
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 4487–4497
July 5 - 10, 2020. c©2020 Association for Computational Linguistics

4487

DeFormer: Decomposing Pre-trained Transformers
for Faster Question Answering

Qingqing Cao, Harsh Trivedi, Aruna Balasubramanian, Niranjan Balasubramanian
Department of Computer Science

Stony Brook University
Stony Brook, NY 11794, USA

{qicao,hjtrivedi,arunab,niranjan}@cs.stonybrook.edu

Abstract
Transformer-based QA models use input-wide
self-attention – i.e. across both the question
and the input passage – at all layers, causing
them to be slow and memory-intensive. It
turns out that we can get by without input-
wide self-attention at all layers, especially in
the lower layers. We introduce DeFormer,
a decomposed transformer, which substitutes
the full self-attention with question-wide and
passage-wide self-attentions in the lower lay-
ers. This allows for question-independent pro-
cessing of the input text representations, which
in turn enables pre-computing passage rep-
resentations reducing runtime compute dras-
tically. Furthermore, because DeFormer is
largely similar to the original model, we
can initialize DeFormer with the pre-training
weights of a standard transformer, and directly
fine-tune on the target QA dataset. We show
DeFormer versions of BERT and XLNet can
be used to speed up QA by over 4.3x and
with simple distillation-based losses they in-
cur only a 1% drop in accuracy. We open
source the code at https://github.com/

StonyBrookNLP/deformer.

1 Introduction

There is an increasing need to push question an-
swering (QA) models in large volume web scale
services (Google, 2019) and also to push them to re-
source constrained mobile devices for privacy and
other performance reasons (Cao et al., 2019). State-
of-the-art QA systems, like many other NLP appli-
cations, are built using large pre-trained Transform-
ers (e.g., BERT (Devlin et al., 2019), XLNet (Yang
et al., 2019), Roberta (Liu et al., 2019)). However,
inference in these models requires prohibitively
high-levels of runtime compute and memory mak-
ing it expensive to support large volume deploy-
ments in data centers and infeasible to run on re-
source constrained mobile devices.

Our goal is to take pre-trained Transformer-
based models and modify them to enable faster

Decompose

CLS My name SEP Your ? CLS My name SEP Your ?

Transformer DeFormer

Figure 1: Original Transformer applies full self-
attention to encode the concatenated question and pas-
sage sequence, while DeFormer encodes the question
and passage independently in the lower layers and pro-
cesses them jointly in the higher layers.

inference for QA without having to repeat the pre-
training. This is a critical requirement if we want to
explore many points in the accuracy versus speed
trade-off because pre-training is expensive.

The main compute bottleneck in Transformer-
based models is the input-wide self-attention com-
putation at each layer. In reading comprehension
style QA, this amounts to computing self-attention
over the question and the context text together. This
helps the models create highly effective question-
dependent context representations and vice-versa.
Of these, building representations of the context
takes more time because it is typically much longer
than the question. If the context can be processed
independent of the question, then this expensive
compute can be pushed offline saving significant
runtime latency.

Can we process the context independent of the
question, at least in some of the layers, without
too much loss in effectiveness? There are two em-
pirical observations that indicate that this is possi-
ble. First, previous studies have demonstrated that
lower layers tend to focus on local phenomena such
as syntactic aspects, while the higher layers focus
on global (long distance) phenomena such as se-
mantic aspects relevant for the target task (Tenney

https://github.com/StonyBrookNLP/deformer
https://github.com/StonyBrookNLP/deformer

4488

et al., 2019; Hao et al., 2019; Clark et al., 2019b).
Second, as we show later (see Section 2), in a stan-
dard BERT-based QA model, there is less variance
in the lower layer representations of text when we
vary the question. This means that in the lower
layers information from the question is not as crit-
ical to form text representations. Together, these
suggest that considering only local context in lower
layers of Transformer and considering full global
context in upper layers can provide speedup at a
very small cost in terms of effectiveness.

Based on these observations, we introduce De-
Former a simple decomposition of pre-trained
Transformer-based models, where lower layers in
the decomposed model process the question and
context text independently and the higher layers
process them jointly (see Figure 1 for a schematic
illustration). Suppose we allow k lower layers in a
n-layer model to process the question and context
text independently. DeFormer processes the con-
text texts through k lower layers offline and caches
the output from the k-th layer. During runtime the
question is first processed through the k-layers of
the model, and the text representation for the k-th
layer is loaded from the cache. These two k-th
layer representations are fed to the (k+1)-th layer
as input and further processing continues through
the higher layers as in the original model. In ad-
dition to directly reducing the amount of runtime
compute, this also reduces memory significantly as
the intermediate text representations for the context
are no longer held in memory.

A key strength of this approach is that one
can make any pre-trained Transformer-based QA
model faster by creating a corresponding DeFormer
version that is directly fine-tuned on the target QA
datasets without having to repeat the expensive
pre-training. Our empirical evaluation on multi-
ple QA datasets show that with direct fine-tuning
the decomposed model incurs only a small loss in
accuracy compared to the full model.

This loss in accuracy can be reduced further by
learning from the original model. We want De-
Former to behave more like the original model.
In particular, the upper layers of DeFormer should
produce representations that capture the same kinds
of information as the corresponding layers in the
original model. We add two distillation-like auxil-
iary losses (Hinton et al., 2015), which minimize
the output-level and the layer-level divergences be-
tween the decomposed and original models.

We evaluate DeFormer versions of two
transformer-based models, BERT and XLNet on
three different QA tasks and two sentence-sentence
paired-input tasks1. DeFormer achieves substan-
tial speedup (2.7 to 4.3x) and reduction in mem-
ory (65.8% to 72.9%) for only small loss in ef-
fectiveness (0.6 to 1.8 points) for QA. Moreover,
we find that DeFormer version of BERT-large is
faster than the original version of the smaller BERT-
base model, while still being more accurate. Ab-
lations shows that the supervision strategies we
introduce provide valuable accuracy improvements
and further analysis illustrate that DeFormer pro-
vides good runtime vs accuracy trade-offs.

2 Decomposing Transformers for Faster
Inference

The standard approach to using transformers for
question answering is to compute the self-attention
over both question and the input text (typically a
passage). This yields highly effective representa-
tions of the input pair since often what information
to extract from the text depends on the question and
vice versa. If we want to reduce complexity, one
natural question to ask is whether we can decom-
pose the Transformer function over each segment
of the input, trading some representational power
for gains in ability to push processing the text seg-
ment offline.

The trade-off depends on how important it is to
have attention from question tokens when forming
text representations (and vice versa) in the lower
layers. To assess this, we measured how the text
representation changes when paired with different
questions. In particular, we computed the average
passage representation variance when paired with
different questions. The variance is measured using
cosine distance between the passage vectors and
their centroid. As Figure 2 shows that in the lower
layers, the text representation does not change as
much as it does in the upper layers, suggesting ig-
noring attention from question tokens in lower lay-
ers may not be a bad idea. This is also in agreement
with results on probing tasks which suggest that
lower layers tend to model mostly local phenom-
ena (e.g., POS, syntactic categories), while higher
layers tend to model more semantic phenomena
that are task dependent (e.g, entity co-reference)
relying on wider contexts.

1These simulate other information seeking applications
where one input is available offline.

4489

Layer

Re
pr

es
en

ta
tio

n
Va

ria
nc

e

0.0

0.3

0.5

0.8

1.0

1 2 3 4 5 6 7 8 9 10 11 12

Figure 2: Normalized variance of passage representa-
tions when paired with different questions at different
layers. We define the representation variance as the
average cosine distance from the centroid to all repre-
sentation vectors. In this figure, the variance is aver-
aged for 100 paragraphs (each paired with 5 different
questions) and normalized to [0, 1]. Smaller variance
in the lower layers indicates the passage representation
depends less on the question, while higher variance in
the upper layers shows the passage representation relies
more on the interaction with the question.

Here we formally describe our approach for de-
composing attention in the lower layers to allow
question independent processing of the contexts.

2.1 DeFormer

First, we formally define the computation of a
Transformer for a paired-task containing two seg-
ments of text, Ta and Tb. Let the token em-
bedding representations of segment Ta be A =
[a1;a2; ...;aq] and of Tb be B = [b1;b2; ...;bp].
The full input sequence X can be expressed by con-
catenating the token representations from segment
Ta and Tb as X = [A;B]. The Transformer en-
coder has n layers (denoted Li for layer i), which
transform this input sequentially: X l+1 = Li(X

l).
For the details of the Transformer layer, we refer
the reader to (Vaswani et al., 2017). We denote the
application of a stack of layers from layer i to layer
j be denoted as Li:j . The output representations of
the full Transformer, An and Bn can be written as:

[An;Bn] = L1:n([A
0;B0]) (1)

Figure 3 shows a schematic of our model. We
decompose the computation of lower layers (up to
layer k) by simply removing the cross-interactions
between Ta and Tb representations. Here k is a
hyper-parameter. The output representations of
the decomposed Transformer, An and Bn can be

expressed as:

[An;Bn] = Lk+1:n([L1:k(A
0);L1:k(B

0)) (2)

Transformer-based QA systems process the in-
put question and context together through a stack
of self-attention layers. So applying this decompo-
sition to Transformer for QA allows us to process
the question and the context text independently,
which in turn allows us to compute the context text
representations for lower layers offline. With this
change the runtime complexity of each lower layer
is reduced from O((p+ q)2) to O(q2+ c), where c
denotes cost of loading the cached representation.

2.2 Auxiliary Supervision for DeFormer
DeFormer can be used in the same way as the orig-
inal Transformer. Since DeFormer retains much of
the original structure, we can initialize this model
with the pre-trained weights of the original Trans-
former and fine-tune directly on downstream tasks.
However, DeFormer looses some information in
the representations of the lower layers. The upper
layers can learn to compensate for this during fine-
tuning. However, we can go further and use the
original model behavior as an additional source of
supervision.

Towards this end, we first initialize the param-
eters of DeFormer with the parameters of a pre-
trained full Transformer, and fine-tune it on the
downstream tasks. We also add auxiliary losses
that make DeFormer predictions and its upper layer
representations closer to the predictions and cor-
responding layer representations of the full Trans-
former.

Knowledge Distillation Loss: We want the
prediction distribution of DeFormer to be closer
to that of the full Transformer. We minimize
the Kullback—Leibler divergence between decom-
posed Transformer prediction distribution PA and
full Transformer prediction distribution PB:

Lkd = DKL(PA‖PB)

Layerwise Representation Similarity Loss:
We want the upper layer representations of De-
Former to be closer to those of full Transformer.
We minimize the euclidean distance between token
representations of the upper layers of decomposed
Transformer and the full Transformer. Let vj

i be the
representation of the jth token in the ith layer in the
full transformer, and let uj

i be the corresponding

4490

Decompose

Transformer

Layer 1

Layer 2

Layer k

Layer k+1

Layer n

Layer 1

Layer 2

Layer k

Layer k+1

Layer n

Layer 1

Layer 2

Layer k

Predictions Predictions

Auxilliary
Supervision

(KD + LRS)

CLS Tok1 Tok2 SEP Tok3 Tok4 CLS Tok1 Tok2 SEP Tok3 Tok4

DeFormer

Transformer
Encoder

(lower layers)

Transformer
Encoder

(upper layers)

Figure 3: Decomposing Transformers up to layer k, which enables encoding each segment independently from
layer 1 to layer k. Auxiliary supervision of upper layer information from the original model further helps the
decomposed model to compensate for information loss in the lower layers. KD is Knowledge Distillation loss and
LRS is Layerwise Representation Similarity loss.

representation in DeFormer. For each of the upper
layers k + 1 through n, we compute a layerwise
representation similarity (lrs) loss as follows:

Llrs =
n∑

i=k

m∑
j=1

‖vi
j − ui

j‖2

We add the knowledge distillation loss (Lkd)
and layerwise representation similarity loss (Llrs)
along with the task specific supervision Loss
(Lts) and learn their relative importance via hyper-
parameter tuning:

Ltotal = γLts + αLkd + βLlrs (3)

We use Bayesian Optimization (Močkus, 1975)
to tune the γ, α and β instead of simple trial-and-
error or grid/random search. This is aimed at re-
ducing the number of steps required to find a com-
bination of hyper-parameters that are close to the
optimal one.

3 Evaluation

3.1 Datasets

We use the pre-trained uncased BERT base and
large2 models on five different paired-input prob-
lems covering 3 QA tasks, and in addition two other
sentence-sentence tasks3.

2Whole Word Masking version
3We pick these as additional datasets to show the utility

of decomposition in other information seeking applications

SQuAD v1.1 (Stanford Question Answering
Dataset) (Rajpurkar et al., 2016) is an extractive
question answering datasets containing >100,000
question and answer pairs generated by crowd
workers on Wikipedia articles.
RACE (Lai et al., 2017) is reading comprehension
dataset collected from the English exams that are
designed to evaluate the reading and reasoning abil-
ity of middle and high school Chinese students. It
has over 28,000 passages and 100,000+ questions.
BoolQ (Clark et al., 2019a) consists of 15942
yes/no questions that are naturally occurring in un-
prompted and unconstrained settings.
MNLI (Multi-Genre Natural Language Inference)
(Williams et al., 2018) is a crowd-sourced corpus
of 433k sentence pairs annotated with textual en-
tailment information.
QQP (Quora Question Pairs) (Iyer et al., 2019) con-
sists of over 400,000 potential duplicate question
pairs from Quora.

For all 5 tasks, we use the standard splits pro-
vided with the datasets but in addition divide the
original training data further to obtain a 10% split
to use for tuning hyper-parameters (tune split), and
use the original development split for reporting ef-
ficiency (FLOPs, memory usage) and effectiveness

similar to QA, where one of the inputs can be assumed to be
available offline. For instance, we may want to find answer
(premise) sentences from a collection that support information
contained in a query (hypothesis) sentence. Another use case
is FAQ retrieval, where a user question is compared against a
collection of previously asked questions.

4491

metrics (accuracy or F1 depending on the task).

3.2 Implementation Details

We implement all models in TensorFlow 1.15
(Abadi et al., 2015) based on the original BERT
(Devlin et al., 2019) and the XLNet (Yang et al.,
2019) codebases. We perform all experiments on
one TPU v3-8 node (8 cores, 128GB memory) with
bfloat16 format enabled. We measure the FLOPs
and memory consumption through the TensorFlow
Profiler4. For DeFormer models, we tune the hy-
perparameters for weighting different losses using
bayesian optimizaiton libray (Nogueira, Fernando,
2019) with 50 iterations on the tune split (10%
of the original training sets) and report the perfor-
mance numbers on the original dev sets. The search
range is [0.1, 2.0] for the 3 hyper-parameters. We
put the detail hyper-parameters in the section A.

For DeFormer-BERT and DeFormer-XLNet, we
compute the representations for one of the input
segments offline and cache it. For QA we cache the
passages, for natural language inference, we cache
the premise5 and for question similarity we cache
the first question6.

3.3 Results

Table 1 shows the main results comparing perfor-
mance, inference speed and memory requirements
of BERT-base and DeFormer-BERT-base when us-
ing nine lower layers, and three upper layers (see
Subsection 3.4 for the impact of the choice of up-
per/lower splits). We observe a substantial speedup
and significant memory reduction in all the datasets,
while retaining most of the original model’s effec-
tiveness (as much as 98.4% on SQuAD and 99.8%
on QQP datasets), the results of XLNet in the same
table demonstrates the decomposition effectiveness
for different pre-trained Transformer architectures.
Table 2 shows that the decomposition brings 2x
speedup in inference and more than half of mem-
ory reduction on both QQP and MNLI datasets,
which take pairwise input sequences. The effective-
ness of decomposition generalizes further beyond
QA tasks as long as the input sequences are paired.

4https://www.tensorflow.org/versions/
r1.15/api_docs/python/tf/profiler/
profile

5One use case is where we want to find (premise) sentences
from a collection that support information contained in a query
(hypothesis) sentence.

6One use case is FAQ retrieval, where a user question is
compared against a collection of previously asked questions

Efficiency improvements increase with the size of
the text segment that can be cached.

Small Distilled or Large Decomposed? Ta-
ble 3 compares performance, speed and memory
of BERT-base, BERT-large and DeFormer-BERT-
large. DeFormer-BERT-large is 1.6 times faster
than the smaller BERT-base model. Decomposing
the larger model turns out to be also more effective
than using the smaller base model (+2.3 points)
This shows that with decomposition, a large Trans-
former can run faster than a smaller one which is
half its size, while also being more accurate.

Distilling a larger model into a smaller one can
yield better accuracy than training a smaller model
from scratch. As far as we know, there are two
related but not fully comparable results. (1) Tang
et al. (2019) distill BERT to a small LSTM based
model where they achieve 15x speedup but at a
significant drop in accuracy of more than 13 points
on MNLI. (2) Sanh et al. (2019) distill BERT to a
smaller six layer Transformer, which can provide
1.6x speedup but gives >2 points accuracy drop on
MNLI and >3 points F1 drop on SQuAD. A fair
comparison requires more careful experimentation
exploring different distillation sizes which requires
repeating pre-training or data augmentation – an
expensive proposition.

Device Results: To evaluate the impact on dif-
ferent devices, we deployed the models on three
different machines (a GPU, CPU, and a mobile
phone). Table 4 shows the average latency in an-
swering a question measured on a subset of the
SQuAD dataset. On all devices, we get more than
three times speedup.

3.4 Ablation Study

Table 5 shows the contribution of auxiliary
losses for fine-tuning DeFormer-BERT on SQuAD
dataset. The drop in effectiveness when not using
Layerwise Representation Similarity (LRS in ta-
ble), and Knowlege Distillation (KD) losses shows
the utility of auxiliary supervision.

Figure 4a and figure 4b show how the effec-
tiveness and inference speed of DeFormer-BERT
changes as we change the separation layer. In-
ference speedup scales roughly quadratically with
respect to the number of layers with decomposed
attention. The drop in effectiveness, on the other
hand, is negligible for separating at lower layers
(until layer 3 for the base model and until layer 13
for the large model) and increases slowly after that

https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/profiler/profile
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/profiler/profile
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/profiler/profile

4492

Model Datasets Avg. Input Original DeFormer- Performance Drop Inference Memory
Tokens base base (absolute | %age) Speedup Reduction

(times) (%age)

SQuAD 320 88.5 87.1 1.4 | 1.6 3.2x 70.3
BERT RACE 2048 66.3 64.5 1.8 | 2.7 3.4x 72.9

BoolQ 320 77.8 76.8 1.0 | 1.3 3.5x 72.0

SQuAD 320 91.6 90.4 1.2 | 1.3 2.7x 65.8
XLNet RACE 2048 70.3 68.7 1.6 | 2.2 2.8x 67.6

BoolQ 320 80.4 78.8 0.6 | 0.7 3.0x 68.3

Table 1: (i) Performance of original fine-tuned vs fine-tuned models of DeFormer-BERT-base and DeFormer-
XLNet-base, (ii) Performance drop, inference speedup and inference memory reduction of DeFormer- over original
models for 3 QA tasks. DeFormer-BERT-base uses nine lower layers, and three upper layers with caching enabled,
DeFormer-XLNet-base use eight lower layers, and four upper layers with caching enabled. For SQuAD and RACE
we also train with the auxiliary losses, and for the others we use the main supervision loss – the settings that give
the best effectiveness during training. Note that the choice of the loss doesn’t affect the efficiency metrics.

Avg. Input BERT DeFormer- Performance Drop Inference Memory
Tokens base BERT base (absolute | %age) Speedup Reduction

(times) (%age)

MNLI 120 84.4 82.6 1.8 | 2.1 2.2x 56.4
QQP 100 90.5 90.3 0.2 | 0.2 2.0x 50.0

Table 2: (i) Performance of BERT-base vs DeFormer-BERT-base, (ii) Performance drop, inference speedup and
inference memory reduction of DeFormer-BERT-base over BERT-base for 2 pairwise tasks. DeFormer-BERT-base
uses nine lower layers, and three upper layers with caching enabled.

Performance (Squad-F1) Speed (GFLOPs) Memory (MB)

BERT-large 92.3 204.1 1549.6
BERT-base 88.5 58.4 584.2
DeFormer-BERT-large 90.8 47.7 359.7

Table 3: Performance, Inference Speed and Memory for different models on SQuAD.

BERT DeFormer-BERT

Tesla V100 GPU 0.22 0.07
Intel i9-7900X CPU 5.90 1.66
OnePlus 6 Phone 10.20* 3.28*

Table 4: Inference latency (in seconds) on SQuAD
datasets for BERT-base vs DeFormer-BERT-base, as
an average measured in batch mode. On the GPU and
CPU batch size is 32 and on the phone (marked by *)
batch size is 1.

with a dramatic increase in the last layers closest to
the output. The separation layer choice thus allows
trading effectiveness for inference speed.

4 Analyses

4.1 Divergence of DeFormer and original
BERT representations

The main difference between the original BERT
and the DeFormer-BERT is the absence of cross

Base Model Large Model

BERT 88.5 92.3

DeFormer-BERT 87.1 90.8
w/o LRS 86.2 88.9
w/o KD & LRS 85.8 87.5

Table 5: Ablation analysis on SQuAD datasets
for DeFormer-BERT-base and DeFormer-BERT-large
models. LRS is the layerwise representation similar-
ity loss. KD is the knowledge distillation loss on the
prediction distributions.

attention in the lower layers. We analyze the dif-
ferences between the representations of the two
models across all layers. To this end, we randomly
select 100 passages from SQuAD dev dataset as
well as randomly selecting 5 different questions
that already exist in the dataset associated with
each passage. For each passage, we encode all 5
question-passage pair sequence using both the fine-
tuned original BERT-base model and the DeFormer-

4493

1.1 1.2 1.3 1.4 1.6 1.9 2.2 2.6
3.2

4.3

6.4

-0.3 -0.3 -0.2 -0.9
-2.6 -2.9 -2.4 -3.1 -2.7 -3.3

Separation Layer

F1
 s

co
re

 d
ro

p

Sp
ee

du
p

-18.0

-12.0

-6.0

0.0

-1.0

2.0

5.0

8.0

1 2 3 4 5 6 7 8 9 10 11

Inference speedup F1 drop

(a) F1 drop versus speedup on SQuAD for DeFormer-BERT-
base without auxiliary supervision.

2.0 2.2 2.4 2.6 2.9 3.2 3.7
4.3

5.1

6.4

8.4
-0.2 -0.9 -1.4

-2.8 -3.9 -4.5 -4.1 -4.8
-6.2

-13.0

-17.6

Separation Layer

F1
 s

co
re

 d
ro

p

Sp
ee

du
p

-24.0

-18.0

-12.0

-6.0

0.0

0.0

3.0

6.0

9.0

13 14 15 16 17 18 19 20 21 22 23

Inference speedup F1-drop

(b) F1 drop versus speedup on SQuAD for DeFormer-BERT-
large without auxiliary supervision.

Figure 4: F1 drop versus speedup of DeFormer-BERT model (without auxiliary supervision) when separating at
different layers.

BERT-base model, and compute their distance of
the vector representations at each layer.

Figure 5 shows the averaged distances of both
the question and passage at different layers. The
lower layer representations of the passage and ques-
tions for both models remain similar but the upper
layer representations differ significantly, support-
ing the idea that lack of cross-attention has less
impact in the lower layers than in the higher ones.
Also, using the auxiliary supervision of upper lay-
ers has the desired effect of forcing DeFormer to
produce representations that are closer to the orig-
inal model. This effect is less pronounced for the
question representations.

4.2 Inference Cost

DeFormer enables caching of text representations
that can be computed offline. While a full-scale
analysis of the detailed trade-offs in storage ver-
sus latency is beyond the scope of this paper, we
present a set of basic calculations to illustrate that
the storage cost of caching can be substantially
smaller compared to the inference cost. Assum-
ing a use case of evaluating one million question-
passage pairs daily, we first compute the storage
requirements of the representations of these pas-
sages. With the BERT-base representations we
estimate this to be 226KB per passage and 226GB
in total for 1 million passages. The cost of storing
this data and the added compute costs and reading
these passages at the current vendor rates amounts
to a total of $61.7 dollars per month. To estimate
inference cost, we use the compute times we ob-
tain from our calculations and use current vendor
rates for GPU workloads which amounts to $148.5
dollars to support the 1 million question-passage
pair workload. The substantial reduction in cost

is because the storage cost is many orders of mag-
nitude cheaper than using GPUs. Details of these
calculations are listed in the Appendix.

5 Related work

Speeding up inference in a model requires reducing
the amount of compute involved. There are two
broad related directions of prior work:

(i) Compression techniques can be used to re-
duce model size through low rank approximation
(Zhang et al., 2015; Kim et al., 2015; Tai et al.,
2015; Chen et al., 2018), and model weights prun-
ing (Guo et al., 2016; Han et al., 2015), which have
been shown to help speedup inference in CNN and
RNN based models. For Transformers, Michel
et al. (2019) explore pruning the attention heads
to gain inference speedup. This is an orthogonal
approach that can be combined with our decom-
position idea. However, for the paired-input tasks
we consider, pruning heads only provides limited
speedup. In more recent work Ma et al. (2019)
propose approximating the quadratic attention com-
putation with a tensor decomposition based multi-
linear attention model. However, it is not clear how
this multi-linear approximation can be applied to
pre-trained Transformers like BERT.

(ii) Distillation techniques can be used to train
smaller student networks to speedup inference.
Tang et al. (2019) show that BERT can be used
to guide designing smaller models (such as single-
layer BiLSTM) for multiple tasks. But for the tasks
we study, such very small models suffer a signifi-
cant performance drop. For instance there is a 13%
accuracy degration on MNLI task. Another closely
related recent work is DistillBERT (Sanh et al.,
2019), which trains a smaller BERT model (half
the size of BERT-base) that runs 1.5 times faster

4494

Layer

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9 10 11 12

BERT vs DeFormer-BERT
BERT vs DeFormer-BERT w/o aux loss

(a) Passage distance comparison

Layer

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9 10 11 12

BERT vs DeFormer-BERT
BERT vs DeFormer-BERT w/o aux loss

(b) Question distance comparison

Figure 5: Representation distance of BERT vs DeFormer-BERT and distance of BERT vs DeFormer-BERT w/o
auxiliary loss/supervision

than the original BERT-base.However, the distilled
model incurs a significant drop in accuracy. While
more recent distillation works such as (Jiao et al.,
2019) and (Sun et al., 2020) further improve the
speedups, our decomposition also achieves simi-
lar accuracy performance. More importantly, this
distillation model usually undergo expensive pre-
training on the language modeling tasks before they
can be fine-tuned for the downstream tasks.

Previous QA neural models like BIDAF(Seo
et al., 2016), QANet(Yu et al., 2018) and many
others contain decomposition as part of their neu-
ral architecture design. In contrast, the focus of our
work is to show that large pre-trained Transformer
models can be decomposed at the fine-tuning stage
to bring effectiveness of SOTA pre-trained trans-
formers at much lower inference latency.

In this work, we ask if can we speedup the in-
ference of Transformer models without compress-
ing or removing model parameters. Part of the
massive success of pre-trained Transformer mod-
els for many NLP task is due to a large amount of
parameters capacity to enable complex language
representations. The decomposition we propose
makes minimal changes retaining the overall capac-
ity and structure of the original model but allows
for faster inference by enabling parallel processing
and caching of segments.

DeFormer applies to settings where the underly-
ing model relies on input-wide self-attention layers.
Even with models that propose alternate ways to
improve efficiency, as long as the models use input-
wide self-attention, DeFormer can be applied as
a complementary mechanism to further improve
inference efficiency. We leave an evaluation of ap-
plying DeFormer on top of other recent efficiency
optimized models for future work.

6 Conclusion

Transformers have improved the effectiveness of
NLP tools by their ability to incorporate large con-
texts effectively in multiple layers. This however
imposes a significant complexity cost. In this work,
we showed that modeling such large contexts may
not always be necessary. We build a decomposition
of the transformer model that provides substantial
improvements in inference speed, memory reduc-
tion, while retaining most of the original model’s
accuracy. A key benefit of the model is that its
architecture remains largely the same as the origi-
nal model which allows us to avoid repeating pre-
training and use the original model weights for fine-
tuning. The distillation techniques further reduce
the performance gap with respect to the original
model. This decomposition model provides a sim-
ple yet strong starting point for efficient QA models
as NLP moves towards increasingly larger models
handling wider contexts.

Acknowledgement

We thank Google for supporting this research
through the Google Cloud Platform credits.

References
Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Rafal Jozefow-
icz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dandelion Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar,
Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan,
Fernanda Viégas, Oriol Vinyals, Pete Warden, Mar-
tin Wattenberg, Martin Wicke, Yuan Yu, and Xiao-

4495

qiang Zheng. 2015. TensorFlow: Large-scale ma-
chine learning on heterogeneous systems. Software
available from tensorflow.org.

Qingqing Cao, Noah Weber, Niranjan Balasubrama-
nian, and Aruna Balasubramanian. 2019. DeQA:
On-Device Question Answering. In Proceedings of
the 17th Annual International Conference on Mobile
Systems, Applications, and Services - MobiSys ’19,
pages 27–40, Seoul, Republic of Korea. ACM Press.

Patrick Chen, Si Si, Yang Li, Ciprian Chelba, and
Cho-Jui Hsieh. 2018. Groupreduce: Block-wise
low-rank approximation for neural language model
shrinking. In Advances in Neural Information Pro-
cessing Systems, pages 10988–10998.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019a. Boolq: Exploring the surprising
difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D. Manning. 2019b. What does bert
look at? an analysis of berts attention. Proceedings
of the 2019 ACL Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Google. 2019. Understanding searches better than ever
before. https://blog.google/products/search/search-
language-understanding-bert/.

Yiwen Guo, Anbang Yao, and Yurong Chen. 2016. Dy-
namic network surgery for efficient dnns. In Ad-
vances In Neural Information Processing Systems,
pages 1379–1387.

Song Han, Huizi Mao, and William J Dally. 2015.
Deep compression: Compressing deep neural net-
works with pruning, trained quantization and huff-
man coding. arXiv preprint arXiv:1510.00149.

Yaru Hao, Li Dong, Furu Wei, and Ke Xu. 2019. Visu-
alizing and understanding the effectiveness of bert.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network.

Shankar Iyer, Nikhil Dandekar, and Ko-
rnl Csernai. 2019. Quora question pairs.
https://www.quora.com/q/quoradata/
First-Quora-Dataset-Release-Question-Pairs.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang,
Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
2019. Tinybert: Distilling bert for natural language
understanding.

Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim
Choi, Lu Yang, and Dongjun Shin. 2015. Compres-
sion of deep convolutional neural networks for fast
and low power mobile applications. arXiv preprint
arXiv:1511.06530.

NVIDIA Performance Lab. 2019. Consider-
ations for scaling gpu-ready data centers.
https://www.nvidia.com/content/g/pdfs/
GPU-Ready-Data-Center-Tech-Overview.
pdf.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang,
and Eduard Hovy. 2017. Race: Large-scale reading
comprehension dataset from examinations. arXiv
preprint arXiv:1704.04683.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Xindian Ma, Peng Zhang, Shuai Zhang, Nan Duan,
Yuexian Hou, Dawei Song, and Ming Zhou. 2019.
A tensorized transformer for language modeling.
arXiv preprint arXiv:1906.09777.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? arXiv
preprint arXiv:1905.10650.

Jonas Močkus. 1975. On bayesian methods for seek-
ing the extremum. In Optimization Techniques IFIP
Technical Conference, pages 400–404. Springer.

Nogueira, Fernando. 2019. Bayesianopti-
mization. https://github.com/fmfn/
BayesianOptimization. [Online; accessed
22-September-2019].

Google Cloud Platform. 2019. Cloud pricing.
https://cloud.google.com/compute/
all-pricing#gpus,https://cloud.google.
com/storage/pricing.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint
arXiv:1606.05250.

Victor Sanh, Lysandre Debut, and Thomas Wolf.
2019. Introducing distilbert, a distilled version
of bert. https://medium.com/huggingface/
distilbert-8cf3380435b5.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2016. Bidirectional attention
flow for machine comprehension. arXiv preprint
arXiv:1611.01603.

https://www.tensorflow.org/
https://www.tensorflow.org/
https://doi.org/10.1145/3307334.3326071
https://doi.org/10.1145/3307334.3326071
https://doi.org/10.18653/v1/w19-4828
https://doi.org/10.18653/v1/w19-4828
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
http://arxiv.org/abs/1908.05620
http://arxiv.org/abs/1908.05620
http://arxiv.org/abs/1503.02531
https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs
https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs
http://arxiv.org/abs/1909.10351
http://arxiv.org/abs/1909.10351
https://www.nvidia.com/content/g/pdfs/GPU-Ready-Data-Center-Tech-Overview.pdf
https://www.nvidia.com/content/g/pdfs/GPU-Ready-Data-Center-Tech-Overview.pdf
https://www.nvidia.com/content/g/pdfs/GPU-Ready-Data-Center-Tech-Overview.pdf
https://github.com/fmfn/BayesianOptimization
https://github.com/fmfn/BayesianOptimization
https://cloud.google.com/compute/all-pricing#gpus, https://cloud.google.com/storage/pricing
https://cloud.google.com/compute/all-pricing#gpus, https://cloud.google.com/storage/pricing
https://cloud.google.com/compute/all-pricing#gpus, https://cloud.google.com/storage/pricing
https://medium.com/huggingface/distilbert-8cf3380435b5
https://medium.com/huggingface/distilbert-8cf3380435b5

4496

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu,
Yiming Yang, and Denny Zhou. 2020. Mobilebert:
a compact task-agnostic bert for resource-limited de-
vices.

Cheng Tai, Tong Xiao, Yi Zhang, Xiaogang Wang, et al.
2015. Convolutional neural networks with low-rank
regularization. arXiv preprint arXiv:1511.06067.

Raphael Tang, Yao Lu, Linqing Liu, Lili Mou, Olga
Vechtomova, and Jimmy Lin. 2019. Distilling task-
specific knowledge from bert into simple neural net-
works. ArXiv, abs/1903.12136.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019.
Bert rediscovers the classical nlp pipeline. Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122. Association for
Computational Linguistics.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Ruslan Salakhutdinov, and Quoc V Le.
2019. Xlnet: Generalized autoregressive pretrain-
ing for language understanding. arXiv preprint
arXiv:1906.08237.

Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui
Zhao, Kai Chen, Mohammad Norouzi, and Quoc V
Le. 2018. Qanet: Combining local convolution
with global self-attention for reading comprehen-
sion. arXiv preprint arXiv:1804.09541.

Xiangyu Zhang, Jianhua Zou, Xiang Ming, Kaiming
He, and Jian Sun. 2015. Efficient and accurate ap-
proximations of nonlinear convolutional networks.
In Proceedings of the IEEE Conference on Com-
puter Vision and pattern Recognition, pages 1984–
1992.

http://arxiv.org/abs/2004.02984
http://arxiv.org/abs/2004.02984
http://arxiv.org/abs/2004.02984
https://doi.org/10.18653/v1/p19-1452
http://aclweb.org/anthology/N18-1101
http://aclweb.org/anthology/N18-1101

4497

A Appendix

Data centers often use GPUs for inference work-
loads (Lab, 2019), we use the GPUs by default for
both models. We use gu to denote the cost of using
one GPU per hour, nseq to stand for the number of
input sequences to process, b for the GPU batch
size, and tb is the time (in seconds) take to process b
sequences, s denotes the storage size of the cached
representations, su denotes the cost of storage per
month, ru is the cost of performing 10,000 reading
operations (such as loading cached representations
from the disk).

The total cost of the original model Costoriginal
is the cost of using GPUs and is given by the for-
mula as below:

Costoriginal = tb ·
nseq
b
· gu
3600

And the total cost of the decomposed model
Costdecomp includes three parts: using GPUs, stor-
ing representations on disk and loading them into
memory. It is formulated as:

Costdecomp = tb ·
nseq
b
· gu
3600

+
nseq
b
· ru
10, 000

+
s · su

30 ∗ 24 ∗ 3600

We assume a passage has 150 tokens on average
(The number is calculated based on the SQuAD
dataset).

We take one cloud service provider (Platform,
2019) to instantiate gu, su, and ru: one Tesla V100
GPU (16GB memory) costs $2.48 USD per hour
(gu = 2.48), 1GB storage takes $0.02 per month
(su = 0.02) and additional $0.004 per 10,000 read
operations (ru = 0.004)7.

It takes 226KB to store the vectors for 150 to-
kens 8, and the total storage for 1 million sequences
is 226GB. The Tesla V100 GPU allows a maximum
batch size of 6409. We measure the tb = 4.6 for the
original BERT-base model and tb = 1.4 for the de-
composed BERT-base model. ThenCostoriginal =
30 ∗ 4.6 ∗ 1, 000, 000/640 ∗ 2.48/3600 = $148.5,
and Costdecomp = 30 ∗ 1.4 ∗ 1, 000, 000/640 ∗
2.48/3600 + 30 ∗ 1, 000, 000/10, 000 ∗ 0.004 +
226 ∗ 0.02 = $61.7.

7Class B operations on GCP
8vector dimension=768, bfloat16 format
9>640 batch size will cause V100 GPU out of memory

Hyper-parameters We set the final α = 1.1,
β = 0.5 and γ = 0.7 for supervising BERT-base
model on the SQuAD dataset, α = 0.4, β = 0.4
and γ = 0.7 and on the RACE dataset. For XLNet,
we find that simple default parameters (α = 1.1,
β = 0.5 and γ = 0.7) work well for both SQuAD
and BoolQ datasets.

