
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 263–274
July 5 - 10, 2020. c©2020 Association for Computational Linguistics

263

Probabilistically Masked Language Model Capable of
Autoregressive Generation in Arbitrary Word Order

Yi Liao, Xin Jiang, Qun Liu
Huawei Noah’s Ark Lab

{liaoyi9, jiang.xin, qun.liu}@huawei.com

Abstract

Masked language model and autoregressive
language model are two types of language
models. While pretrained masked language
models such as BERT (Devlin et al., 2019)
overwhelm the line of natural language un-
derstanding (NLU) tasks, autoregressive lan-
guage models such as GPT (Radford et al.,
2018) are especially capable in natural lan-
guage generation (NLG). In this paper, we pro-
pose a probabilistic masking scheme for the
masked language model, which we call prob-
abilistically masked language model (PMLM).
We implement a specific PMLM with a uni-
form prior distribution on the masking ratio
named u-PMLM. We prove that u-PMLM is
equivalent to an autoregressive permutated lan-
guage model. One main advantage of the
model is that it supports text generation in ar-
bitrary order with surprisingly good quality,
which could potentially enable new applica-
tions over traditional unidirectional generation.
Besides, the pretrained u-PMLM also outper-
forms BERT on a set of downstream NLU
tasks.

1 Introduction

Large-scale pretrained language models (Raffel
et al., 2019; Wang et al., 2019; Lan et al., 2019;
Liu et al., 2019; Jiao et al., 2019) have drawn lots
of research attention as these models have brought
significant improvements to many NLU and NLG
tasks. As a major category of pretrained language
models, masked language model (MLM) (Devlin
et al., 2019; Joshi et al., 2019) is trained using a de-
noising autoencoding objective. In a typical MLM,
some tokens in a sentence are replaced by a special
token [MASK]. The training objective is to predict
the original tokens that are masked in the sentence.
As the first large-scale pretrained masked language
model, BERT chooses to mask 15% of the tokens
in sentences randomly. Following BERT, various

The wolf has an extraordinary speed ,
and it can often jump from a spot quick
enough to escape a spot already occupied
by an adult wolf . Unlike the brown and
black bear , where it is easily distracted
by wolves , the gray fox does not run over
a wolf , and is often driven mad . Hav-
ing jumps with high speed that breaks the
wolf ’ s legs before it is run over , a grey
wolf could defend itself against an adult
of other species as the best predator at any
time . The black bear may kill packs of
four lazy , though the gray fox can inflict
significant wounds on a dog .

Figure 1: A piece of text generated by a PMLM in ran-
dom order. The bolded words, which compose the in-
put sentence “The quick brown fox jumps over the lazy
dog”, are distributed across the paragraph with a prede-
fined length. The blank spaces are filled by the model
in a random order to form the complete paragraph.

language models have been proposed with different
masking schemes.

While the pretrained masked language models
achieve state-of-the-art performances in a line of
downstream NLU tasks, researchers pay more at-
tention to autoregressive language model when it
comes to text generation. Unlike predicting the
masked tokens, the autoregressive language model
learns a sequential generative process of text se-
quences. Hence it naturally performs better for
natural language generation. For example, GPT-2
(Radford et al., 2019) as well as Transformer-XL
(Dai et al., 2019), is able to generate fluent and
coherent paragraphs of text that highly resembles
human writings.

In this paper, we propose a probabilistically
masked language model (PMLM) to bridge the gap
between masked and autoregressive language mod-

264

Predictions:

Hidden States:

Transformer
Layers:

Inputs:

Figure 2: The structures of autoregressive language model (left) and masked language model (right).

els. The basic idea behind the connection of two
categories of models is similar to MADE (Germain
et al., 2015). PMLM is a masked language model
with a probabilistic masking scheme, which de-
fines the way sequences are masked by following a
probabilistic distribution. While the existing work
proposes masking strategies aiming at improving
the NLU abilities, PMLM addresses the generation
capability in particular. Besides, as a masked lan-
guage model, PMLM maintains its strong ability
in natural language understanding.

In addition to the traditional unidirectional
(e.g., left-to-right) generation, a unique ability for
PMLM is to autoregressively generate sequences
in arbitrary order, and the generated sequences
are still of high quality. In contrast to traditional
left-to-right generation, arbitrarily ordered text gen-
eration has two main characteristics. First, the next
token to be predicted could be in any position that
is masked. Second, the next token to be predicted
depends on all the previous observed/generated to-
kens. Arbitrarily ordered generation enables more
interesting applications than unidirectional gener-
ation. For example, Figure 1 shows an example
of cloze test, where the prompted text “The quick
brown fox jumps over the lazy dog” is distributed
across a paragraph with a predefined length, and
the task is to predict all the surrounding words and
complete the paragraph. This is actually very chal-
lenging for conventional generation models since
when predicting each word, the fluency and coher-
ence of text are hard to be guaranteed given the
contextual constraints on both sides. More applica-
tions may include acrostic poetry generation, news
generation based on given facts, machine transla-
tion with lexical constraints, etc.

We employ a simple uniform distribution of the

masking ratio and name the model as u-PMLM.
We prove that u-PMLM actually learns an autore-
gressive language model on random permutations
of training sequences. The experiments show that
the quality of text generated by u-PMLM in arbi-
trary order is as good as that generated by GPT in
sequential order. Besides, u-PMLM outperforms
BERT significantly on the GLUE benchmark for
natural language understanding.

2 Preliminary

2.1 Transformer
Transformer (Vaswani et al., 2017) is the backbone
model for many pretrained language models. Trans-
former is composed of a stack of multi-head self-
attention and token-wise feed-forward layers. At
each layer, the hidden state of each token is updated
based on the historical hidden states computed in
the lower layer. Let X = {x1, x2, ..., xN} denote
the sequence of tokens, whereN is the length of the
sequence. Fed with X as input, the final output of
the Transformer, denoted as H = {h1, h2, ..., hN},
captures the contextual representation of the tokens
in the sequence.

2.2 Autoregressive Language Model
In autoregressive language model, the sequence
generation process is modeled as a Markov chain,
where the token to be predicted depends on all
the previous tokens. The training objective can be
formulated as:

Lalm(X) =

N∑
n=1

log p(xn|x1, ..., xn−1; θ), (1)

where θ denotes the parameters of the model. Fig-
ure 2(a) shows the diagram of autoregressive LM.
In the model, the n-th token can only attend on

265

the tokens at positions less than n. The autore-
gressive model is usually trained in the way of
teacher-forcing, i.e., always using the ground-truth
tokens as inputs and outputs in training.

Pretrained autoregressive models such as GPT
(Radford et al., 2018, 2019) are especially capable
of generating fluent and coherent text that highly
resembles human-written text. However, unidi-
rectional attention brings two limitations. Firstly,
autoregressive model as in Figure 2(a) can only
generate text from left to right; Secondly, unidirec-
tional attention blocks the contextual information
from the right side of the current token, affecting
the completeness of the contextual representation.

2.3 Masked Language Model
To obtain complete representations of the tokens
in a sequence, researchers resort to bidirectional
attention as shown in Figure 2(b). Specifically,
the training instances are created by replacing a
subset of tokens in the input X with a special token
[MASK], and the objective is to predict the masked
tokens. Such model is called masked language
model (MLM). Let Π = {π1, π2, ..., πK} denote
the indexes of the masked tokens in the sentenceX ,
where K is the number of masked tokens. Let XΠ

denote the set of masked tokens in X , and X−Π

denote the set of observed (unmasked) tokens. The
objective of MLM is:

Lmlm(XΠ|X−Π) =
1

K

K∑
k=1

log p(xπk |X−Π; θ).

(2)

The assumption in Equation 2 is that the probability
of predicting a masked token is independent of
each other. BERT (Devlin et al., 2019) is a typical
masked language model.

Due to the incorporation of bidirectional atten-
tion, masked language model can capture the con-
textual information on both sides. Consequently,
it usually achieves better performances when fine-
tuned in downstream NLU tasks than the conven-
tional autoregressive models. However, the mask-
ing scheme and the independence assumption also
affect its performance on text generation compared
to autoregressive models (Wang and Cho, 2019).

3 Probabilistically Masked Language
Model

Different masking schemes have been proposed for
pretraining the masked language model. The most

straightforward masking scheme is to randomly
mask tokens in sentences in a fixed ratio, e.g., 15%
in BERT. Following BERT, various models have
proposed modifying the masking scheme to im-
prove its NLU capability. ERNIE (Sun et al., 2019)
proposes the entity-level masking and phrase-level
masking, where the words composing an entity or
phrase are masked as a whole. SpanBERT (Joshi
et al., 2019) proposes to mask a continuous ran-
dom span of text rather than random tokens. These
masking strategies have shown to be effective for
certain classes of NLU tasks.

In contrast to the existing work, we propose a
probabilistic masking scheme that tries to improve
the text generation ability of the masked language
model. Probabilistically masked language mode
(PMLM) is a natural generalization of the MLM
with a probabilistic masking ratio. It assumes that
the masking ratio is drawn from a probabilistic
distribution. Therefore, each training instance is
associated with a different masking ratio sampled
from the given distribution.

3.1 Model Formulation

To give a formal definition of the PMLM, we need
to elaborate the training objective defined in Equa-
tion 2. Let M = {m1,m2, ...,mN} denote a se-
quence of binary variables indicating which token
in X = {x1, x2, ..., xN} is masked. mn = 1 indi-
cates xn is masked, and mn = 0 otherwise. Noted
that since Π = {π1, π2, ..., πK} denotes the in-
dexes of masked tokens, mπk = 1 holds for any
πk ∈ Π. Considering M as latent variables, the
expected log-likelihood function of observing XΠ

conditioning on X−Π over all possible M is:

Lpmlm(XΠ|X; θ)

=EM |X [log p(XΠ|X−Π)]

=
∑
M

[log p(XΠ|X−Π; θ)]p(M |X)
(3)

The term log p(XΠ|X−Π; θ) is identical to the ob-
jective function in Equation 2 for a deterministic
mask M . In the vanilla MLM, it is assumed that
M are i.i.d. for each position and independent to
X , namely,

p(M |X) = p(M) = rK(1− r)N−K , (4)

where r is the masking ratio.
Most existing MLMs such as BERT simply set a

fixed value to the masking ratio r. In our proposed

266

PMLM, however, we assume r is a random variable
drawn from a prior distribution p(r). Therefore, the
distribution p(M) becomes:

p(M) = αM =

∫
p(M |r)p(r)dr

=

∫
rK(1− r)N−Kp(r)dr

(5)

With above derivations, we can formulate the
expected log-likelihood function of PMLM as:

Lpmlm(XΠ|X; θ)

=
∑
M

[log p(XΠ|X−Π; θ)]αM

=
∑
M

αM
K

K∑
k=1

log p(xπk |X−Π; θ)

(6)

Equation 6 is optimized by sampling M accord-
ing to the prior distribution over the training set. By
controlling the prior distribution, we can cover a
wider range of sequence prediction tasks in training,
which can potentially enhance the representation
power of the pretrained model. For instance, in
the left-to-right autoregressive model, the masking
ratio is uniformly distributed across different posi-
tions, which makes the model learn to generate the
next token given the previous context of different
lengths. This inspires us to try the uniform prior on
masking ratio for PMLM.

3.2 PMLM with a uniform prior

u-PMLM is an implementation of PMLM with a
continuous uniform distribution on the masking
ratio:

p(r) =

{
1, 0 ≤ r ≤ 1

0, otherwise.
(7)

Like most pretrained language models, the back-
bone model for u-PMLM is Transformer as well.

We prove that u-PMLM is equivalent to the au-
toregressive permutated language model (APLM)
by recombination of the factorized log-likelihood
function, which is basically the autoregressive lan-
guage model trained on all possible permutations
of the training instances:

Laplm(X) = Eσ

[
N∑
t=1

log p(xσt |xσ1 , . . . , xσt−1 ; θ)

]
,

(8)

where σ denote random permutations. The detail
derivation is included in the Appendix A.

Ordinary autoregressive model can be regarded
as a special case of the permutated model. There-
fore, we can expect that the u-PMLM is able to
work as the autoregressive model in sequential pre-
diction. Moreover, since it can handle any permu-
tation of the sequence, it should have the ability to
generate sequences in arbitrary word order.

3.3 Generation with u-PMLM

Algorithm 1 depicts the algorithm to autoregres-
sively generate a sequence in random order with
u-PMLM. The process starts with a sequence con-
taining full of the special token [MASK]. Then the
model iteratively replaces a [MASK] token in a
random position with a predicted token, until all
the tokens are predicted. An example showing the
states of the sequence during the generation pro-
cess is presented in Table 1. The generation order
could be arbitrary, which is much more flexible
than the traditional unidirectional generation. On
the other hand, our model can not automatically
determine a best generation order, which could be
a interesting problem for future research.

Algorithm 1: Generation with u-PMLM
Result: Generated Text Sequence

S = {s1, s2, ..., sN}
. Initialization:
i. A sequence S with all [MASK] tokens.
ii. Unvisited index set U = {1, 2, ..., N}.
while U is not empty do

1. Randomly pick a number n from U ;
2. Input u-PMLM with S and predict
the n-th token xn;

3. Replace the n-th token of S with the
predicted token xn, i.e., S(n)← xn;

4. Remove n from U .

Positional Embedding Most pretrained masked
language models have employed absolute posi-
tional embedding to incorporate the positional in-
formation of the input tokens. We train two variants
for u-PMLM, one with absolute positional embed-
ding and the other with relative positional embed-
ding (Shaw et al., 2018). The experiments show
that NLG ability is not sensitive to relative or ab-
solute positional embedding, while NLU ability is
improved with relative positional embeddings.

Model Inference Although both u-PMLM and
GPT generate sequences autoregressively based on

267

Step Prediction Index State of the sequence
0 n/a
1 3 a
2 7 a random
3 1 This a random
4 2 This is a random
5 4 This is a sentence random
6 6 This is a sentence in random
7 5 This is a sentence generated in random
8 8 This is a sentence generated in random order

Generation Order: 3→7→1→2→4→6→5→8
Output: This is a sentence generated in random order

Table 1: An example of how u-PMLM generates a sequence in random order. The special token [MASK] is
simplified as the symbol “ ”.

Transformer, they are slightly different at inference
time. For u-PMLM, since we use the bidirectional
Transformer, each time a token is generated, the
hidden states of all the tokens need an update. For
GPT, since the unidirectional Transformer is em-
ployed, the latter generated token does not affect
the hidden states of previous tokens. This can result
in different computational complexity. However,
since a typical Graphics Processing Unit (GPU)
computes matrices in parallel, the actual difference
in inference time is not that significant. We re-
port the comparison of time consumption in the
experimental section.

3.4 Training Settings

Model Size : The size of our pretrained u-PMLM
is identical to BERT-base, which contains 12 hid-
den layers and 12 attention heads. The hidden
size is 768, and the intermediate size is 3072. The
dropout rate is set to 0.1.

Training Data We employ the commonly
adopted training data, namely BookCorpus and
Wikipedia to train our u-PMLM model. We obtain
4.1 Gb for the BookCorpus dataset and 11.9 GB
for the Wikipedia dataset after data cleaning. We
further employ the same vocabulary and tokeniza-
tion techniques as BERT for converting the text
sequences to ID sequences. The vocabulary con-
tains 28,996 cased tokens. We set the maximum
sequence length to 128.

Training Platform We train u-PMLM using
Horovod framework with 56 NVIDIA V100
(32GB) GPUs. To speed up the training process,
we employ mix-precision training technique. The

batch size is set to 150 for every single GPU, thus
the total batch size is 8400. The optimizer is Lamb
Optimizer (You et al., 2019), which is more suit-
able for large batch size than Adam Optimizer. We
train u-PMLM for 600K steps, taking roughly 135
hours in total.

4 Experiments

We evaluate both the natural language generation
ability and natural language understanding ability
of u-PMLM trained in the settings described in
Section 3.4.

4.1 Comparative Models

We train the BERT model and GPT model as the
comparative models in the experiments. BERT
and GPT are representative models for masked lan-
guage model and autoregressive language model,
respectively. To make fair comparisons, we train
both models from scratch using the same settings
described in Section 3.4, including the same train-
ing platform, model size, training data, vocabu-
lary, and training steps. Note that since BERT
adopts absolute positional embedding, the variant
for u-PMLM with absolute positional embedding is
trained for a fair comparison with BERT. Through-
out the experimental section, u-PMLM-R and u-
PMLM-A are short for the variants with relative
and absolute positional embeddings, respectively.

4.2 Autoregressive Generation

Perplexity Evaluation Perplexity (PPL) mea-
sures the quality of a language model, where the
task is to predict the next word or character in a
document. Typically, the predicting order follows

268

Model PPL(sequential) PPL(random)
BERT 23.12 25.54
GPT 21.23 N/A
u-PMLM-R 19.58 21.51
u-PMLM-A 19.32 21.30

Table 2: Perplexity on Wikitext103.

Model PPL(sequential) PPL(random)
BERT 140.67 56.97
GPT 24.25 N/A
u-PMLM-R 35.24 38.45
u-PMLM-A 49.32 42.46

Table 3: Perplexity on One-Billion Words.

the generation order. However, as bidirectional
u-PMLM and BERT supports text generation in ar-
bitrary order. Hence we also evaluate the perplexity
when predicting words in arbitrary order.

We evaluate the perplexity using two datasets
for evaluating perplexity. The first dataset, Wiki-
text103, is a collection of over 100 million tokens
extracted from the set of verified Good and Fea-
tured articles on Wikipedia. The second dataset,
One-Billion Words, consists of 829 million to-
kens derived from a news-commentary site. Both
datasets are widely adopted for evaluating language
models. However, there are significant differences
between these two datasets in terms of the length
of sequences. The Wikitext103 dataset is more
similar to the pretraining datasets, containing long
articles. On the other hand, the One-Billion Words
dataset contains only single sentences, roughly half
of which contain less than 24 tokens. We have
ensured that all the three models have the same
context length, the same vocabulary, as well as
the same tokenization method, which would af-
fect the perplexity values. For Wikitext103 dataset,
the context length is set to 128, and each context
containing multiple coherent sentences. For the
One-Billion Words dataset, context length is set to
50. Short sentences are appended with [PAD] to
reach length 50. Actually, the context for nearly
all the sentences is shorter than 50. Both datasets
provide training and test sets. We first finetune
the model using the training set before evaluating
perplexity on the test set. For each model, the algo-
rithm for the finetune phase is the same as that for
the pretraining phase.

The evaluation results of perplexity are shown

in Table 2 and Table 3. “Sequential” refers to the
traditional left-to-right text generation, while for
“random”, each sentence in the test set is assigned
a random generation order. Smaller PPL indicates
better language model performance. We first in-
vestigate the performance on Wikitext103 dataset.
We observe that the PPL for u-PMLM is compa-
rable to GPT on Wikitext103 dataset, indicating
that the language model learned by u-PMLM is
as good as GPT when the context length is suffi-
ciently long. In such case, the text generated by
u-PMLM is as good as GPT. Moreover, the PPL of
u-PMLM for randomly ordered language model is
comparable to the left-to-right generation, which
implies that u-PMLM has a strong ability for ar-
bitrarily ordered generation. Besides, the results
show that there are few differences between relative
positional embedding and absolute positional em-
bedding for u-PMLM. On the other hand, although
BERT supports generation in arbitrary word order
as well, the PPL for BERT is significantly worse
than our proposed u-PMLM for both “sequential”
and “random” settings, demonstrating the effective-
ness of the proposed probabilistic masking scheme.
We show more cases of text generation in random
order for u-PMLM-A and BERT in Appendix B.

However, for PPL on One-Billion Words, the per-
formances of u-PMLM and BERT are not satisfac-
tory in comparison with GPT. Generally, PPL for
all these models increases on One-Billion Words
dataset as the context length becomes much smaller,
which also reflects PPL’s relationship to context
length. The reason might be the large portions of
[PAD] in the One-Billion Words dataset, i.e., more
than 50% of the context for nearly 50% of the train-
ing instances are filled by [PAD]. We suspect that
the [PAD]s affect the prediction process for bidi-
rectional models. On the other hand, unidirectional
models such as GPT naturally ignore the effect of
[PAD] tokens in the tail of context. The results
imply that u-PMLM could be further improved in
the future to be more robust.

Latency As analyzed in Section 4, the time com-
plexity for generation for masked language model
is N times of autoregressive language model when
computing the hidden states in each Transformer
layer. However, when employed for text generation
on GPU, the difference might be less significant.
We test the latency for generating 100 128-length
sentences for GPT and u-PMLM respectively. The
computational platform is NVIDIA V100 GPU.

269

Models Cost Time
GPT 105.6 s
u-PMLM-A 126.8 s

Table 4: Latency for generating 100 128-length se-
quences.

Tom is a cat and Jerry is a mouse .“ It ’ s
very sad ! ” . The writers had wanted Tom
to have “ something big to tell it . . . and
a fun place to get excited ” . The writers
believed that the “ little animal ” and the “
little black dog ” at the end of the episode
would have attracted more attention from
viewers , but it never took place . Tom ’
s first television role was that of the boy
scout “ Mr . Krabs ” in the 1978 NBC
Western comedy pilot , The Search for Mr
. Krabs .

Figure 3: Unidirectional Text Generation with GPT

The results are shown in Table 4. The results show
that u-PMLM costs roughly 20.1% more time than
GPT for generating sentences, which is much less
than the theoretical time complexity difference.

Comparison With GPT for Generation In the
introduction section, we have shown an example
showing the application of arbitrarily ordered text
generation, where the tokens in the input sentences
are distributed across the generated sentences. In-
deed, the major difference with GPT is that the
input text could be inserted anywhere in the gener-
ated text, which makes the generation process more
controllable. Meanwhile, the output text contains
certain predefined tokens.

Figure 3 and Figure 4 shows the generated para-
graphs of GPT and u-PMLM, respectively. For
GPT, the input text can only be placed in the begin-
ning and the generation process become uncontrol-
lable, resulting in generating sentences with topic
drift. In contrast, u-PMLM allows manually plac-
ing anchor sentences in the middle or end of the
generated text to guide the topic of the generated
text. As shown in Figure 4, we place “Tom is a cat
and Jerry is a mouse .” and “Tom and Jerry become
good friends in the end .” at the beginning and end
of the paragraph. The middle parts are generated
by u-PMLM from left-to-right. Such generation
method allows us to better retain the topic of the
generated content.

Tom is a cat and Jerry is a mouse . How-
ever , the two have a common . The first
part is a joke about Jerry and Tom fighting
in the middle of the episode . The two get
on the run from the restaurant , and Tom ’
s mother is shocked that they would have
to do so . After a few minutes , Jerry ar-
rives and decides to have a fight . The two
go to the casino , where Jerry tries to fight
them back by using a splint of grease and
a bucket of wine in the bar . They reunite
at a restaurant dance , and Tom and Jerry
become good friends in the end .

Figure 4: Bidirectional Text Generation with u-PMLM

4.3 Natural Language Understanding

Besides evaluating the ability of u-PMLM for nat-
ural language generation, we also evaluate its per-
formance on natural language understanding. Two
widely adopted tasks, GLUE (Wang et al., 2018)
and SQUAD 2.0 (Rajpurkar et al., 2018), are em-
ployed for evaluating u-PMLM. We have ensured
that the evaluation for u-PMLM is influenced by
as less model-irrelevant factors as possibles. For
example, we do not tune the hyper-parameters
and just follow the settings of BERT, including
warming-up steps, learning rate, etc. In addition,
since BERT employs absolute positional embed-
dings, the variant with absolute positional em-
beddings, u-PMLM-A, is intentionally trained for
fairly evaluating the probabilistic masking scheme.

The results are shown in Table 5 and Table
6. u-PMLM-A general performs better than
BERT, demonstrating that the probabilistic mask-
ing scheme is more effective than the fixed masking
scheme. The reason could be that the probabilis-
tic masking scheme covers more a wider range of
masking patterns, which benefits pretraining for
a masked language model. Moreover, u-PMLM-
R performs better than u-PMLM-A consistently.
The only difference between these two models is
the way to handle positional embedding. Relative
positional embedding emphasizes more on the rel-
ative positions between two tokens, which could
be a better option to capture contextual represen-
tation. Recall that relative and absolute positional
embedding do not make many differences regard-
ing generation ability if the dataset is proper. Hence
we conclude u-PMLM-R is a better model than u-
PMLM-A considering both NLU and NLG tasks.

270

Model COLA SST2 MRPC STSB QQP MNLI-m/mm QNLI RTE AVG.
BERT(A) 52.1 93.5 88.9/84.8 87.1/85.8 71.2/89.2 84.6/83.4 90.5 66.4 78.3
u-PMLM-A 56.5 94.3 88.8/84.4 87.0/85.9 71.4/89.2 84.5/83.5 91.8 66.1 79.0
u-PMLM-R 58.0 94.0 89.7/85.8 87.7/86.8 71.2/89.2 85.0/84.1 92.3 69.8 80.0
u-PMLM-R* 56.9 94.2 90.7/87.7 89.7/89.1 72.2/89.4 86.1/85.4 92.1 78.5 81.3

Table 5: Evaluation on GLUE test set.

Model F1 EM
BERT(A) 76.85 73.97
u-PMLM-A 78.31 74.62
u-PMLM-R 81.52 78.46

Table 6: Evaluation on SQUAD 2.0.

Model SQUAD 2.0 MNLI SST2
F1/EM m/mm

XLNet (R) 81.33/78.46 85.84/85.43 92.66
u-PMLM-R 81.52/78.46 85.99/85.60 93.58

Table 7: Comparison with XLNet.

In addition, u-PMLM-R*, finetuned with a com-
monly used technique by sharing data from multi-
ple tasks, is the state-of-the-art base model (with
110M parameters) trained on the BookCorpus and
Wikipedia datasets on GLUE leaderboard on the
date of paper submission. 1

Comparison with XLNet We also compare our
proposed model with XLNet-base, which adopts
relative positional embedding. As will be discussed
in Section 5, XLNet is the most relevant model
to u-PMLM. We are not able to train an XLNet
using the same settings except that we make sure
both u-PMLM-R and XLNet-base are of the same
model size and are both trained using the same
datasets. The comparison results shown in Table 7
demonstrate that the performance of our proposed
u-PMLM-R is comparable to XLNet.

5 Related Work

5.1 Non-traditional Text Generation

Conventionally, text is commonly generated autore-
gressively in the left-to-right direction. Recently,
some research works have proposed several mod-
els for non-autoregressive text generation (Welleck
et al., 2019; Gu et al., 2019). Stern et al. (2019)
proposes insertion Transformer, where text are gen-
erated in an iterative and partially autoregressive
manner based on insertion operations. Ma et al.
(2019) design a latent variable based method to
generate all the tokens in one pass. Ghazvinine-

1http://gluebenchmark.com/leaderboard/

jad et al. (2019) and Wang and Cho (2019) em-
ploy masked language model for refinement-based
non-autoregressive text generation, when a sub-
set of tokens in a sequence are refined iteratively.
Later, Mansimov et al. (2019) propose a gen-
eralized framework of sequence generation ac-
commodating autoregressive, semi-autoregressive,
and refinement-based non-autoregressive model.
Strictly speaking, our proposed arbitrarily ordered
autoregressive text generation is a special case of
this generalized framework. We are the first work
to address such kind of text generation, which en-
ables a lot of new applications over tradition text
generation.

UNILM (Dong et al., 2019) and MASS (Song
et al., 2019) are another two works that combine
masked language model and autoregressive lan-
guage model. However, UNILM only combines
the training objective of GPT and BERT. MASS
employs mask mechanism to train sequence to se-
quence language model. Both models do not ad-
dress arbitrarily ordered text generation.

5.2 XLNet

XLNet (Yang et al., 2019) is the most relevant pre-
trained language model to u-PMLM. Both of them
can be treated as an autoregressive permutated lan-
guage model. However, XLNet is trained by per-
mutating only a small fraction of the sequences,
which does not fully address the generation prob-
lem. Though, we suppose that the training method
for XLNet is feasible to train a model for arbitrarily
ordered text generation as well. The main differ-
ence between these two models is that XLNet em-
ploys unidirectional Transformer, while u-PMLM
is based on bidirectional Transformer. Regarding
the training algorithm, XLNet shuffles the atten-
tion matrix and introduce two-stream self-attention,
which is a bit complex and memory consuming. On
the other hand, PMLM takes the simple training
objective of masked language model and approxi-
mates permutated language model.

http://gluebenchmark.com/leaderboard/

271

6 Conclusion

We have proposed a probabilistically masked lan-
guage model for autoregressive generation in arbi-
trary word order. The experiments show that the
text generated in arbitrary order has comparable
quality with GPT. Besides, the proposed proba-
bilistic masking scheme also improves the NLU
capability of a masked language model.

References
Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-

bonell, Quoc Le, and Ruslan Salakhutdinov. 2019.
Transformer-XL: Attentive language models beyond
a fixed-length context. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 2978–2988.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 4171–4186.

Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xi-
aodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou,
and Hsiao-Wuen Hon. 2019. Unified language
model pre-training for natural language understand-
ing and generation. In Advances in Neural Informa-
tion Processing Systems 32, pages 13042–13054.

Mathieu Germain, Karol Gregor, Iain Murray, and
Hugo Larochelle. 2015. Made: Masked autoencoder
for distribution estimation. In Proceedings of the
32nd International Conference on Machine Learn-
ing, pages 881–889.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and
Luke Zettlemoyer. 2019. Mask-predict: Parallel de-
coding of conditional masked language models. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing, pages 6114–6123.

Jiatao Gu, Changhan Wang, and Junbo Zhao. 2019.
Levenshtein transformer. In Advances in Neural In-
formation Processing Systems, pages 11179–11189.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang,
Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
2019. Tinybert: Distilling bert for natural language
understanding. arXiv preprint arXiv:1909.10351.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld,
Luke Zettlemoyer, and Omer Levy. 2019. Spanbert:
Improving pre-training by representing and predict-
ing spans. arXiv preprint arXiv:1907.10529.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learn-
ing of language representations. arXiv preprint
arXiv:1909.11942.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Xuezhe Ma, Chunting Zhou, Xian Li, Graham Neu-
big, and Eduard Hovy. 2019. FlowSeq: Non-
autoregressive conditional sequence generation with
generative flow. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing, pages 4281–
4291.

Elman Mansimov, Alex Wang, and Kyunghyun Cho.
2019. A generalized framework of sequence genera-
tion with application to undirected sequence models.
arXiv preprint arXiv:1905.12790.

Alec Radford, Karthik Narasimhan, Tim Sali-
mans, and Ilya Sutskever. 2018. Improving
language understanding by generative pre-training.
URL https://s3-us-west-2.amazonaws.com/openai-
assets/researchcovers/languageunsupervised/language
understanding paper. pdf.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
Blog, 1(8).

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for squad. arXiv preprint arXiv:1806.03822.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani.
2018. Self-attention with relative position represen-
tations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 464–468.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-
Yan Liu. 2019. MASS: Masked sequence to se-
quence pre-training for language generation. In Pro-
ceedings of the 36th International Conference on
Machine Learning, pages 5926–5936.

Mitchell Stern, William Chan, Jamie Kiros, and Jakob
Uszkoreit. 2019. Insertion transformer: Flexible se-
quence generation via insertion operations. In Pro-
ceedings of the 36th International Conference on
Machine Learning, pages 5976–5985.

272

Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi
Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao
Tian, and Hua Wu. 2019. Ernie: Enhanced rep-
resentation through knowledge integration. arXiv
preprint arXiv:1904.09223.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

Alex Wang and Kyunghyun Cho. 2019. BERT has a
mouth, and it must speak: BERT as a Markov ran-
dom field language model. In Proceedings of the
Workshop on Methods for Optimizing and Evaluat-
ing Neural Language Generation, pages 30–36.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. arXiv preprint
arXiv:1804.07461.

Wei Wang, Bin Bi, Ming Yan, Chen Wu, Zuyi Bao,
Liwei Peng, and Luo Si. 2019. Structbert: In-
corporating language structures into pre-training
for deep language understanding. arXiv preprint
arXiv:1908.04577.

Sean Welleck, Kianté Brantley, Hal Daumé III, and
Kyunghyun Cho. 2019. Non-monotonic sequential
text generation. In Proceedings of the 36th Interna-
tional Conference on Machine Learning.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. In Advances in Neural In-
formation Processing Systems 32, pages 5754–5764.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu,
Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan Song,
James Demmel, Kurt Keutzer, and Cho-Jui Hsieh.
2019. Large batch optimization for deep learning:
Training bert in 76 minutes. In International Con-
ference on Learning Representations.

A Proof of Equivalence

We prove that PMLM with a continuous uniform
distribution on the masking ratio, namely u-PMLM,
is equivalent to an autoregressive permutated lan-
guage model.

When p(r) is a continuous uniform distribution,

the probability p(M) is analytical, denoted as:

p(M) =

∫
rK(1− r)N−Kp(r)d(r)

=

∫ 1

0

rK(1− r)N−Kd(r)

= B(N −K + 1,K + 1)

=
Γ(N −K + 1)Γ(K + 1)

Γ(N + 2)

=
(N −K)!K!

(N + 1)!

(9)

where B(·) is Beta function and Γ(·) is Gamma
function. Thus for u-PMLM, the expected loss-
likelihood function denoted in Equation 6 becomes:

Lpmlm(XΠ|X; θ)

=
∑
M

[
1

K

K∑
k=1

log p(xπk |X−Π; θ)]
(N −K)!K!

(N + 1)!

=

∑
M

∑K
k=1(N −K)!(K − 1)! log p(xπk |X−Π; θ)

(N + 1)!
(10)

On the other hand, we rewrite the formulation
of an autoregressive permutated language model
(APLM) denoted in Equation 8 as:

Laplm(X) = Eσ

[
N∑
t=1

log p(xσt |xσ1 , . . . , xσt−1 ; θ)

]

=

∑
σ[
∑N
t=1 log p(xσt |xσ1 , . . . , xσt−1 ; θ)]

C
(11)

where the numerator sums over the log-likelihood
for all the possible permutations and the denomi-
nator C is a constant. In fact, we can rewrite the
term p(xσt |xσ1 , . . . , xσt−1 ; θ) by p(xσt |X−Πσt

; θ),
where Πσ

t = X−{σ1, σ2, ..., σt−1}. Noted that K
is the size of Πσ

t . Thus the size of Πσ
t is denoted

as |Πσ
t | = K = N − t+ 1. Therefore we rewrite

Equation 11 as:

Laplm(X)

=
1

C

∑
σ

[log p(XΠσt+1
|X−Πσt+1

; θ) + log p(xσt |X−Πσt
; θ)

+ log p(X−Πσt
; θ)]

(12)

According to the above equation, we can de-
rive the duplication factor for specific term
log p(xσt |X−Πσt

) when summing over all the per-
mutations, which is exactly the product of numbers
of permutations for Πσ

t+1 and −Πσ
t in the first and

last term respectively. Specifically, the number of

273

permutations for Πσ
t+1 and −Πσ

t are factorials of
|Πσ

t+1| and | −Πσ
t |, denoted as:

permutation(Πσ
t+1) = |Πσ

t+1|! = (N −K)!

permutation(−Πσ
t) = | −Πσ

t |! = (K − 1)!
(13)

Hence the duplication factor for log p(xσt |X−Πσt
)

is computed as (N − K)!(K − 1)!, which is the
coefficient of the expected log-likelihood function
of u-PMLM denoted in Equation 10. Thus we
conclude that Equation 10 is equivalent to Equation
8, where the constant C = (N + 1)!.

B Generation Examples of u-PMLM and
BERT

We show more examples of the text generated by
u-PMLM-A and BERT respectively. Note that we
do not manually select examples. Instead, these
examples are picked randomly for fair comparison.

Below are texts generated by u-PMLM-A:

1. Tom is a cat and Jerry is a mouse . Though
initially wary that he might steal the pie , Jerry
eventually admits his fears . Tom ’ s father ,
Selma , is upset when the cat is not present .
She tries making a play about the pie but the
girl ignores her and insists that she will be
glad if he ’ s able to steal the pie . Tom and
Jerry become good friends in the end .

2. Tom is a cat and Jerry is a mouse . “ Jerry
and Tom meet again in a restaurant and in
a confrontation Tom tries to call the house
police . Jerry ’ s neighbor Tom Martin (Tom
Lee) finds them flirting by taking Jerry , but
Tom finds out . With Jerry ’ s help Tom gets
their hand together in a car wash and the two
have a date . Tom and Jerry become good
friends in the end .

3. Tom is a cat and Jerry is a mouse . When
the kids get their first game of cricket at his
home , he has him as catcher . When all of the
teams are on the field except the school cricket
player , he takes part in every game , which is
always the cricket . He later breaks his leg on
the last day of cricket and falls down a ladder
. Tom and Jerry become good friends in the
end .

4. Tom is a cat and Jerry is a mouse . The two
start off on a fishing trip together to see what
their parents would think of them . The boys

first discover a bad fish on the ocean and de-
cide to try the game . A boathouse is built in
town where they see a big picture of Tom ’ s
grandfather . The boys fight it out by chance
, and Tom and Jerry become good friends in
the end .

5. Tom is a cat and Jerry is a mouse . This
makes Tom very hard to understand why he
and the other citizens like him , so he tries to
have to get rid of the mouse . His best friend
, Pete , tries to keep his dog quiet about this ,
even while Jerry and Marge insist they are just
starting on a date due to Tom ’ s dog . Tom
and Jerry become good friends in the end .

Below are texts generated by BERT:

1. Tom is a cat and Jerry is a mouse . “ That
same month the two characters were por-
trayed as their characters at the NBC se-
ries The Office , with the character played
by Critrean Figgins and the mouse played by
the cat . The two characters make a romantic
connection and meet in the end of the episode

” When We Were Meeted Together , ” seeing
why Tom and Jerry become good friends in
the end .

2. Tom is a cat and Jerry is a mouse . . . And
it ’ s about when Tom is in trouble and he
becomes frustrated when everything gets up-
setting . I make my own movie . . . But I do
not want to be a film so sad or about what
I like about a kid ’ s life . I want to make a
movie that is more real and Tom and Jerry
become good friends in the end .

3. Tom is a cat and Jerry is a mouse . “ On
August 7 , 1999 , DeLanto started a Twitter
account , which included an online forum ad-
dress on NBC ’ s show 30 Rock through his
account of his life on stage and on the Internet
. During 2008 , he also posted on his personal
blog a message saying ” This world ’ s really
getting bigger . Tom and Jerry become good
friends in the end .

4. Tom is a cat and Jerry is a mouse . He is a
cat and Tom is a mouse . At McKinley High
School , Tom enters the Class 3A , and then
is elected President of High School (H . F
. R .) , the district ’ s popular high school .
He becomes the principal and a student ’ s

274

supervisor at the High School in 2004 . Tom
and Jerry become good friends in the end .

5. Tom is a cat and Jerry is a mouse . In April
1997 , Jack was murdered and he and Jack
went on a similar out of wedlock . Tom even-
tually had a teenage son named Tim . In the
pilot episode , Tom is shot in a car crash , and
eventually re @ - @ takes his life after an-
other accident , giving him a more ” normal

” appearance . Tom and Jerry become good
friends in the end .

