekey">wang-etal-2020-learning-multi</identifier>
<identifier type="doi">10.18653/v1/2020.acl-main.689</identifier>
<location>
<url>https://aclanthology.org/2020.acl-main.689</url>
</location>
<part>
<date>2020-jul</date>
<extent unit="page">
<start>7711</start>
<end>7723</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Learning a Multi-Domain Curriculum for Neural Machine Translation
%A Wang, Wei
%A Tian, Ye
%A Ngiam, Jiquan
%A Yang, Yinfei
%A Caswell, Isaac
%A Parekh, Zarana
%S Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
%D 2020
%8 jul
%I Association for Computational Linguistics
%C Online
%F wang-etal-2020-learning-multi
%X Most data selection research in machine translation focuses on improving a single domain. We perform data selection for multiple domains at once. This is achieved by carefully introducing instance-level domain-relevance features and automatically constructing a training curriculum to gradually concentrate on multi-domain relevant and noise-reduced data batches. Both the choice of features and the use of curriculum are crucial for balancing and improving all domains, including out-of-domain. In large-scale experiments, the multi-domain curriculum simultaneously reaches or outperforms the individual performance and brings solid gains over no-curriculum training.
%R 10.18653/v1/2020.acl-main.689
%U https://aclanthology.org/2020.acl-main.689
%U https://doi.org/10.18653/v1/2020.acl-main.689
%P 7711-7723
Markdown (Informal)
[Learning a Multi-Domain Curriculum for Neural Machine Translation](https://aclanthology.org/2020.acl-main.689) (Wang et al., ACL 2020)
ACL