
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 2650–2663
July 5 - 10, 2020. c©2020 Association for Computational Linguistics

2650

Contextual Embeddings: When Are They Worth It?

Simran Arora∗, Avner May∗, Jian Zhang, Christopher Ré
Stanford Univeristy

{simarora, avnermay, zjian, chrismre}@cs.stanford.edu

Abstract

We study the settings for which deep con-
textual embeddings (e.g., BERT) give large
improvements in performance relative to
classic pretrained embeddings (e.g., GloVe),
and an even simpler baseline—random word
embeddings—focusing on the impact of the
training set size and the linguistic properties
of the task. Surprisingly, we find that both of
these simpler baselines can match contextual
embeddings on industry-scale data, and often
perform within 5 to 10% accuracy (absolute)
on benchmark tasks. Furthermore, we iden-
tify properties of data for which contextual
embeddings give particularly large gains: lan-
guage containing complex structure, ambigu-
ous word usage, and words unseen in training.

1 Introduction

In recent years, rich contextual embeddings such as
ELMo (Peters et al., 2018) and BERT (Devlin et al.,
2018) have enabled rapid progress on benchmarks
like GLUE (Wang et al., 2019a) and have seen
widespread industrial use (Pandu Nayak, 2019).
However, these methods require significant com-
putational resources (memory, time) during pre-
training, and during downstream task training and
inference. Thus, an important research problem is
to understand when these contextual embeddings
add significant value vs. when it is possible to use
more efficient representations without significant
degradation in performance.

As a first step, we empirically compare the per-
formance of contextual embeddings with classic
embeddings like word2vec (Mikolov et al., 2013)
and GloVe (Pennington et al., 2014). To further
understand what performance gains are attributable
to improved embeddings vs. the powerful down-
stream models that leverage them, we also com-
pare with a simple baseline—fully random embed-

∗Equal contribution.

dings—which encode no semantic or contextual
information whatsoever. Surprisingly, we find that
in highly optimized production tasks at a major
technology company, both classic and random em-
beddings have competitive (or even slightly better!)
performance than the contextual embeddings.1,2

To better understand these results, we study the
properties of NLP tasks for which contextual em-
beddings give large gains relative to non-contextual
embeddings. In particular, we study how the
amount of training data, and the linguistic prop-
erties of the data, impact the relative performance
of the embedding methods, with the intuition that
contextual embeddings should give limited gains
on data-rich, linguistically simple tasks.

In our study on the impact of training set size,
we find in experiments across a range of tasks that
the performance of the non-contextual embeddings
(GloVe, random) improves rapidly as we increase
the amount of training data, often attaining within
5 to 10% accuracy of BERT embeddings when the
full training set is used. This suggests that for many
tasks these embeddings could likely match BERT
given sufficient data, which is precisely what we ob-
serve in our experiments with industry-scale data.
Given the computational overhead of contextual
embeddings, this exposes important trade-offs be-
tween the computational resources required by the
embeddings, the expense of labeling training data,
and the accuracy of the downstream model.

To better understand when contextual embed-
dings give large boosts in performance, we identify
three linguistic properties of NLP tasks which help
explain when these embeddings will provide gains:

• Complexity of sentence structure: How inter-
dependent are different words in a sentence?
1This aligns with recent observations from experiments

with classic word embeddings at Apple (Ré et al., 2020).
2These tasks are proprietary, so we share these results

anecdotally as motivation for our study.

2651

• Ambiguity in word usage: Are words likely to
appear with multiple labels during training?

• Prevalence of unseen words: How likely is en-
countering a word never seen during training?

Intuitively, these properties distinguish between
NLP tasks involving simple and formulaic text (e.g.,
assistant commands) vs. more unstructured and lex-
ically diverse text (e.g., literary novels). We show
on both sentiment analysis and NER tasks that con-
textual embeddings perform significantly better on
more complex, ambiguous, and unseen language,
according to proxies for these properties. Thus,
contextual embeddings are likely to give large gains
in performance on tasks with a high prevalence of
this type of language.

2 Background

We discuss the different types of word embeddings
we compare in our study: contextual pretrained em-
beddings, non-contextual pretrained embeddings,
and random embeddings; we also discuss the rela-
tive efficiency of these embedding methods, both in
terms of computation time and memory (Sec. 2.1).

Pretrained contextual embeddings Recent
contextual word embeddings, such as BERT (De-
vlin et al., 2018) and XLNet (Yang et al., 2019),
consist of multiple layers of transformers which
use self-attention (Vaswani et al., 2017). Given a
sentence, these models encode each token into a
feature vector which incorporates information from
the token’s context in the sentence.

Pretrained non-contextual embeddings Non-
contextual word embeddings such as GloVe (Pen-
nington et al., 2014), word2vec (Mikolov et al.,
2013), and fastText (Mikolov et al., 2018) encode
each word in a vocabulary as a vector; intuitively,
this vector is meant to encode semantic informa-
tion about a word, such that similar words (e.g.,
synonyms) have similar embedding vectors. These
embeddings are pretrained from large language cor-
pora, typically using word co-occurrence statistics.

Random embeddings In our study, we consider
random embeddings (e.g., as in Limsopatham and
Collier (2016)) as a simple and efficient baseline
that requires no pretraining. Viewing word embed-
dings as n-by-d matrices (n: vocabulary size, d:
embedding dimension), we consider embedding
matrices composed entirely of random values. To
reduce the memory overhead of storing these n · d

random values to O(n), we use circulant random
matrices (Yu et al., 2017) as a simple and efficient
approach (for more details, see Appendix A.1).3,4

2.1 System Efficiency of Embeddings

We discuss the computational and memory require-
ments of the different embedding methods, focus-
ing on downstream task training and inference.5

Computation time For deep contextual embed-
dings, extracting the word embeddings for tokens
in a sentence requires running inference through
the full network, which takes on the order of 10
ms on a GPU. Non-contextual embeddings (e.g.,
GloVe, random) require negligible time (O(d)) to
extract an embedding vector.

Memory Using contextual embeddings for
downstream training and inference requires stor-
ing all the model parameters, as well as the model
activations during training if the embeddings are
being fine-tuned (e.g., 440 MB to store BERTBASE
parameters, and on the order of 5-10 GB to store ac-
tivations). Pretrained non-contextual embeddings
(e.g., GloVe) require O(nd) to store a n-by-d em-
bedding matrix (e.g., 480 MB to store a 400k by
300 GloVe embedding matrix). Random embed-
dings take O(1) memory if only the random seed
is stored, or O(n) if circulant random matrices are
used (e.g., 1.6 MB if n = 400k).

3 Experiments

We provide an overview of our experimental pro-
tocols (Section 3.1), the results from our study on
the impact of training set size (Section 3.2), and
the results from our linguistic study (Section 3.3).
We show that the gap between contextual and non-
contextual embeddings often shrinks as the amount
of data increases, and is smaller on language that
is simpler based on linguistic criteria we identify.

3.1 Experimental Details

To study the settings in which contextual em-
beddings give large improvements, we compare

3Note that one could also simply store the random seed,
though this requires regenerating the embedding matrix every
time it is accessed.

4We provide an efficient implementation of circulant ran-
dom embedding matrices here: https://github.com/
HazyResearch/random_embedding.

5Pretrained contextual and non-contextual embeddings
also require significant computational resources during pre-
training. For example training BERTBASE takes 4 days on 16
TPU chips.

https://github.com/HazyResearch/random_embedding
https://github.com/HazyResearch/random_embedding

2652

10−2 10−1 100

Fraction of Training Data

0.4

0.6

0.8

F
1

S
co

re

NER (CoNLL-2003)

Random

GloVe

BERT

10−2 10−1 100

Fraction of Training Data

0.4

0.6

0.8

A
cc

u
ra

cy

Sentiment (SST)

Random

GloVe

BERT

Figure 1: NER (CoNLL-2003; left), and sentiment
analysis (SST; right) performance, as a function of the
fraction of the training set used. As the amount of train-
ing data increases, the non-contextual embedding per-
formance improves quickly, generally narrowing the
gap with the contextual embeddings.

them to GloVe and random embeddings across a
range of named entity recognition (NER) (Tjong
Kim Sang and De Meulder, 2003), sentiment anal-
ysis (Kim, 2014), and natural language understand-
ing (Wang et al., 2019a) tasks. We choose these
lexically diverse tasks as examples of word, sen-
tence, and sentence-pair classification tasks, re-
spectively. For our embeddings, we consider 768-
dimensional pretrained BERTBASE word embed-
dings, 300-dimensional publicly available GloVe
embeddings, and 800-dimensional random circu-
lant embeddings. We keep the embedding parame-
ters fixed during training for all embedding types
(no fine-tuning), to isolate the benefits of pretrain-
ing from the benefits of task training. We use a
CNN model (Kim, 2014) for sentiment analysis
and a BiLSTM (Akbik et al., 2018; Wang et al.,
2019a) for the NER and General Language Un-
derstanding Evaluation (GLUE) tasks. For more
details on the tasks, models, and training protocols,
please see Appendix A.

3.2 Impact of Training Data Volume
We show that the amount of downstream training
data is a critical factor in determining the rela-
tive performance of contextual vs. non-contextual
embeddings. In particular, we show in represen-
tative tasks in Figure 1 that the performance of
the non-contextual embedding models improves
quickly as the amount of training data is increased
(plots for all tasks in Appendix B).6 As a result
of this improvement, we show in Table 1 that
across tasks when the full training set is used, the
non-contextual embeddings can often (1) perform
within 10% absolute accuracy of the contextual

6We provide theoretical support for why random embed-
dings perform strongly given sufficient data in Appendix B.3.

Task Performance gap Sample
complexity ratio

B R-B G-B R/B G/B
NER CoNLL 94.8 -9.1 -2.7 16 4

Sent.

TREC 95.8 -10.3 -6.0 4 4
MPQA 89.6 -4.7 -0.9 16 1
CR 88.5 -5.0 -3.5 16 4
SUBJ 97.7 -8.7 -3.3 256 16
SST 91.6 -11.2 -6.4 256 64
MR 85.9 -13.4 -6.9 256 16

GLUE

RTE 61.0 -1.8 -2.5 1 64
MRPC 84.8 -8.8 -6.9 16 4
QQP 86.5 -9.2 -6.8 16 16
CoLA 51.7 -34.6 -40.1 64 256
STS-B 85.6 -29.1 -19.8 64 16
QNLI 84.6 -15.8 -9.5 64 16
MNLI 78.8 -17.1 -12.0 64 16
SST 91.3 -15.9 -12.8 256 64

Table 1: Performance and sample complexity of ran-
dom (R) and GloVe (G) relative to BERT (B) for
NER, sentiment analysis (Sent.), and language un-
derstanding (GLUE) tasks. Second column shows
BERT accuracy; third/fourth columns show the accu-
racy gap between BERT and random/GloVe; fifth/sixth
columns show sample complexity ratios, the largest
n ∈ {1, 4, 16, 64, 256} for which BERT outperforms
random/GloVe when trained on n-times less data. We
observe that non-contextual embeddings can often (1)
perform within 10% absolute accuracy of the contex-
tual embeddings, and (2) match the performance of con-
textual embeddings which are trained on 1x-16x less
data. This sheds light on a tradeoff between the up-
front cost of labeling training data and the inference-
time computational cost of the embeddings.

embeddings, and (2) match the performance of
the contextual embeddings trained on 1x-16x less
data, while also being orders of magnitude more
computationally efficient. In light of this, ML prac-
titioners may find that for certain real-world tasks
the large gains in efficiency are well worth the cost
of labeling more data.

Specifically, in this table we show for each task
the difference between the accuracies attained by
BERT vs. GloVe and random (note that random
sometimes beats GloVe!), as well as the largest
integer n ∈ {1, 4, 16, 64, 256} such that BERT
trained on 1

n of the training set still outperforms
non-contextual embeddings trained on the full set.

3.3 Study of Linguistic Properties

In this section, we aim to identify properties of
the language in a dataset for which contextual em-
beddings perform particularly well relative to non-
contextual approaches. Identifying such properties
would allow us to determine whether a new task is

2653

likely to benefit from contextual embeddings.
As a first step in our analysis, we evaluate the

different embedding types on the GLUE Diagnos-
tic Dataset (Wang et al., 2019a). This task defines
four categories of linguistic properties; we observe
that the contextual embeddings performed similarly
to the non-contextual embeddings for three cate-
gories, and significantly better for the predicate-
argument structure category (Matthews correlation
coefficients of .33, .20, and .20 for BERT, GloVe,
and random, respectively. See Appendix C.2.1
for more detailed results). This category requires
understanding how sentence subphrases are com-
posed together (e.g., prepositional phrase attach-
ment, and identifying a verb’s subject and object).
Motivated by the observation that contextual em-
beddings are systematically better on specific types
of linguistic phenomena, we work to identify sim-
ple and quantifiable properties of a downstream
task’s language which correlate with large boosts
in performance from contextual embeddings.

In the context of both word-level (NER) and
sentence-level (sentiment analysis) classification
tasks, we define metrics that measure (1) the com-
plexity of text structure, (2) the ambiguity in word
usage, and (3) the prevalence of unseen words (Sec-
tion 3.3.1), and then show that contextual embed-
dings attain significantly higher accuracy than non-
contextual embeddings on inputs with high metric
values (Section 3.3.2, Table 2).

3.3.1 Metric Definitions

We now present our metric definitions for NER and
sentiment analysis, organized by the above three
properties (detailed definitions in Appendix C).

Complexity of text structure We hypothesize
that language with more complex internal structure
will be harder for non-contextual embeddings. We
define the metrics as follows:

• NER: We consider the number of tokens
spanned by an entity as its complexity metric
(e.g., “George Washington” spans 2 tokens), as
correctly labeling a longer entity requires under-
standing the relationships between the different
tokens in the entity name.

• Sentiment analysis: We consider the average
distance between pairs of dependent tokens in a
sentence’s dependency parse as a measure of the
sentence’s complexity, as long-range dependen-
cies are typically a challenge for NLP systems.

Ambiguity in word usage We hypothesize that
non-contextual embeddings will perform poorly
in disambiguating words that are used in multiple
different ways in the training set. We define the
metrics as follows:

• NER: We consider the number of labels (person,
location, organization, miscellaneous, other) a to-
ken appears with in the training set as a measure
of its ambiguity (e.g., “Washington” appears as
a person, location, and organization in CoNLL-
2003).

• Sentiment analysis: As a measure of a sen-
tence’s ambiguity, we take the average over the
words in the sentence of the probability that the
word is positive in the training set, and compute
the entropy of a coin flip with this probability.7

Prevalence of unseen words We hypothesize
that contextual embeddings will perform signifi-
cantly better than non-contextual embeddings on
words which do not appear at all in the training set
for the task. We define the following metrics:

• NER: For a token in the NER input, we consider
the inverse of the number of times it was seen in
the training set (letting 1/0 :=∞).

• Sentiment analysis: Given a sentence, we con-
sider as our metric the fraction of words in the
sentence that were never seen during training.

3.3.2 Empirical validation of metrics
In Table 2 we show that for each of the metrics
defined above, the accuracy gap between BERT
and random embeddings is larger on inputs for
which the metrics are large. In particular, we split
each of the task validation sets into two halves,
with points with metric values below the median
in one half, and above the median in the other. We
see that in 19 out of 21 cases, the accuracy gap
between BERT and random embeddings is larger
on the slice of the validation set corresponding to
large metric values, validating our hypothesis that
contextual embeddings provide important boosts
in accuracy on these points.

In Appendix C.2.2, we present a similar table
comparing the performance of BERT and GloVe
embeddings. We see that the gap between GloVe
and BERT errors is larger above the median than
below it in 11 out of 14 of the complexity and am-

7For sentiment tasks with C-labels (C = 6 for the TREC
dataset), we consider the entropy of the average label distribu-
tion 1

n

∑n
i=1 p(y|wi) ∈ RC over the sentence words wi.

2654

Complexity Ambiguity Unseen

Task Abs. Rel. Abs. Rel. Abs. Rel.
NER (CoNLL) +4.6 1.4 +7.7 2.0 +5.0 1.4
Sent. (MR) -5.4 0.7 +3.3 1.3 +1.2 1.1
Sent. (SUBJ) -1.8 0.8 +6.7 2.3 +0.9 1.1
Sent. (CR) +0.6 1.1 +3.0 1.8 +4.1 2.4
Sent. (SST) +7.4 2.1 +8.7 2.4 +2.3 1.2
Sent. (TREC) +5.1 1.7 +5.9 1.8 +4.4 1.5
Sent. (MPQA) +7.9 13.5 +7.1 12.4 +1.3 1.4

Table 2: For our complexity, ambiguity, and unseen
prevalence metrics, we slice the validation set using
the median metric value, and compute the average er-
ror rates for BERT and random on each slice. We show
that the gap between BERT and random errors is larger
on the slice above the median than below it in 19 out of
21 cases, in absolute (Abs.) and relative (Rel.) terms.

biguity results, which is consistent with our hypoth-
esis that context is helpful for structurally complex
and ambiguous language. However, we observe
that GloVe and BERT embeddings—which can
both leverage pretrained knowledge about unseen
words—perform relatively similarly to one another
above and below the median for the unseen metrics.

4 Related Work

The original work on ELMo embeddings (Peters
et al., 2018) showed that the gap between contex-
tual and non-contextual embeddings narrowed as
the amount of training data increased. Our work
builds on these results by additionally comparing
with random embeddings, and by studying the lin-
guistic properties of tasks for which the contextual
embeddings give large gains.

Our work is not the first to study the downstream
performance of embeddings which do not require
any pretraining. For example, in the context of
neural machine translation (NMT) it is well-known
that randomly-initialized embeddings can attain
strong performance (Wu et al., 2016; Vaswani et al.,
2017); the work of Qi et al. (2018) empirically com-
pares the performance of pretrained and randomly-
initialized embeddings across numerous languages
and dataset sizes on NMT tasks, showing for ex-
ample that the pretrained embeddings typically per-
form better on similar language pairs, and when the
amount of training data is small (but not too small).
Furthermore, as mentioned in Section 2, random
embeddings were considered as a baseline by Lim-
sopatham and Collier (2016), to better understand
the gains from using generic vs. domain-specific
word embeddings for text classification tasks. In
contrast, our goal for using random embeddings in

our study was to help clarify when and why pre-
training gives gains, and to expose an additional
operating point in the trade-off space between com-
putational cost, data-labeling cost, and downstream
model accuracy.

5 Conclusion

We compared the performance of contextual em-
beddings with non-contextual pretrained embed-
dings and with an even simpler baseline—random
embeddings. We showed that these non-contextual
embeddings perform surprisingly well relative to
the contextual embeddings on tasks with plentiful
labeled data and simple language. While much
recent and impressive effort in academia and in-
dustry has focused on improving state-of-the-art
performance through more sophisticated, and thus
increasingly expensive, embedding methods, this
work offers an alternative perspective focused on
realizing the trade-offs involved when choosing or
designing embedding methods. We hope this work
inspires future research on better understanding the
differences between embedding methods, and on
designing simpler and more efficient models.

Acknowledgments

We gratefully acknowledge the support of
DARPA under Nos. FA87501720095 (D3M),
FA86501827865 (SDH), and FA86501827882
(ASED); NIH under No. U54EB020405 (Mo-
bilize), NSF under Nos. CCF1763315 (Be-
yond Sparsity), CCF1563078 (Volume to Ve-
locity), and 1937301 (RTML); ONR under No.
N000141712266 (Unifying Weak Supervision); the
Moore Foundation, NXP, Xilinx, LETI-CEA, In-
tel, IBM, Microsoft, NEC, Toshiba, TSMC, ARM,
Hitachi, BASF, Accenture, Ericsson, Qualcomm,
Analog Devices, the Okawa Foundation, Ameri-
can Family Insurance, Google Cloud, Swiss Re,
the Stanford Graduate Fellowship in Science and
Engineering, and members of the Stanford DAWN
project: Teradata, Facebook, Google, Ant Finan-
cial, NEC, VMWare, and Infosys. The U.S. Gov-
ernment is authorized to reproduce and distribute
reprints for Governmental purposes notwithstand-
ing any copyright notation thereon. Any opinions,
findings, and conclusions or recommendations ex-
pressed in this material are those of the authors
and do not necessarily reflect the views, policies,
or endorsements, either expressed or implied, of
DARPA, NIH, ONR, or the U.S. Government.

2655

References
Alan Akbik, Tanja Bergmann, Duncan Blythe, Kashif

Rasul, Stefan Schweter, and Roland Vollgraf. 2019.
FLAIR: an easy-to-use framework for state-of-the-
art NLP. In NAACL-HLT (Demonstrations), pages
54–59. Association for Computational Linguistics.

Alan Akbik, Duncan Blythe, and Roland Vollgraf.
2018. Contextual string embeddings for sequence
labeling. In COLING.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. arXiv preprint arXiv:1810.04805.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In EMNLP.

Nut Limsopatham and Nigel Collier. 2016. Modelling
the combination of generic and target domain em-
beddings in a convolutional neural network for sen-
tence classification. In BioNLP@ACL, pages 136–
140. Association for Computational Linguistics.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Tomas Mikolov, Edouard Grave, Piotr Bojanowski,
Christian Puhrsch, and Armand Joulin. 2018. Ad-
vances in pre-training distributed word representa-
tions. In LREC.

Pandu Nayak. 2019. Understanding searches better
than ever before. [Online; published 25-Oct-2019;
accessed 6-Dec-2019].

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. GloVe: Global vectors for word rep-
resentation. In EMNLP.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In NAACL-HLT.

Ye Qi, Devendra Singh Sachan, Matthieu Felix, Sar-
guna Padmanabhan, and Graham Neubig. 2018.
When and why are pre-trained word embeddings
useful for neural machine translation? In NAACL-
HLT (2), pages 529–535. Association for Computa-
tional Linguistics.

Carl Edward Rasmussen and Christopher K. I.
Williams. 2006. Gaussian processes for machine
learning. Adaptive computation and machine learn-
ing. MIT Press.

Christopher Ré, Feng Niu, Pallavi Gudipati, and
Charles Srisuwananukorn. 2020. Overton: A
data system for monitoring and improving machine-
learned products. In CIDR.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
NAACL-HLT.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NeurIPS.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2019a.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In ICLR.

Alex Wang, Ian F. Tenney, Yada Pruksachatkun,
Katherin Yu, Jan Hula, Patrick Xia, Raghu Pappa-
gari, Shuning Jin, R. Thomas McCoy, Roma Pa-
tel, Yinghui Huang, Jason Phang, Edouard Grave,
Haokun Liu, Najoung Kim, Phu Mon Htut, Thibault
Févry, Berlin Chen, Nikita Nangia, Anhad Mo-
hananey, Katharina Kann, Shikha Bordia, Nicolas
Patry, David Benton, Ellie Pavlick, and Samuel R.
Bowman. 2019b. jiant 1.2: A software toolkit
for research on general-purpose text understanding
models. http://jiant.info/.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. 2016. Google’s neural machine
translation system: Bridging the gap between hu-
man and machine translation. arXiv preprint
arXiv:1609.08144.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Ruslan Salakhutdinov, and Quoc V Le.
2019. XLNet: Generalized autoregressive pretrain-
ing for language understanding. arXiv preprint
arXiv:1906.08237.

Felix X. Yu, Aditya Bhaskara, Sanjiv Kumar, Yunchao
Gong, and Shih-Fu Chang. 2017. On binary embed-
ding using circulant matrices. JMLR, 18(1):5507–
5536.

Felix X Yu, Sanjiv Kumar, Henry Rowley, and Shih-Fu
Chang. 2015. Compact nonlinear maps and circu-
lant extensions. arXiv preprint arXiv:1503.03893.

https://www.blog.google/products/search/search-language-understanding-bert/
https://www.blog.google/products/search/search-language-understanding-bert/
http://jiant.info/

2656

A Experimental Details

We now describe the embeddings (Appendix A.1),
tasks (Appendix A.2), and models (Appendix A.3)
we use in our experiments in more detail.

A.1 Embeddings

We compare the performance of BERT contex-
tual embeddings with GloVe embeddings and
random embeddings. We specifically use 768-
dimensional BERTBASE WordPiece embeddings,
300-dimensional GloVe embeddings, and 800-
dimensional random embeddings. We freeze each
set of embeddings prior to training, and do not
fine-tune the embeddings during training. The ran-
dom embeddings are normalized to have the same
Frobenius norm as the GloVe embeddings. We now
describe how we use circulant matrices to reduce
the memory requirement for the random embed-
dings.

Circulant Random Embeddings To store a
random n-by-d matrix in O(n) memory instead of
O(nd), we use random circulant matrices (Yu et al.,
2017). Specifically, we split the n-by-d matrix
into n

d disjoint d-by-d sub-matrices (assuming for
simplicity that d divides n evenly), where each sub-
matrix is equal to CD, where C = circ(c) ∈ Rd×d
is a circulant matrix based on a random Gaussian
vector c ∈ Rd, and D = diag(r) ∈ Rd×d is a
diagonal matrix based on a random Radamacher
vector r ∈ {−1,+1}d. Note that a circulant matrix
circ(c) is defined as follows:

circ(c) :=

c0 cd . . . c2 c1
c1 c0 . . . c3 c2

.
.

cd−1 cd−2 . . . c0 cd
cd cd−1 . . . c1 c0

 .

Random circulant embeddings have been used in
the kernel literature to make kernel approximation
methods more efficient (Yu et al., 2015). For down-
stream training and inference, one can simply store
the d-dimensional c and r vectors for each of the
n
d disjoint d-by-d sub-matrices, taking a total of
O(n) memory. Alternatively, one can simply store
a single random seed (O(1) memory), and these
c, r vectors can be regenerated on the fly each time
a row of the embedding matrix is accessed. Note
that in addition to being very memory efficient, ran-
dom embeddings avoid the expensive pretraining
process over a large language corpus.

A.2 Tasks

We perform evaluations on three types of standard
downstream NLP tasks: named entity recognition
(NER), sentiment analysis, and natural language
understanding. NER involves classifying each to-
ken in the input text as an entity or a non-entity,
and further classifying the entity type for identified
entities. We evaluate on the CoNLL-2003 bench-
mark dataset, in which each token is assigned a
label of “O” (non-entity), “PER” (person), “ORG”
(organization), “LOC” (location), or “MISC” (mis-
cellaneous). Sentiment analysis involves assigning
a classification label at the sentence level corre-
sponding to the sentiment of the sentence. We
evaluate on five binary sentiment analysis bench-
mark datasets including MR, MPQA, CR, SST, and
SUBJ. We also evaluate on the benchmark TREC
dataset, which assigns one of six labels to each in-
put example. For natural language understanding,
we use the standard GLUE benchmark tasks, and
the GLUE diagnostic task.

A.3 Downstream Task Models

We use the following models and training protocols
for the NER, sentiment analysis, and GLUE tasks:

NER: We use a BiLSTM task model with a CRF
decoding layer, and we use the default hyperparam-
eters from the flair (Akbik et al., 2019) repository:8

256 hidden units, 32 batch size, 150 max epochs,
and a stop-condition when the learning rate de-
creases below 0.0001 with a decay constant of 0.5
and patience of 4. In our evaluation, we report
micro-average F1-scores for this task.

Sentiment analysis: We use the architecture
and training protocol from Kim (2014), using a
CNN with 1 convolutional layer, 3 kernel sizes
in {3, 4, 5}, 100 kernels, 32 batch size, 100 max
epochs, and a constant learning rate. We report the
validation error rates in evaluations of each task.

GLUE: We use the Jiant (Wang et al., 2019b)
implementation of a BiLSTM with 1024 hidden
dimensions, 2 layers, 32 batch size, and a stop-
condition when the learning rate decreases below
0.000001 with a decay constant of 0.5 and patience
of 5. We consider the following task-specific per-
formance metrics: Matthews correlation for CoLA,
MNLI, and the diagnostic task, validation F1-score
for MRPC and QQP, and validation accuracy for
QNLI and RTE.

8https://github.com/zalandoresearch/
flair.

https://github.com/zalandoresearch/flair
https://github.com/zalandoresearch/flair

2657

B Impact of Training Data Volume

We now provide additional details regarding our
experiments on the impact of training set size on
performance (Appendix B.1), our complete set
of empirical results from these experiments (Ap-
pendix B.2), as well as theoretical support for the
strong performance of random embedding models
in these experiments, when trained with sufficient
downstream data (Appendix B.3).

B.1 Additional Experiment Details

For each task, we evaluate performance using five
fractions of the full training dataset, to understand
how the amount of training data affects perfor-
mance: { 1

44
, 1
43
, 1
42
, 1
41
, 1}. For each fraction c,

we randomly select a subset of the training set of
the corresponding size, and replicate this data 1/c
times; we then train models using this redundant
dataset, using the model architectures and training
protocols described in Appendix A.3. In down-
stream training we perform a seperate hyperparam-
eter sweep of the learning rate at each fraction of
the training data, and select the best learning rate
for each embedding type. We use the following
lists of learning rates for the different tasks:

• NER: {.003, .01, .03, .1, .3, 1, 3}.

• Sentiment analysis: {1e-5, 3e-5, 1e-4, 3e-4,
1e-3, 3e-2, 1e-2}.

• GLUE: {1e-6, 3e-6, 1e-5, 3e-5, 1e-4, 3e-4,
1e-3}.

B.2 Extended Results

In Figures 2 and 3, we show the performance of
random, GloVe, and BERT embeddings on all the
NER, sentiment analysis, and GLUE tasks, as we
vary the amount of training data. We can see that
across most of these results:

• Non-contextual embedding performance im-
proves quickly as the amount of training data
is increased.

• The gap between contextual and non-
contextual embeddings often shrinks as the
amount of training data is increased.

• There are many tasks for which random and
GloVe embeddings perform relatively simi-
larly to one another.

B.3 Theoretical Support for Random
Embedding Performance

To provide theoretical support for why, given suf-
ficient training data, a model trained with random
embeddings might match the performance of one
trained with pretrained embeddings, we consider
the simple setting of Gaussian process (GP) regres-
sion (Rasmussen and Williams, 2006). In particu-
lar, we assume that the prior covariance function for
the GP is determined by the pretrained embeddings,
and show that as the number of observed samples
from this GP grows, the posterior distribution gives
diminishing weight to the prior covariance function,
and eventually depends solely on the observed sam-
ples. Thus, if we were to calculate the posterior
distribution using an inaccurate prior covariance
function determined by random embeddings, this
posterior would approach the true posterior as the
number of observed samples grew.

More formally, for a fixed set of words
{w1, . . . , wn} with pretrained embeddings
{x1, . . . , xn} ⊂ Rd, we assume that the “true”
regression label vector y∗ ∈ Rn for these words is
sampled from a zero-mean multivariate Gaussian
distribution y∗ ∼ N (0,K), where the entries
Kij := k(xi, xj) of the covariance matrix K
are determined based on the similarity k(xi, xj)
between the pretrained embeddings xi, xj ∈ Rd
for words i and j.9 We then assume that we
observe m noisy samples (y1, . . . , ym) of the
“true” label vector y∗, where each yi ∈ Rn is
an independent sample from N (y∗, σ2I). To
summarize:

y∗ ∼ N (0,K),

y1, . . . , ym ∼ N (y∗, σ2I).

The question then becomes, what is the posterior
distribution for y∗ after observing (y1, . . . , ym)?
The closed form solution for this posterior is as
follows:

p(y∗ | y1, . . . , ym) = N (ȳm, K̄m), where

ȳm = K

(
K +

σ2

m
I

)−1(
1

m

m∑
i=1

yi

)
,

K̄m = K

(
K +

σ2

m
I

)−1
σ2

m
I.

Importantly, we observe that as m → ∞, that
ȳm → y∗ (because K(K + σ2

m I)−1 → I and
9As an example, we could have k(xi, xj) :=

exp
(
−‖xi − xj‖2/(2σ2)

)
be the Gaussian kernel.

2658

10−2 10−1 100

Fraction of Training Data

0.4

0.6

0.8

F
1

S
co

re

NER (CoNLL-2003)

Random

GloVe

BERT

10−2 10−1 100

Fraction of Training Data

0.65

0.70

0.75

0.80

0.85

A
cc

u
ra

cy

Sentiment (CR)

Random

GloVe

BERT

10−2 10−1 100

Fraction of Training Data

0.70

0.75

0.80

0.85

0.90

A
cc

u
ra

cy

Sentiment (MPQA)

Random

GloVe

BERT

10−2 10−1 100

Fraction of Training Data

0.6

0.7

0.8

A
cc

u
ra

cy

Sentiment (MR)

Random

GloVe

BERT

10−2 10−1 100

Fraction of Training Data

0.6

0.7

0.8

0.9

A
cc

u
ra

cy

Sentiment (SST)

Random

GloVe

BERT

10−2 10−1 100

Fraction of Training Data

0.7

0.8

0.9

A
cc

u
ra

cy

Sentiment (SUBJ)

Random

GloVe

BERT

10−2 10−1 100

Fraction of Training Data

0.4

0.6

0.8

A
cc

u
ra

cy

Sentiment (TREC)

Random

GloVe

BERT

Figure 2: Performance of random, GloVe, and BERT embeddings on the NER (top row) and sentiment analysis
(bottom three rows) tasks as we vary the amount of training data.

2659

10−2 10−1 100

Fraction of Training Data

0.1

0.2

0.3

0.4

0.5
M

at
th

ew
s

C
or

r.

GLUE (COLA)

Random

GloVe

BERT

10−2 10−1 100

Fraction of Training Data

0.4

0.5

0.6

0.7

0.8

A
cc

u
ra

cy

GLUE (MNLI)

Random

GloVe

BERT

10−2 10−1 100

Fraction of Training Data

0.70

0.75

0.80

0.85

F
1

an
d

A
cc

u
ra

cy
(A

v
g.

)

GLUE (MRPC)

Random

GloVe

BERT

10−2 10−1 100

Fraction of Training Data

0.6

0.7

0.8

A
cc

u
ra

cy

GLUE (QNLI)

Random

GloVe

BERT

10−2 10−1 100

Fraction of Training Data

0.65

0.70

0.75

0.80

0.85

F
1

an
d

A
cc

u
ra

cy
(A

v
g.

)

GLUE (QQP)

Random

GloVe

BERT

10−2 10−1 100

Fraction of Training Data

0.50

0.55

0.60

A
cc

u
ra

cy

GLUE (RTE)

Random

GloVe

BERT

10−2 10−1 100

Fraction of Training Data

0.6

0.7

0.8

0.9

A
cc

u
ra

cy

GLUE (SST)

Random

GloVe

BERT

10−2 10−1 100

Fraction of Training Data

0.2

0.4

0.6

0.8

P
ea

rs
on

an
d

S
p

ea
rm

an
C

or
r.

(A
v
g.

)

GLUE (STS-B)

Random

GloVe

BERT

Figure 3: Performance of random, GloVe, and BERT embeddings on GLUE tasks as we vary the amount of training
data.

2660

1
m

∑m
i=1 yi → y∗), and K̄m → 0. Thus, if we were

to compute the posterior distribution for this GP us-
ing an uninformative prior covariance function K ′

determined by random embeddings {x′1, . . . , x′n}
(K ′ij = k(x′i, x

′
j)), this posterior would approach

the posterior computed from the “true” prior co-
variance function K as the number of observations
m → ∞. Thus, GP regression with an informa-
tive prior derived from the pretrained embeddings
performs the same as GP regression with an unin-
formative prior derived from random embeddings,
as the number of observed samples approaches
infinity.

C Study of Linguistic Properties

We now describe in more detail how we define our
metrics for the three linguistic properties for both
NER and sentiment analysis tasks (Appendix C.1),
as well as provide extended empirical results from
our linguistic studies (Appendix C.2).

C.1 Linguistic Properties: Detailed
Definitions

We define the metrics in detail below for our three
linguistic properties: complexity of text structure
(Appendix C.1.1), ambiguity in word usage (Ap-
pendix C.1.2), and prevalence of unseen words
(Appendix C.1.3). To provide further intuition for
these metrics, in Figure 4 we present actual ex-
amples from the CoNLL-2003 NER task and the
CR sentiment analysis task for each of the metrics,
along with the errors made by each embedding type
on these examples.

C.1.1 Complexity of Text Structure
We define the following metrics for NER and senti-
ment analysis to measure the structural complexity
of an entity or sentence, respectively:

NER: For NER, we measure the linguistic com-
plexity of an entity in terms of the number of tokens
in the entity (e.g., “George Washington” spans 2
tokens), as correctly labeling a longer entity re-
quires understanding the relationships between the
different tokens in the entity name.

Sentiment analysis: For sentiment analysis, we
need a sentence-level proxy for structural complex-
ity; toward this end, we leverage the dependency
parse tree for each sentence in the dataset.10 In par-
ticular, we characterize a sentence as more struc-
turally complex if the average distance between

10We use the StanfordNLP dependency parser for our met-
ric: https://pypi.org/project/stanfordnlp/.

dependent words is higher. We consider this defi-
nition because long-range dependencies generally
require more contextual information to understand.
To avoid diluting the average dependency length,
we do not include dependencies where either the
head or the tail of the dependency is a punctuation
or a stop word.

As an example, consider the sentence “George
Washington, who was the first president of the
United States, was born in 1732”. In this sen-
tence, there is a dependence between “George” and
“born” of length 14, because there are 13 interven-
ing words or punctuations. This is a relatively large
gap between dependent words, and would increase
the average dependency length the sentence.

C.1.2 Ambiguity in Word Usage
The next linguistic property we consider is the de-
gree of ambiguity in word usage within a task. To
measure the degree of ambiguity in the language,
we define the following metrics in the context of
NER and sentiment analysis:

NER: For NER as a word-level classification
task, we consider the number of labels (person, lo-
cation, organization, miscellaneous, other) a token
appeared with in the training set as a measure of
its ambiguity (e.g., “Washington” appears as a per-
son, location, and organization in the CoNLL-2003
training set). For each token in the validation set,
we enumerate the number of tags it appears with in
the training set.

Sentiment analysis: For sentiment analysis, we
measure the ambiguity of a sentence by consider-
ing whether the words in the sentence generally
appear in positive or negative sentences in the train-
ing data. For the binary case, we take the average
over words in the sentence of the unigram prob-
ability that a word is positive, and then compute
the entropy of a coin flip with this probability of
being “heads”. More specifically, to compute the
unigram probability p(+1 |w) for a word w, we
measure the fraction of training sentences contain-
ing w which are positive. Our ambiguity metric is
then defined for a sentence S as

H

(
1

|S|
∑
w∈S

p(+1 |w)

)
,

where H(p) = −p log2(p) − (1 − p) log2(1 − p)
is the entropy of a coin flip with probability p. In-
tuitively, sentences with generally positive (or neg-
ative) words will have low entropy, and be easy to
classify even with non-contextual embeddings.

https://pypi.org/project/stanfordnlp/

2661

Figure 4: Examples from the CoNLL-2003 NER task (above) and the CR sentiment analysis task (below) validation
sets, to provide further intuition for the three linguistic properties. All of the examples above fall in the validation
set slices that have metric values above the median, and are thus considered relatively difficult examples according
to these linguistic metrics. For example, in the case of NER, (1) the “Federal Open Market Committee” is a
relatively long, 4-token entity, (2) “Buddy” and “Groom” are both tokens that were not seen during training, and
(3) “Washington” was seen in the training set with three different entity type labels (location, person, organization).
In the case of the sentiment analysis examples, (1) the complexity metric sentence has several long dependences
(lengths 3, 5, and 7) because it has numerous adjective, adverb, and noun modifiers, (2) the unseen metric sentence
has four words that were not seen during training (“anyhow”, “demerits”, “processor”, “variants”), and (3) the
ambiguity metric sentence has words that were mainly positive during training (“good”, “creative”), as well as
words which were mainly negative during training (“lack”). We use empty vs. filled-in squares of different colors
to show whether a given embedding type got an example correct vs. incorrect, respectively (see legend).

2662

Category BERT Random GloVe
LS 0.19 0.14 0.13

PAS 0.33 0.20 0.20
L 0.12 0.15 0.13

KCS 0.10 0.17 0.13
Overall 0.500 0.475 0.465

Table 3: The performance (Matthews correlation
coefficients) of BERT, random, and GloVe embed-
dings across the four linguistic categories defined by
the GLUE diagnostic task: lexical semantics (LS),
predicate-argument structure (PAS), logic (L), and
knowledge and common sense (KCS). We also include
the overall diagnostic performance.

For non-binary sentiment tasks with C-labels
(e.g., C = 6 for the TREC dataset), we con-
sider the entropy of the average label distribution
1
|S|
∑

w∈S p(y |w) ∈ RC over the words in the sen-
tence. Here, p(y |w) is defined as the fraction of
the sentences in the training set containing the word
w which had the label y. Note that for stop words
and punctuation, we always consider p(y |w) as
the uniform distribution over the set of possible
labels y (for both binary and non-binary classifica-
tion tasks).

C.1.3 Prevalence of Unseen Words

We define the following metrics for the prevalence
of unseen words for NER and sentiment analysis
tasks:

NER: For a word in the NER validation set, we
consider as our metric the inverse of the number
of times the word appeared in the training data
(letting 1/0 := ∞). We consider the inverse of
the number of training set appearances because
intuitively, if a word appears fewer times in the
training set, we expect it to be harder to correctly
classify this word at test time—especially for non-
contextual or random embeddings.

Sentiment analysis: For sentiment analysis,
given a sentence, we consider as our metric the
fraction of words in the sentence that were never
seen during training. More specifically, we count
the number of unseen words (that are not stop
words), and divide by the total number of words
in the sentence. Intuitively, sentences with many
unseen words will attain high values for this metric,
and will be difficult to classify correctly without
prior (i.e., pretrained) knowledge about these un-
seen words.

C.2 Extended Results
We present the detailed results from our evaluation
of the different embedding types on the GLUE
diagnostic dataset (Appendix C.2.1), and extended
validation of the linguistic properties we define in
Section 3.3 (Appendix C.2.2).

C.2.1 GLUE Diagnostic Results
The GLUE diagnostic task facilitates a fine-grained
analysis of a model’s strengths and weaknesses
in terms of how well the model handles different
linguistic phenomena. The task consists of 550 sen-
tence pairs which are classified as entailment, con-
tradiction, or neutral. The GLUE team curated the
sentence pairs to represent over 20 linguistic phe-
nomena, which are grouped in four top-level cate-
gories: lexical semantics (LS), predicate-argument
structure (PAS), logic (L), and knowledge and com-
mon sense (KCS). We follow the standard proce-
dure and use the model trained on the MNLI dataset
(using the random, GloVe, or BERT embeddings)
to evaluate performance on the diagnostic task. We
report the Matthews correlation coefficient (MCC)
performance of the different embedding types on
the four top-level categories in Table 3.

Our two key observations are: (1) the non-
contextual embeddings (random and GloVe) per-
form similarly to one another across all four
top-level categories; (2) the performance dif-
ference between contextual and non-contextual
embeddings is most stark for the predicate-
argument (PAS) category, which includes phe-
nomena that require understanding the interac-
tions between the different subphrases in a sen-
tence. Within PAS, the BERT embeddings attain
a 10+ point improvement in MCC over random
embeddings for sentences reflecting the follow-
ing phenomena: Relative Clauses/Restrictivity, Da-
tives, Nominalization, Core Arguments, Core Ar-
guments/Anaphora/Coreference, and Prepositional
Phrases.

C.2.2 GloVe vs. BERT Results
In Table 4, we replicate the results from Table 2, but
instead of comparing BERT embeddings to random
embeddings, we compare them to GloVe embed-
dings. We can see that for 11 out of 14 cases for the
complexity and ambiguity metrics, the gap between
contextual (BERT) and non-contextual (GloVe) per-
formance is larger for the validation slices above
the median than below; this aligns with our re-
sults comparing random and BERT embeddings.

2663

Complexity Ambiguity Unseen

Task Abs. Rel. Abs. Rel. Abs. Rel.
NER (CoNLL) +6.7 4.0 +5.9 3.3 -1.4 0.8
Sent. (MR) -0.6 0.9 +6.5 2.5 -1.0 0.9
Sent. (SUBJ) -1.8 0.6 +4.4 6.0 -1.3 0.6
Sent. (CR) +1.2 1.5 -2.4 0.4 0.0 1.0
Sent. (SST) +7.8 5.3 +6.0 3.2 -2.8 0.6
Sent. (TREC) +2.2 1.4 +8.1 4.1 +3.7 1.8
Sent. (MPQA) +6.6 -3.2 +2.9 -1.8 +0.4 3.0

Table 4: For our complexity, ambiguity, and unseen prevalence metrics, we slice the validation set using the
median metric value, and compute the average error rates for GloVe and BERT on each slice. We show that the
gap between GloVe and BERT errors is larger above than below the median in 11 out of 14 of the complexity and
ambiguity results both in absolute (Abs.) and relative (Rel.) terms; however, on the unseen metrics, this only holds
for 2 out of 7 cases, which suggests that GloVe embeddings are able to relatively effectively deal with unseen
words.

Interestingly, this is only the case for 2 out of 7
of the cases for the unseen metrics. This is likely
because both GloVe and BERT embeddings are
able to leverage pretrained semantic information
about unseen words to make accurate predictions
for them, and thus perform relatively similarly to
one another on unseen words.

