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Abstract

Most classification models work by first pre-
dicting a posterior probability distribution over
all classes and then selecting that class with
the largest estimated probability. In many set-
tings however, the quality of posterior proba-
bility itself (e.g., 65% chance having diabetes),
gives more reliable information than the final
predicted class alone. When these methods are
shown to be poorly calibrated, most fixes to
date have relied on posterior calibration, which
rescales the predicted probabilities but often
has little impact on final classifications. Here
we propose an end-to-end training procedure
called posterior calibrated (PosCal) training
that directly optimizes the objective while min-
imizing the difference between the predicted
and empirical posterior probabilities. We show
that PosCal not only helps reduce the calibra-
tion error but also improve task performance
by penalizing drops in performance of both
objectives. Our PosCal achieves about 2.5%
of task performance gain and 16.1% of cali-
bration error reduction on GLUE (Wang et al.,
2018) compared to the baseline. We achieved
the comparable task performance with 13.2%
calibration error reduction on xSLUE (Kang
and Hovy, 2019), but not outperforming the
two-stage calibration baseline. PosCal training
can be easily extendable to any types of classi-
fication tasks as a form of regularization term.
Also, PosCal has the advantage that it incre-
mentally tracks needed statistics for the cali-
bration objective during the training process,
making efficient use of large training sets1.

1 Introduction

Classification systems, from simple logistic regres-
sion to complex neural network, typically predict
posterior probabilities over classes and decide the
final class with the maximum probability. The

1Code is publicly available at https://github.com/
THEEJUNG/PosCal/

model’s performance is then evaluated by how ac-
curate the predicted classes are with respect to out-
of-sample, ground-truth labels. In some cases, how-
ever, the quality of posterior estimates themselves
must be carefully considered as such estimates are
often interpreted as a measure of confidence in the
final prediction. For instance, a well-predicted pos-
terior can help assess the fairness of a recidivism
prediction instrument (Chouldechova, 2017) or se-
lect the optimal number of labels in a diagnosis
code prediction (Kavuluru et al., 2015).

Guo et al. (2017) showed that a model with high
classification accuracy does not guarantee good
posterior estimation quality. In order to correct
the poorly calibrated posterior probability, existing
calibration methods (Zadrozny and Elkan, 2001;
Platt et al., 1999; Guo et al., 2017; Kumar et al.,
2019) generally rescale the posterior distribution
predicted from the classifier after training. Such
post-processing calibration methods re-learn an ap-
propriate distribution from a held-out validation set
and then apply it to an unseen test set, causing a
severe discrepancy in distributions across the data
splits. The fixed split of the data sets makes the
post-calibration very limited and static with respect
to the classifier’s performance.

We propose a simple but effective training tech-
nique called Posterior Calibrated (PosCal) train-
ing that optimizes the task objective while calibrat-
ing the posterior distribution in training. Unlike
the post-processing calibration methods, PosCal
directly penalizes the difference between the pre-
dicted and the true (empirical) posterior probabili-
ties dynamically over the training steps.

PosCal is not a simple substitute of the post-
processing calibration methods. Our experiment
shows that PosCal can not only reduce the calibra-
tion error but also increase the task performance
on the classification benchmarks: compared to the
baseline MLE (maximum likelihood estimation)

https://github.com/THEEJUNG/PosCal/
https://github.com/THEEJUNG/PosCal/
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training method, PosCal achieves 2.5% perfor-
mance improvements on GLUE (Wang et al., 2018)
and 0.5% on xSLUE (Kang and Hovy, 2019), and
at the same time 16.1% posterior error reduction
on GLUE and 13.2% on xSLUE.

2 Related Work

Our work is primarily motivated by previous analy-
ses of posterior calibration on modern neural net-
works. Guo et al. (2017) pointed out that in some
cases, as the classification performance of neural
networks improves, its posterior output becomes
poorly calibrated. There are a few attempts to in-
vestigate the effect of posterior calibration on natu-
ral language processing (NLP) tasks: Nguyen and
O’Connor (2015) empirically tested how classi-
fiers on NLP tasks (e.g., sequence tagging) are
calibrated. For instance, compared to the Naive
Bayes classifier, logistic regression outputs well-
calibrated posteriors in sentiment classification
task. Card and Smith (2018) also mentioned the
importance of calibration when generating a train-
ing corpus for NLP tasks.

As noted above, numerous post-processing cali-
bration techniques have been developed: traditional
binning methods (Zadrozny and Elkan, 2001, 2002)
set up bins based on the predicted posterior p̂, re-
calculate calibrated posteriors q̂ per each bin on a
validation set, and then update every p̂ with q̂ if p̂
falls into the certain bin. On the other hand, scal-
ing methods (Platt et al., 1999; Guo et al., 2017;
Kull et al., 2019) re-scale the predicted posterior
p̂ from the softmax layer trained on a validation
set. Recently, Kumar et al. (2019) pointed out that
such re-scaling methods do not actually produce
well-calibrated probabilities as reported since the
true posterior probability distribution can not be
captured with the often low number of samples in
the validation set2 . To address the issue, the au-
thors proposed a scaling-binning calibrator, but still
rely on the validation set.

In a broad sense, our end-to-end training with
the calibration reduction loss can be seen as sort
of regularization designed to mitigate over-fitting.
Just as classical explicit regularization techniques
such as the lasso (Tibshirani, 1996) penalize mod-
els large weights, here we penalize models with
posterior outputs that differ substantially from the
estimated true posterior.

2§4 shows that the effectiveness of re-calibration decreases
when the size of the validation set is small.

3 Posterior Calibrated Training

In general, most of existing classification models
are designed to maximize the likelihood estimates
(MLE). Its objective is then to minimize the cross-
entropy (Xent) loss between the predicted probabil-
ity and the true probability over k different classes.

During training time, PosCal minimizes the
cross-entropy as well as the calibration error as a
multi-task setup. While the former is a task-specific
objective, the latter is a statistical objective to make
the model to be statistically well-calibrated from
its data distribution. Such data-oriented calibration
makes the task-oriented model more reliable in
terms of its data distribution. Compared to the prior
post-calibration methods with a fixed (and often
small) validation set, PosCal dynamically estimates
the required statistics for calibration from the train
set during training iterations.

Given a training set D = {(x1, y1)..(xn, yn)}
where xi is a p-dimensional vector of input fea-
tures and yi is a k-dimensional one-hot vector cor-
responding to its true label (with k classes), our
training minimizes the following loss:

LPosCal = Lxent + λLcal (1)

where Lxent is the cross-entropy loss for task objec-
tive (i.e., classification) and Lcal is the calibration
loss on the cross-validation set. λ is a weighting
value for a calibration loss Lcal. In practice, the op-
timal value of λ can be chosen via cross-validation.
More details are given in §4.

Each loss term can be then calculated as follows:

Lxent = −
n∑

i=1

k∑
j=1

y
(j)
i log(p̂

(j)
i ) (2)

Lcal =
n∑

i=1

k∑
j=1

d(p̂
(j)
i , q

(j)
i ) (3)

where Lxent is a typical cross-entropy loss with
p̂ as an updated predicted probability while train-
ing. Lcal is our proposed loss for minimizing the
calibration loss: q is an true (empirical) probabil-
ity and d is an function to measure the difference
(e.g., mean squared error or Kullback-Leibler di-
vergence) between the updated p̂ and true posterior
q probabilities. The empirical probability q can be
calculated by measuring the ratio of true labels
per each bin split by the predicted posterior p̂ from
each update. We sum up the losses from every class
j ∈ {1, 2..k}.
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Algorithm 1 Posterior Calibrated Training

Inputs :
Train set D, Bin B, Number of Classes K
Number of epochs e, Learning rate η
Number of updating empirical probabilities u

Output Θ: Model Parameters
1: LetQ : Empirical Probability Matrix ∈ RB×K

2: Random initialization of Θ
3: for i ∈ {1, 2, 3, ...e} do
4: Break D into random mini-batches b
5: Find a set of steps S for updating Q by

dividing total number of steps into u equal
parts

6: for b from D do
7: Θ← Θ− η∇ΘLPosCal(Θ,Q)
8: if current step ∈ S then
9: p̂ = softmax(Θ,D)

10: Q ← CalEmpProb(p̂, B)
11: end if
12: end for
13: end for

We show a detailed training procedure of PosCal
in Algorithm 1. While training, we update the
model parameters (i.e., weight matrices in the clas-
sifier) as well as the empirical posterior probabili-
ties by calculating the predicted posterior with the
recently updated parameters. For Q, we exactly
calculate a label frequency per bin B. Since it is
time-consuming to update Q at every step, we set
up the number of Q updates per each epoch so as
to only update Q at each batch.

4 Experiment

We investigate how our end-to-end calibration train-
ing produces better calibrated posterior estimates
without sacrificing task performance.

Task: NLP classification benchmarks. We test
our models on two different benchmarks on NLP
classification tasks: GLUE (Wang et al., 2018) and
xSLUE (Kang and Hovy, 2019). GLUE contains
different types of general-purpose natural language
understanding tasks such as question-answering,
sentiment analysis and text entailment. Since true
labels on the test set are not given from the GLUE
benchmark, we use the validation set as the test set,
and randomly sample 1% of train set as a validation
set. xSLUE (Kang and Hovy, 2019) is yet another
classification benchmark but on different types of
styles such as a level of humor, formality and even
demographics of authors. For the details of each

dataset, refer to the original papers.
Metrics. In order to measure the task perfor-

mance, we use different evaluation metrics for
each task. For GLUE tasks, we report F1 for
MRPC, Matthews correlation for CoLA, and
accuracy for other tasks followed by Wang et al.
(2018). For xSLUE, we use F1 score.

To measure the calibration error, we follow the
metric used in the previous work (Guo et al., 2017);
Expected Calibration Error (ECE) by measuring
how the predicted posterior probability is different
from the empirical posterior probability: ECE =
1
K

∑K
k=1

∑B
b=1

|Bkb|
n |qkb − p̂kb|, where p̂kb is an

averaged predicted posterior probability for label
k in bin b, qkb is a calculated empirical probability
for label k in bin b, Bkb is a size of bin b in label
k, and n is a total sample size. The lower ECE, the
better the calibration quality.

Models. We train the classifiers with three dif-
ferent training methods: MLE, L1, and PosCal.
MLE is a basic maximum likelihood estimation
training by minimizing the cross-entropy loss, L1
is MLE training with L1 regularizer, and PosCal
is our proposed training by minimizing LPosCal

(Eq 1). For PosCal training, we use Kullback-
Leibler divergence to measure Lcal. We also re-
port ECE with a temperature scaling (Guo et al.,
2017) (tScal), which is considered the state-of-the-
art post-calibration method.

For our classifiers, we fine-tuned the pre-trained
BERT classifier (Devlin et al., 2019). Details on
the hyper-parameters used are given in Appendix
A.

Task Perf. (↑) Calib. ECE (↓)

Dataset MLE L1 PosCal MLE L1 tScal PosCal

CoLA 56.7 55.3 58.0 .242 .234 .565 .231
SST-2 92.1 91.4 92.4 .144 .155 .143 .106

MRPC 88.2 88.2 88.9 .228 .229 .400 .177
QQP 88.8 88.9 89.1 .121 .122 .054 .107

MNLI 84.0 83.7 83.5 .158 .160 .080 .165
MNLImm 83.7 84.0 84.2 .153 .153 .062 .149

QNLI 89.9 89.7 90.0 .138 .124 .159 .176
RTE 61.7 62.4 62.8 .422 .441 .175 .394

WNLI 38.0 38.0 56.9 .287 .287 .269 .083

total 75.9 75.6 78.4 .210 .212 .252 .176

Table 1: Task performance (left; higher better) and cal-
ibration error (right; lower better) on GLUE. We do not
include STS-B; a regression task. Note that tScal is
only applicable for calibration reduction, because the
post-calibration does not change the task performance,
while PosCal can do both.
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Task Perf.(↑) Calib. ECE(↓)

Dataset MLE L1 PosCal MLE L1 tScal PosCal

GYAFC 89.1 89.4 89.5 .178 .170 .783 .118

SPolite 68.7 70.0 70.9 .451 .431 .133 .238

SHumor 97.4 97.6 97.6 .050 .047 .037 .044
SJoke 98.4 98.1 98.3 .032 .037 .019 .029

SarcGhosh 42.5 42.5 42.6 .912 .912 .898 .910
SARC 71.3 71.5 71.4 .372 .375 .079 .186

SARC pol 72.7 72.8 73.8 .434 .435 .070 .383

VUA 80.9 80.8 81.4 .268 .276 .687 .238
TroFi 76.7 78.8 77.4 .278 .239 .345 .265

CrowdFlower 22.0 22.7 22.6 .404 .413 .261 .418
DailyDialog 48.3 47.8 48.7 .225 .227 .117 .222

HateOffens 93.0 93.6 93.5 .064 .059 .100 .055

SRomance 99.0 99.0 100.0 .020 .020 .023 .010

SentiBank 96.7 97.0 96.6 .061 .057 .037 .054

PASTEL gender 47.9 48.1 47.9 .336 .305 .185 .143
PASTEL age 23.5 23.4 22.9 .354 .365 .222 .369

PASTEL count 56.1 56.6 58.3 .054 .055 .019 .046
PASTEL polit 46.6 47.0 46.8 .394 .379 .160 .413
PASTEL educ 24.4 25.2 24.7 .314 .332 .209 .323
PASTEL ethn 25.3 24.8 24.8 .245 .243 .163 .250

total 64.0 64.3 64.5 .272 .269 .227 .236

Table 2: Task performance (left; higher better) and cali-
bration error (ECE; lower better) on xSLUE. We do not
include EmoBank; a regression task.

Results. Table 1 and 2 show task performance
and calibration error on two benchmarks: GLUE
and xSLUE, respectively. In general, PosCal out-
performs the MLE training and MLE with L1 regu-
larization in GLUE for both task performance and
calibration, though not in xSLUE. Compared to
the tScal, PosCal shows a stable improvement over
different tasks on calibration reduction, while tScal
sometimes produces a poorly calibrated result (e.g.,
CoLA, MRPC).

Analysis. We visually check the statistical ef-
fect of PosCal with respect to calibration. Fig-
ure 1 shows how predicted posterior distribution of
PosCal is different from MLE. We choose two
datasets where PosCal improves both accuracy
and calibration quality compared with the basic
MLE: RTE from GLUE and Stanford’s politeness
dataset from xSLUE. We then draw two different
histograms: a histogram of p̂ frequencies (top) and
a calibration histogram, p̂ versus the empirical pos-
terior probability q (bottom). Figure 1(c,d) show
that PosCal spreads out the extremely predicted
posterior probabilities (0 or 1) from MLE to be
more well calibrated over different bins. The well-
calibrated posteriors also help correct the skewed

(a) Predictions in RTE (b) Predictions in SPolite

(c) Calibrations in RTE (d) Calibrations in SPolite

Figure 1: Histogram of predicted probabilities (top)
and their calibration histograms (bottom) between
MLE ( blue-shaded ) and PosCal ( red-shaded ) on
RTE in GLUE and SPoliteness in xSLUE. The over-
lap is purple-shaded . X-axis is the predicted posterior,
and Y-axis is its frequencies (top) and empirical pos-
terior probabilities (bottom). The diagonal, linear line
in (c,d) means the expected (or perfectly calibrated)
case. We observe that PosCal alleviate the poste-
rior probabilities with the small predictions toward
the expected calibration . Best viewed in color.

predictions in Figure 1(a,b).

MLE → PosCal Size MLE PosCal label dist.
Data predictions (%) avg(p̂) avg(p̂) 0 1

R
T
E

COR → COR 164(59.2) 79.2 78.6 42.8 47.2

COR → INCOR 3(1.1) 59.7 39.0 0 100
INCOR → COR 9(3.3) 40.6 56.7 100 0

INCOR → INCOR 101(36.4) 23.6 24.9 27.7 72.3

S
P
o
l
i
t
e
. COR → COR 342(60.3) 95.0 82.6 58.8 41.2

COR → INCOR 54(9.5) 82.1 26.8 96.3 3.7
INCOR → COR 60(10.6) 16.9 73.9 15.0 85.0

INCOR → INCOR 111(19.6) 9.8 21.7 54.0 46.0

Table 3: Size of correct (COR) and incorrect (INCOR)
prediction labels with their averaged p̂(%) of true labels
for MLE and PosCal on RTE and Stanford’s politeness
(SPolite) dataset. Each has two labels : entail(0) / not
entail(1) for RTE, and polite(0) / impolite(1) for SPo-
lite. PosCal improves 2.2%/1.1% accuracy than MLE
for RTE/SPolite.

To better understand in which case PosCal helps
correct the wrong predictions from MLE, we an-
alyze how prediction p̂ is different between MLE
and PosCal in test set. Table 3 shows the number
of correct/incorrect predictions and its correspond-
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Data Sentence True label MLE
p̂

PosCal
p̂

R
T
E

(S1) Researchers at the Harvard School of Public Health say that people who drink coffee
may be doing a lot more than keeping themselves awake - this kind of consumption
apparently also can help reduce the risk of diseases.
(S2) Coffee drinking has health benefits.

entail 49.7 51.3
INCOR → COR

(S1) The biggest newspaper in Norway, Verdens Gang, prints a letter to the editor written
by Joe Harrington and myself.
(S2) Verdens Gang is a Norwegian newspaper.

entail 43.9 61.9
INCOR → COR

S
P
o
l
i
t
e
.

Not at all clear what you want to do. What is the full expected output? impolite 10.5 74.9
INCOR → COR

Are you sure that it isn’t due to the error that the compiler is thrown off, and generating
multiple errors due to that one error? Could you give some example of this?

polite 6.9 57.9
INCOR → COR

Table 4: Predicted p̂(%) of true label from MLE and PosCal with corresponding sentences in RTE and SPolite
dataset. True label is either entail or not entail for RTE, and polite or impolite for SPolite. Provided examples are
the cases only PosCal predicts correctly, which correspond to INCOR→ COR in table 3.

ing label distributions grouped by the two mod-
els. For example, COR by MLE and INCOR by
PosCal in the fourth row of Table 3 means that
there are three test samples that MLE correctly
predicts while PosCal not.

We find that in most of cases, PosCal corrects
the wrong predictions from MLE by re-scaling p̂ in
a certain direction. In RTE, most inconsistent pre-
dictions between MLE and PosCal have their poste-
rior predictions near to the decision boundary (i.e.,
50% for binary classification) with an averaged
predicted probability about 40%. This is mainly
because PosCal does not change the majority of
the predictions but helps correct the controversial
predictions near to the decision boundary. PosCal
improves 3.3% of accuracy but only sacrifices 1.1%
by correctly predicting the samples predicted as
’not entailment’ by MLE to ’entailment’.

On the other hand, SPolite has more extreme
distribution of p̂ from MLE than RTE. We find a
fair trade-off between two models (-9.5%, +10.6%)
but still PosCal outperforms MLE.

Table 4 shows examples that only PosCal pre-
dicts correctly, with corresponding p̂ of true label
from MLE and PosCal (INCOR → COR cases
in Table 3). The predicted probability p̂ should be
greater than 50% if models predict the true label.

In the first example of RTE dataset, two expres-
sions from S1 and S2 (e.g, “reduce the risk of dis-
ease” in S1 and “health benefits” in S2) make MLE
confusing to predict, so p̂ of true label becomes
slightly less than the borderline probability (e.g.,
p̂ = 49.7% < 50%), making incorrect prediction.
Another example of RTE shows how the MLE fails
to predict the true label since the model cannot

learn the connection between the location of news-
paper (e.g., “Norway”) and its name (e.g., “Verden
Gang”). In the two cases from SPolite dataset, the
level of politeness indicated on phrases (e.g., “Not
at all” in the first case and “Could you” in the
second case) is not captured well by MLE, so the
model predicts the incorrect label.

From our manual investigation above, we find
that statistical knowledge about posterior probabil-
ity helps correct p̂ while training PosCal, so mak-
ing p̂ switch its prediction. For further analysis, we
provide more examples in Appendix C.

5 Conclusion and Future Directions

We propose a simple yet effective training tech-
nique called PosCal for better posterior calibration.
Our experiments empirically show that PosCal can
improve both the performance of classifiers and the
quality of predicted posterior output compared to
MLE-based classifiers. The theoretical underpin-
nings of our PosCal idea are not explored in detail
here, but developing formal statistical support for
these ideas constitutes interesting future work. Cur-
rently, we fix the bin size at 10 and then estimate q
by calculating accuracy of p per bin. Estimating q
with adaptive binning can be a potential alternative
for the fixed binning.
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A Details on Hyper-Parameters

All models are trained with equal hyper-
parameters:learning rate 2e-5, and BERT model
size BERTBASE . Also, we set up an early stopping
rule for train: we track the validation loss for every
50 steps and then halt to train if current validation
loss is bigger than the averaged 10 prior validation
losses (i.e., patience 10). For L1, we use the regu-
larization weight value 1-e8. For PosCal, we set
up another weight value λ for LCal, and the num-
ber of updating empirical probability per epoch
(u). We tune these two hyper-parameters per each
task. For more details, see Table 5. As a baseline of
post-calibration method, we also report ECE with
a temperature scaling (Guo et al., 2017), which is
current state-of-the-art method.

xSLUE u λ GLUE u λ

GYAFC 5 0.6 CoLA 5 0.2

SPolite 5 0.6 SST-2 10 1.0

SHumor 5 1.0 MRPC 10 1.0
SJoke 5 1.0 QQP 10 1.0

SarcGhosh 5 0.6 MNLI 2 0.2
SARC 5 0.6 MNLImm 2 0.2

SARC pol 5 1.0 QNLI 1 0.6

VUA 2 1.0 RTE 10 1.0
TroFi 5 1.0 WNLI 2 0.2

CrowdFlower 5 0.6
DailyDialog 5 1.0

HateOffens 5 1.0

SRomance 5 1.0

SentiBank 5 1.0

PASTEL gender 5 1.0
PASTEL age 5 1.0

PASTEL count 5 1.0
PASTEL polit 5 1.0
PASTEL educ 5 1.0
PASTEL ethn 5 1.0

Table 5: Hyper-parameters for PosCal training across
tasks : the number of updating empirical probabilities
per epoch u and weight value λ for LCal. We tune them
using the validation set.

B Examples When MLE and PosCal
Predicts Different Label

Table 6 shows some examples in RTE and Stanford-
Politeness datasets with their predicted p̂ of true
label from MLE and PosCal.
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Data Sentence True label MLE
p̂

PosCal
p̂

R
T
E

(S1) Charles de Gaulle died in 1970 at the age of eighty. He was thus fifty years old
when, as an unknown officer recently promoted to the (temporary) rank of brigadier
general, he made his famous broadcast from London rejecting the capitulation of France
to the Nazis after the debacle of May-June 1940.
(S2) Charles de Gaulle died in 1970.

entail 34.9 58.9
INCOR → COR

(S1) Police in the Lower Austrian town of Amstetten have arrested a 73 year old man
who is alleged to have kept his daughter, now aged 42, locked in the cellar of his house
in Amstetten since 29th August 1984. The man, identified by police as Josef Fritzl, is
alleged to have started sexually abusing his daughter, named as Elisabeth Fritzl, when
she was eleven years old, and to have subsequently fathered seven children by her. One
of the children, one of a set of twins born in 1996, died of neglect shortly after birth and
the body was burned by the father.
(S2) Amstetten is located in Austria.

entail 45.5 57.3
INCOR → COR

(S1) Blair has sympathy for anyone who has lost their lives in Iraq.
(S2) Blair is sorry for anyone who has lost their lives in Iraq.

entail 31.3 50.1
INCOR → COR

(S1) Capital punishment acts as a deterrent.
(S2) Capital punishment is a deterrent to crime.

entail 41.6 64.5
INCOR → COR

(S1) The U.S. handed power on June 30 to Iraqâs interim government chosen by the
United Nations and Paul Bremer, former governor of Iraq.
(S2) The United Nations officially transferred power to Iraq.

not entail 59.2 44.9
COR → INCOR

S
P
o
l
i
t
e
.

I don’t know what page you are talking about, as this is your only edit. Did you perhaps
have another account?

impolite 47.3 65.4
INCOR → COR

Hi. Not complaining, but why did you remove the category ”high schools in california”
from this article?

impolite 1.2 91.7
INCOR → COR

Hi, sorry I think I’m missing something here. Why are you adding a red link to the
vandalism page?

impolite 5.6 61.9
INCOR → COR

Huh, looks fine to me. Maybe this computer just lies to me to get me to shut up and stop
complaining?

impolite 3.3 58.1
INCOR → COR

Can you put an NSLog to make sure it’s being called only once? Also, can you show us
where you are declaring your int?

polite 16.5 76.5
INCOR → COR

I don’t understand the reason for <url>. Would you please explain it to me? polite 91.5 37.1
COR → INCOR

Another question: Does ”Senn” exist in Japanese? If it does, is it possible to render
Sennin as Senn-in?

polite 88.8 45.5
COR → INCOR

@Smjg, thanks. But why did you also remove the categories I added? impolite 78.3 45.7
COR → INCOR

You can place islands so there is no path between points. What should happen then? impolite 91.7 35.8
COR → INCOR

Table 6: Predicted p̂(%) of true label from MLE and PosCal with corresponding sentences in RTE (top) and
Stanford’s politeness (bottom) dataset. True label is either entail or not entail for RTE, and polite or impolite for
SPolite. We show the cases where two methods predict the label differently. The case with INCOR→ COR means
only PosCal predicts the true label correctly, while the case with COR→ INCOR means only MLE predicts the
true label correctly.


