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Abstract

We present ConvLab-2, an open-source toolkit
that enables researchers to build task-oriented
dialogue systems with state-of-the-art models,
perform an end-to-end evaluation, and diag-
nose the weakness of systems. As the succes-
sor of ConvLab (Lee et al., 2019b), ConvLab-
2 inherits ConvLab’s framework but integrates
more powerful dialogue models and supports
more datasets. Besides, we have developed an
analysis tool and an interactive tool to assist re-
searchers in diagnosing dialogue systems. The
analysis tool presents rich statistics and sum-
marizes common mistakes from simulated di-
alogues, which facilitates error analysis and
system improvement. The interactive tool pro-
vides a user interface that allows developers to
diagnose an assembled dialogue system by in-
teracting with the system and modifying the
output of each system component.

1 Introduction

Task-oriented dialogue systems are gaining increas-
ing attention in recent years, resulting in a number
of datasets (Henderson et al., 2014; Wen et al.,
2017; Budzianowski et al., 2018b; Rastogi et al.,
2019) and a wide variety of models (Wen et al.,
2015; Peng et al., 2017; Lei et al., 2018; Wu et al.,
2019; Gao et al., 2019). However, very few open-
source toolkits provide full support to assembling
an end-to-end dialogue system with state-of-the-art
models, evaluating the performance in an end-to-
end fashion, and analyzing the bottleneck both qual-
itatively and quantitatively. To fill the gap, we have
developed ConvLab-2 based on our previous dia-
logue system platform ConvLab (Lee et al., 2019b).
ConvLab-2 inherits its predecessor’s framework
and extend it by integrating many recently pro-
posed state-of-the-art dialogue models. In addition,
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Figure 1: Framework of ConvLab-2. The top block
shows different approaches to build a dialogue system.

two powerful tools, namely the analysis tool and
the interactive tool, are provided for in-depth er-
ror analysis. ConvLab-2 will be the development
platform for Multi-domain Task-oriented Dialog
Challenge II track in the 9th Dialog System Tech-
nology Challenge (DSTC9)1.

As shown in Figure 1, there are many approaches
to building a task-oriented dialogue system, rang-
ing from pipeline methods with multiple compo-
nents to fully end-to-end models. Previous toolkits
focus on either end-to-end models (Miller et al.,
2017) or one specific component such as dialogue
policy (POL) (Ultes et al., 2017), while the others
toolkits that are designed for developers (Bock-
lisch et al., 2017; Papangelis et al., 2020) do not

1https://sites.google.com/dstc.
community/dstc9/home

https://sites.google.com/dstc.community/dstc9/home
https://sites.google.com/dstc.community/dstc9/home
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have state-of-the-art models integrated. ConvLab
(Lee et al., 2019b) is the first toolkit that provides
various powerful models for all dialogue compo-
nents and allows researchers to quickly assemble a
complete dialogue system (using a set of recipes).
ConvLab-2 inherits the flexible framework of Con-
vLab and imports recently proposed models that
achieve state-of-the-art performance. In addition,
ConvLab-2 supports several large-scale dialogue
datasets including CamRest676 (Wen et al., 2017),
MultiWOZ (Budzianowski et al., 2018b), DealOrN-
oDeal (Lewis et al., 2017), and CrossWOZ (Zhu
et al., 2020).

To support end-to-end evaluation, ConvLab-2
provides user simulators for automatic evaluation
and integrates Amazon Mechanical Turk for hu-
man evaluation, similar to ConvLab. Moreover,
it provides an analysis tool and a human-machine
interactive tool for diagnosing a dialogue system.
Researchers can perform quantitative analysis us-
ing the analysis tool. It presents useful statistics
extracted from the conversations between the user
simulator and the dialogue system. This infor-
mation helps reveal the weakness of the system
and signifies the direction for further improvement.
With the interactive tool, researchers can perform
qualitative analysis by deploying their dialogue
systems and conversing with the systems via the
webpage. During the conversation, the interme-
diate output of each component in a pipeline sys-
tem, such as the user dialogue acts and belief state,
are presented on the webpage. In this way, the
performance of the system can be examined, and
the prediction errors of those components can be
corrected manually, which helps the developers
identify the bottleneck component. The interactive
tool can also be used to collect real-time human-
machine dialogues and user feedback for further
system improvement.

2 ConvLab-2

2.1 Dialogue Agent

Each speaker in a conversation is regarded as an
agent. ConvLab-2 inherits and simplifies Con-
vLab’s framework to accommodate more compli-
cated dialogue agents (e.g., using multiple models
for one component) and more general scenarios
(e.g., multi-party conversations). Thanks to the
flexibility of the agent definition, researchers can
build an agent with different types of configura-
tions, such as a traditional pipeline method (as

shown in the first layer of the top block in Fig-
ure 1), a fully end-to-end method (the last layer),
and between (other layers) once instantiating cor-
responding models. Researchers can also freely
customize an agent, such as incorporating two di-
alogue systems into one agent to cope with mul-
tiple tasks. Based on the unified agent definition
that both dialogue systems and user simulators are
treated as agents, ConvLab-2 supports conversation
between two agents and can be extended to more
general scenarios involving three or more parties.

2.2 Models

ConvLab-2 provides the following models for every
possible component in a dialogue agent. Note that
compared to ConvLab, newly integrated models
in ConvLab-2 are marked in bold. Researchers
can easily add their models by implementing the
interface of the corresponding component. We will
keep adding state-of-the-art models to reflect the
latest progress in task-oriented dialogue.

2.2.1 Natural Language Understanding
The natural language understanding (NLU) com-
ponent, which is used to parse the other agent’s
intent, takes an utterance as input and outputs
the corresponding dialogue acts. ConvLab-2 pro-
vides three models: Semantic Tuple Classifier
(STC) (Mairesse et al., 2009), MILU (Lee et al.,
2019b), and BERTNLU. BERT (Devlin et al.,
2019) has shown strong performance in many
NLP tasks. Thus, ConvLab-2 proposes a new
BERTNLU model. BERTNLU adds two MLPs
on top of BERT for intent classification and slot
tagging, respectively, and fine-tunes all parame-
ters on the specified tasks. BERTNLU achieves
the best performance on MultiWOZ in comparison
with other models.

2.2.2 Dialogue State Tracking
The dialogue state tracking (DST) component up-
dates the belief state, which contains the constraints
and requirements of the other agent (such as a user).
ConvLab-2 provides a rule-based tracker that takes
dialogue acts parsed by the NLU as input.

2.2.3 Word-level Dialogue State Tracking
Word-level DST obtains the belief state directly
from the dialogue history. ConvLab-2 integrates
four models: MDBT (Ramadan et al., 2018),
SUMBT (Lee et al., 2019a), and TRADE (Wu
et al., 2019). TRADE generates the belief state
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from utterances using a copy mechanism and
achieves state-of-the-art performance on Multi-
WOZ.

2.2.4 Dialogue Policy
Dialogue policy receives the belief state and out-
puts system dialogue acts. ConvLab-2 provides a
rule-based policy, a simple neural policy that learns
directly from the corpus using imitation learning,
and reinforcement learning policies including RE-
INFORCE (Williams, 1992), PPO (Schulman et al.,
2017), and GDPL (Takanobu et al., 2019). GDPL
achieves state-of-the-art performance on Multi-
WOZ.

2.2.5 Natural Language Generation
The natural language generation (NLG) component
transforms dialogue acts into a natural language
sentence. ConvLab-2 provides a template-based
method and SC-LSTM (Wen et al., 2015).

2.2.6 Word-level Policy
Word-level policy directly generates a natural lan-
guage response (rather than dialogue acts) ac-
cording to the dialogue history and the belief
state. ConvLab-2 integrates three models: MDRG
(Budzianowski et al., 2018a), HDSA (Chen et al.,
2019), and LaRL (Zhao et al., 2019). MDRG is
the baseline model proposed by Budzianowski et al.
(2018b) on MultiWOZ, while HDSA and LaRL
achieve much stronger performance on this dataset.

2.2.7 User Policy
User policy is the core of a user simulator. It takes a
pre-set user goal and system dialogue acts as input
and outputs user dialogue acts. ConvLab-2 pro-
vides an agenda-based (Schatzmann et al., 2007)
model and neural network-based models including
HUS and its variational variants (Gür et al., 2018).
To perform end-to-end simulation, researchers can
equip the user policy with NLU and NLG compo-
nents to assemble a complete user simulator.

2.2.8 End-to-end Model
A fully end-to-end dialogue model receives the
dialogue history and generates a response in natu-
ral language directly. ConvLab-2 extends Sequic-
ity (Lei et al., 2018) to multi-domain scenarios:
when the model senses that the current domain has
switched, it resets the belief span, which records
information of the current domain. ConvLab-2 also
integrates DAMD (Zhang et al., 2019) which ob-
tains state-of-the-art results on MultiWOZ. As for

the DealOrNoDeal dataset, we provide the ROLL-
OUTS RL policy proposed by Lewis et al. (2017).

2.3 Datasets
Compared with ConvLab, ConvLab-2 can inte-
grate a new dataset more conveniently. For each
dataset, ConvLab-2 provides a unified data loader
that can be used by all the models, thus separating
data processing from the model definition. Cur-
rently, ConvLab-2 supports four task-oriented dia-
logue datasets, including CamRest676 (Wen et al.,
2017), MultiWOZ (Eric et al., 2019), DealOrN-
oDeal (Lewis et al., 2017), and CrossWOZ (Zhu
et al., 2020).

2.3.1 CamRest676
CamRest676 (Wen et al., 2017) is a Wizard-of-Oz
dataset, consisting of 676 dialogues in a restaurant
domain. ConvLab-2 offers an agenda-based user
simulator and a complete set of models for build-
ing a traditional pipeline dialogue system on the
CamRest676 dataset.

2.3.2 MultiWOZ
MultiWOZ (Budzianowski et al., 2018b) is a large-
scale multi-domain Wizard-of-Oz dataset. It con-
sists of 10,438 dialogues with system dialogue acts
and belief states. However, user dialogue acts are
missing, and belief state annotations and dialogue
utterances are noisy. To address these issues, Con-
vlab (Lee et al., 2019b) annotated user dialogue acts
automatically using heuristics. Eric et al. (2019)
further re-annotated the belief states and utterances,
resulting in the MultiWOZ 2.1 dataset.

2.3.3 DealOrNoDeal
DealOrNoDeal (Lewis et al., 2017) is a dataset of
human-human negotiations on a multi-issue bar-
gaining task. It contains 5,805 dialogues based on
2,236 unique scenarios. On this dataset, ConvLab-
2 implements ROLLOUTS RL (Lewis et al., 2017)
and LaRL (Zhao et al., 2019) models.

2.3.4 CrossWOZ
CrossWOZ (Zhu et al., 2020) is the first large-scale
Chinese multi-domain Wizard-of-Oz dataset pro-
posed recently. It contains 6,012 dialogues span-
ning over five domains. Besides dialogue acts and
belief states, the annotations of user states, which
indicate the completion of a user goal, are also
provided. ConvLab-2 offers a rule-based user sim-
ulator and a complete set of models for building a
pipeline system on the CrossWOZ dataset.
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Figure 2: Performance of the demo system in Section 3. Left: Success rate and inform F1 for each domain. Right:
Proportions of the dialogue loop in each domain.

Overall results:
Success Rate: 60.8%; inform F1: 44.5%

Most confusing user dialogue acts:
Request-Hotel-Post-?

- 34%: Request-Hospital-Post-?
- 32%: Request-Attraction-Post-?

Request-Hotel-Addr-?
- 29%: Request-Attraction-Addr-?
- 28%: Request-Restaurant-Addr-?

Request-Hotel-Phone-?
- 26%: Request-Restaurant-Phone-?
- 26%: Request-Attraction-Phone-?

Invalid system dialogue acts:
- 31%: Inform-Hotel-Parking
- 28%: Inform-Hotel-Internet

Redundant system dialogue acts:
- 34%: Inform-Hotel-Stars

Missing system dialogue acts:
- 25%: Inform-Hotel-Phone

Most confusing system dialogue acts:
Recommend-Hotel-Parking-yes

- 21%: Recommend-Hotel-Parking-none
- 18%: Inform-Hotel-Parking-none

Inform-Hotel-Parking-yes
- 17%: Inform-Hotel-Parking-none

Inform-Hotel-Stars-4
- 16%: Inform-Hotel-Internet-none

User dialogue acts that cause loop:
- 53% Request-Hotel-Phone-?
- 21% Request-Hotel-Post-?
- 14% Request-Hotel-Addr-?

Table 1: Comprehensive results (partial) of the demo
system in Section 3 for the Hotel domain. To save
space, only the most frequent errors are presented.

2.4 Analysis Tool

To evaluate a dialogue system quantitatively,
ConvLab-2 offers an analysis tool to perform an
end-to-end evaluation with a specified user simula-
tor and generate an HTML report which contains
rich statistics of simulated dialogues. Charts and
tables are used in the test report for better demon-
stration. Partial results of a demo system in Section
3 are shown in Figure 2 and Table 1. Currently, the
report contains the following pieces of information
for each task domain:

• Metrics for overall performance such as suc-
cess rate, inform F1, average turn number, etc.

• Common errors of the NLU component, such
as the confusion matrix of user dialogue acts.
For the example in Table 1, 34% of the re-
quests for the Postcode in the Hotel domain
are misinterpreted as the requests in the Hos-
pital domain.

• Frequent invalid, redundant, and missing sys-
tem dialogue acts predicted by the dialogue
policy.

• The system dialogue acts from which the NLG
component generates responses that confuse
the user simulator. For the example in Table
1, it is hard to inform the user that the hotel
has free parking.

• The causes of dialogue loops. Dialogue loop
is the situation that the user keeps repeating
the same request until the max turn number is
reached. This result shows the requests that
are hard for the system to handle.
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Figure 3: The interface of the Interactive Tool.

The analysis tool also supports the comparison
between different dialogue systems that interact
with the same user simulator. The above statistics
and comparison results can significantly facilitate
error analysis and system improvement.

2.5 Interactive Tool

ConvLab-2 provides an interactive tool that enables
researchers to converse with a dialogue system
through a graphical user interface and modify in-
termediate results to correct system errors.

As shown in Figure 3, researchers can customize
their dialogue system by selecting the dataset and
the model of each component. Then, they can inter-
act with the system via the user interface. During a
conversation, the output of each component is dis-
played on the left side as a JSON formatted string,
including the user dialogue acts parsed by the NLU,
the belief state tracked by the DST, the system dia-
logue acts selected by the policy and the final sys-
tem response generated by the NLG. By showing
both the dialogue history and the component out-
puts, the researchers can get a good understanding
of how their system works.

In addition to the fine-grained system output, the
interactive tool also supports intermediate output
modification. When a component makes a mistake
and the dialogue fails to continue, the researchers
can correct the JSON output of that component to
redirect the conversation by replacing the original

output with the correct one. This function is help-
ful when the researchers are debugging a specific
component.

In consideration of the compatibility across plat-
forms, the interactive tool is deployed as a web
service that can be accessed via a web browser. To
use self-defined models, the researchers have to
edit a configuration file, which defines all available
models for each component. The researchers can
also add their own models into the configuration
file easily.

3 Demo

This section demonstrates how to use ConvLab-
2 to build, evaluate, and diagnose a traditional
pipeline dialogue system developed on the Mul-
tiWOZ dataset.
import ... # import necessary modules
# Create models for each component
# Parameters are omitted for simplicity
sys_nlu = BERTNLU(...)
sys_dst = RuleDST(...)
sys_policy = RulePolicy(...)
sys_nlg = TemplateNLG(...)
# Assemble a pipeline system named "sys"
sys_agent = PipelineAgent(sys_nlu, sys_dst,

sys_policy, sys_nlg, name="sys")
# Build a user simulator similarly but without DST
user_nlu = BERTNLU(...)
user_policy = RulePolicy(...)
user_nlg = TemplateNLG(...)
user_agent = PipelineAgent(user_nlu, None,

user_policy, user_nlg, name="user")
# Create an evaluator and a conversation environment
evaluator = MultiWozEvaluator()
sess = BiSession(sys_agent, user_agent, evaluator)
# Start simulation
sess.init_session()
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sys_utt = ""
while True:

sys_utt, user_utt, sess_over, reward = sess.
next_turn(sys_utt)
if sess_over:

break
print(sess.evaluator.task_success())
print(sess.evaluator.inform_F1())
# Use the analysis tool to generate a test report
analyzer = Analyzer(user_agent, dataset="MultiWOZ")
analyzer.comprehensive_analyze(sys_agent,

total_dialog=1000)
# Compare multiple systems
sys_agent2 = PipelineAgent(MILU(...), sys_dst,

sys_policy, sys_nlg, name="sys")
analyzer.compare_models(agent_list=[sys_agent,

sys_agent2], model_name=["bertnlu", "milu"],
total_dialog=1000)

Listing 1: Example code for the demo.

To build such a dialogue system, we need to
instantiate a model for each component and assem-
ble them into a complete agent. As shown in the
above code, the system consists of a BERTNLU,
a rule-based DST, a rule-based system policy, and
a template-based NLG. Likewise, we can build a
user simulator that consists of a BERTNLU, an
agenda-based user policy, and a template-based
NLG. Thanks to the flexibility of the framework,
the DST of the simulator can be None, which
means passing the parsed dialogue acts directly
to the policy without the belief state.

For end-to-end evaluation, ConvLab-2 provides
a BiSession class, which takes a system, a sim-
ulator, and an evaluator as inputs. Then this class
can be used to simulate dialogues and calculate
end-to-end evaluation metrics. For example, the
task success rate of the system is 64.2%, and the
inform F1 is 67.0% for 1000 simulated dialogues.
In addition to automatic evaluation, ConvLab-2 can
perform human evaluation via Amazon Mechanical
Turk using the same system agent.

Then the analysis tool can be used to perform a
comprehensive evaluation. Equipped with a user
simulator, the tool can analyze and compare mul-
tiple systems. Some results are shown in Figure
2 and Table 1. We collected statistics from 1000
simulated dialogues and found that

• The demo system performs the poorest in the
Hotel domain but always completes the goal
in the Hospital domain.

• The sub-task in the Hotel domain is more
likely to cause dialogue loops than in other
domains. More than half of the loops in the
Hotel domain are caused by the user request
for the phone number.

• One of the most common errors of the NLU

component is misinterpreting the domain of
user dialogue acts. For example, the user re-
quest for the Postcode, address, and phone
number in the Hotel domain is often parsed as
in other domains.

• In the Hotel domain, the dialogue acts whose
slots are Parking are much harder to be per-
ceived than other dialogue acts.

The researchers can further diagnose their sys-
tem by observing fine-grained output and rescuing
a failed dialogue using our provided interactive
tool. An example is shown in Figure 3, in which at
first the BERTNLU falsely identified the domain
as Restaurant. After correcting the domain to Ho-
tel manually, a Recall NLU button appears. By
clicking the button, the dialogue system reruns this
turn by skipping the NLU module and directly use
the corrected NLU output. Combined with the ob-
servations from the analysis tool, alleviating the
domain confusion problem of the NLU component
may significantly improve system performance.

4 Code and Resources

ConvLab-2 is publicly available on https://

github.com/thu-coai/ConvLab-2. Resources
such as datasets, trained models, tutorials, and
demo video are also released. We will keep track
of new datasets and state-of-the-art models. Contri-
butions from the community are always welcome.

5 Conclusion

We present ConvLab-2, an open-source toolkit
for building, evaluating, and diagnosing a task-
oriented dialogue system. Based on ConvLab (Lee
et al., 2019b), ConvLab-2 integrates more powerful
models, supports more datasets, and develops an
analysis tool and an interactive tool for compre-
hensive end-to-end evaluation. For demonstration,
we give an example of using ConvLab-2 to build,
evaluate, and diagnose a system on the MultiWOZ
dataset. We hope that ConvLab-2 is instrumental in
promoting the research on task-oriented dialogue.
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Pawel Budzianowski, Iñigo Casanueva, Bo-Hsiang
Tseng, and Milica Gasic. 2018a. Towards end-to-
end multi-domain dialogue modelling.

Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
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Paweł Budzianowski, Nikola Mrkšić, Tsung-Hsien
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