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Abstract
Self-deprecating sarcasm is a special category
of sarcasm, which is nowadays popular and
useful for many real-life applications, such as
brand endorsement, product campaign, digi-
tal marketing, and advertisement. The self-
deprecating style of campaign and marketing
strategy is mainly adopted to excel brand en-
dorsement and product sales value. In this pa-
per, we propose an LSTM-based deep learning
approach for detecting self-deprecating sar-
casm in textual data. To the best of our
knowledge, there is no prior work related to
self-deprecating sarcasm detection using deep
learning techniques. Starting with a filtering
step to identify self-referential tweets, the pro-
posed approach adopts a deep learning model
using LSTM for detecting self-deprecating
sarcasm. The proposed approach is evaluated
over three Twitter datasets and performs sig-
nificantly better in terms of precision, recall,
and f-score.

1 Introduction

Over a decade, the popularity of the micro-
blogging platform, Twitter, has significantly in-
creased for analyzing its content for varied real-
world applications. The information extracted
from Twitter can shed light on numerous applica-
tions, such as text categorization, sentiment analy-
sis, election campaign and result prediction, open-
source intelligence, and event detection. How-
ever, the contents available on Twitter in the
form of tweets are short and limited to maxi-
mum 280 characters. Moreover, tweets are in-
formal and mainly consist of misspelled words,
slangs, bashes, acronyms, shortened words, non-
literal unstructured phrases, and emoticons. Due
to existence of such volumunious informal texts in
the form of tweets text information processing is a
challenging task. Moreover, analysis of the tweets
has become more challenging due to presence of

figurative language, especially sarcasm. The main
role of a sarcastic tweet is to reverse the actual po-
larity and alter the literal semantics. However, the
computational detection of sarcasm benefits many
applications, especially opinion mining and sen-
timent analysis systems (Bouazizi and Ohtsuki,
2015).

The online Macmillan dictionary defines sar-
casm1 as “the activity of saying or writing the op-
posite of what you mean, or of speaking in a way
intended to make someone else feel stupid or show
them that you are angry”. Sarcasm is the most
seen figurative language category over online so-
cial media platforms. The presence of sarcasm
in tweets is dramatically rising and computational
detection of sarcasm is a challenging and interest-
ing task. It is widely covered by researchers in re-
cent years, but the study on different categories2 of
sarcasm, such as self-deprecating sarcasm, is very
limited. Self-deprecating sarcasm3 is a special cat-
egory of sarcasm in which users mainly apply sar-
casm over themselves using disparage, ridicule,
and contemptuous remarks in a sarcastic style us-
ing humor. It is defined as a “sarcasm that plays
off of an exaggerated sense of worthlessness and
inferiority”. For example, the phrase love going to
the office on Sunday in the text “Really, I always
love going to the office on Sunday” represents a
self-deprecating sarcasm.

Nowadays, self-deprecating sarcasm has be-
come a new style of product marketing and cam-
paign strategy. It is mainly used for product en-
dorsement purposes. This new marketing and
campaign strategy is mainly used to excel the busi-

1https://bit.ly/2WsUkUk (last accessed on 15-
Nov-19)

2https://literarydevices.net/sarcasm/
(last accessed on 15-Nov-19)

3https://bit.ly/2vwjtid (last accessed on 15-
Nov-19)

https://bit.ly/2WsUkUk
https://literarydevices.net/sarcasm/
https://bit.ly/2vwjtid
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ness growth, but without losing the brand value
(Kamal and Abulaish, 2019). The main aim of
this strategy is to draw the attention of the cus-
tomer towards the brand. As per the American
marketing association4, “self-deprecating adver-
tising means consumers can see a different side
to brands, making them more relatable and down-
to-earth”. Interestingly, after an in-depth analysis
of tweets, we found that there are many tweets in
which users refer themselves. We consider such
tweets as self-referential or self-deprecating. For
example, “Really, I just love it” is a self-referential
tweet. Our analysis further reveals that some
of the self-referential tweets are self-deprecating
using sarcasm, i.e., in these tweets users under-
value, criticize, insult, and disparage themselves
using sarcastic phrases. We consider all such self-
referential tweets as self-deprecating sarcasm.

In this paper, we propose a deep learning
approach using Long Short-Term Memory
(LSTM) to detect self-deprecating sarcasm in tex-
tual data like tweets. Initially, after preprocess-
ing, we first identify self-referential tweets from
the dataset based on a set of patterns, and rest of
tweets are filtered out. The main motivation be-
hind the filtration of the non-self-referential tweets
is to increases the overall efficiency of the self-
deprecating sarcasm detection process. In brief,
the main role of the self-referential tweets identi-
fication module can be summarized as follows:

• Identification of explicit self-referential
tweets: After an in-depth analysis across all
the datasets, we identify a set of patterns
followed by the self-referential tweets. Table
1 presents a set of regular expression based
patterns and it is categorized as specific
patterns and generic patterns. The specific
patterns are based on tags and tokens present
in the tweet which indicate self-referential
nature of the tweet. On the other hand,
generic patterns are based on the presence of
first person singular/plural personal pronoun.
These patterns are found as strong indicator
of self-referential tweets. We consider such
self-referential tweets as explicit, otherwise
implicit.

• Identification of clusters from explicit self-
referential tweets: We identify explicit self-

4https://bit.ly/2EEuQGQ (last accessed on 15-
Nov-19)

referential tweets clusters based on over-
lapping contents (i.e., tri-grams) and using
Jaccard similarity between the explicit self-
referential tweets.

• Pattern-mining from clusters: Once the ex-
plicit self-referential tweets clusters are iden-
tified, we fetch the most frequent substring
(i.e, tri-gram) as a referential pattern from
each cluster.

• Identification of implicit self-referential
tweets: If an implicit tweet matches with the
referential pattern of any cluster, then it is
considered as a self-referential tweet.

• Merge with explicit tweets: Finally, all
identified implicit self-referential tweets are
merged with explicit tweets to generate a list
of the self-referential tweets.

Once the list of self-referential tweets is gener-
ated, it is passed to the model learning and classi-
fication module for self-deprecating sarcasm de-
tection. To this end, each self-referential tweet
is converted into an input vector, it is fed to pre-
trained GloVeword embedding, and model learn-
ing and classification task is accomplished using
LSTM for detecting self-deprecating sarcasm.

This remainder of this paper is organized as
follows. Section 2 presents a brief review of
the state-of-the-art techniques and approaches for
computational sarcasm detection. It also high-
lights the uniqueness of our proposed approach
over the existing state-of-the-art techniques. Sec-
tion 3 presents the functional details of the pro-
posed approach, including model learning and
classification using LSTM. Section 4 presents the
experimental and evaluation results. Finally, sec-
tion 5 concludes the paper and discusses future re-
search directions.

2 Related Work

Automatic sarcasm detection is considered as a
classification task (Zhang et al., 2016), and the
main task is to classify any piece of texts as sar-
casm or non-sarcasm. Tsur et al. (2010) ap-
plied semi-supervised approach to detect sarcasm
in Amazon product reviews. Davidov et al. (2010)
applied the same approach to detect sarcasm in
tweets and product reviews. González-Ibánez
et al. (2011) considered lexical and pragmatics
features to detect sarcasm on Twitter datasets.

https://bit.ly/2EEuQGQ
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Riloff et al. (2013) identified sarcastic contrast-
based patterns and considered words with pos-
itive sentiment and negative phrases in a tweet
containing sarcasm. Liebrecht et al. (2013) dis-
cussed the role of hyperrbole in sarcasm detection.
Ptácek et al. (2014) detected sarcasm in English
and Czech tweets. Bharti et al. (2015) proposed
rule-based algorithms based on some patterns for
sarcasm detection. They also highlighted the im-
portance of hyperbole in sarcastic texts. Bamman
and Smith (2015) extracted extra-linguistic infor-
mation based on the context of the instances for
sarcasm detection.

Rajadesingan et al. (2015) applied three ma-
chine learning classifiers – Support Vector Ma-
chine (SVM), logistic regression, and decision tree
for sarcasm detection, considering the behavioral
modeling-based approach. Ghosh et al. (2015)
proposed SemEval-2015 (task-11) and considered
sarcasm, irony, and metaphor for sentiment analy-
sis in Twitter data. Joshi et al. (2015) discussed the
role of incongruity for sarcasm detection. Bouaz-
izi and Ohtsuki (2016) considered a pattern-based
approach. Mishra et al. (2016) considered lexical-
and contextual-based features. Joshi et al. (2016)
proposed word-embedding related features using
Word2Vec5.

Recently, deep learning models have been used
as a popular technique for sarcasm detection prob-
lem. Zhang et al. (2016) applied a bi-directional
gated recurrent neural network for sarcasm de-
tection. They considered syntactic and seman-
tic information and extracted contextual features.
Amir et al. (2016) applied content- and user
embedding-based Convolutional Neural Network
(CNN) model. Ghosh and Veale (2016) con-
sidered CNN, LSTM, and Deep Neural Network
(DNN) for sarcasm detection. Poria et al. (2016)
considered features, such as sentiment, emotion,
and personality and applied SVM and CNN classi-
fiers. Tay et al. (2018) considered attention-based
neural model for sarcasm detection. Hazarika
et al. (2018) proposed a contextual sarcasm detec-
tor using CNN-based textual model in which con-
text and content related information are used for
sarcasm detection. Recently, Dubey et al. (2019a)
converted sarcastic texts into non-sarcastic inter-
pretation using encoder-decoder, attention, and
pointer generator architectures. Dubey et al.

5https://code.google.com/archive/p/
word2vec/ (last accessed on 15-Nov-19)

(2019b) detected sarcasm in numerical portion of
tweets using CNN and attention network.

Though sarcasm detection is widely covered by
the researchers, studies related to the varied cat-
egories of sarcasm are still not explored. Re-
cently, Abulaish and Kamal (2018) noticed the use
of self-deprecating sarcasm in Twitter, mainly for
the purpose of brand endorsement and sales cam-
paign. They considered self-deprecating sarcasm
as a special category of sarcasm in which users
express sarcasm over themselves. They also pro-
posed a rule-based and machine learning-based
approach for detecting self-deprecating sarcasm
detection in Twitter. The proposed work in this
paper is new LSTM-based deep learning approach
for self-deprecating sarcasm detection in textual
data.

3 Proposed Approach

In this section, we discuss the proposed LSTM-
based deep learning approach for self-deprecating
sarcasm detection. Figure 1 presents the work-
flow of the proposed approach. It can be seen
from this figure that besides data crawling and data
pre-processing, the main functionalities of the pro-
posed approach are self-referential tweets detec-
tion, and self-deprecating sarcasm detection using
deep learning technique. Further details about all
functional modules are presented in the following
sub-sections.

3.1 Data Crawling

The data crawling module aims to retrieve En-
glish tweets using Twitter’s REST API and it is
implemented in Python 2.7. We have consid-
ered tweet ids provided as a part of two benchmark
datasets – Ptácek et al. (2014) and SemEval-20156

to curate tweets using our data crawling module.
In addition, we have also created our own Twitter
dataset containing tweets crawled for the period
1st April 2019 to 19th May 2019.

3.2 Data Pre-Processing

The data pre-processing module aims to apply var-
ious pre-processing tasks on the curated tweets
to produce fine-grained data for self-deprecating
sarcasm detection. The pre-processing consists
of data cleaning (removal of dots, retweets, num-
bers, hashtags, emoticons, @mention, URL’s, am-

6https://bit.ly/34OnGgB (last accessed on 15-
Nov-19)

https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
https://bit.ly/34OnGgB
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Figure 1: Work-flow of the proposed approach

persands, double quotes, and extra white spaces)
and lower-case conversion. Thereafter, spacy7 is
used to tokenize the tweets and generate POS tags
for each token.

3.3 Self-Referential Tweets Identification

After an in-depth analysis of the datasets it is
observed that all tweets are not self-referential
or self-deprecating in nature. To this end, this
module presents a filtration mechanism to gen-
erate a corpus of self-referential tweets. The
non-self-referential tweets are filtered from
further consideration because they rarely contain
a self-deprecating sarcasm. Motivated by Zhao
et al. (2015), identification of self-referential
tweets is performed using the following sequence
of steps.

(i) Identification of Explicit Self-Referential
Tweets:
In this step, we identify the self-referential tweets
that have explicit pattern in the text and these
tweets are considered for further processing to
mine implicit patterns (signals) of self-referential
behavior in tweets. The explicit self-referential
tweets have certain patterns, which can be defined
using the regular expressions given in Table 1. The
tweets from the pre-processed corpus are matched
using these regular expressions to identify the ex-
plicit self-referential tweets. The pattern for ex-
plicit nature of self-referential tweets are of two
types – specific and generic.

The specific patterns are based on either se-
quential order of tokens and tags, or sequential
order of tokens. If any of the specific pattern

7https://spacy.io/ (last accessed on 15-Nov-19)

Patterns Category
UH (i |my) Specific
(we | i) [love] (it | when) Specific
when (my | our) Specific
(am | are) [still] Specific
(i |my |me |mine |myself ) Generic
(we | are | us | our | ourselves) Generic

Table 1: Regular expressions to identify explicit self-
referential tweets

from table 1 founds in the pre-processed tweets,
then it is added to the explicit set, otherwise it
is checked further from generic patterns. The
generic patterns are based on the first person sin-
gular/plural personal pronoun, such as ‘i’, ‘we’,
and their objective and possessive cases, such as
‘my’, ‘me’, ‘mine’, ‘myself ’, ‘are’, ‘our’, ‘us’,
and ‘ourselves’. The first person singular/plural
personal pronoun and its grammatical variants are
strong indicator for a tweet to be referred as self-
referential.

If any of the token from the pre-processed tweet
matches with any generic patterns, then such
tweet is considered as explicit self-referential
tweet, and added to the explicit set of self-
referential tweets, Es. Otherwise, the tweet is
added to the set of implicit tweets, It. Further, the
identified explicit tweets are modeled as a undi-
rected weighted graph and given to a clustering
algorithm for further processing, which is defined
in the next step.

(ii) Identification of Clusters from Explicit
Self-Referential Tweets:
This step clusters the tweets in Es to identify the
near-duplicate (similar) explicit self-referential
tweets. To this end, first Es tweets are modeled

https://spacy.io/
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as an undirected graph, where each node of the
graph represents a tweet and edge represents the
similarity between the underlying pair of nodes.
The similarity between two tweets (nodes), say ti
and tj , is calculated using Jaccard coefficient to
observe the overlapping set of tri-grams between
the tweets, as defined in equation 1, where Ti and
Tj represents the set of tri-grams for tweets ti
and tj , respectively. We choose tri-grams in our
experiment because self-deprecating phrases in a
tweet generally contain at least three words. We
create an edge between a pair of near-duplicate
tweets if the Jaccard similarity based on set of
tri-grams is greater than a threshold 0.6 as defined
in (Zhao et al., 2015). Thereafter, depth first
search algorithm is applied on the constructed
graph to extract clusters (connected components),
where each cluster represents the set of identical
explicit self-referential tweets. The extraction
process only extract clusters having atleast three
tweets.

J(ti, tj) =
|Ti ∩ Tj |
|Ti ∪ Tj |

(1)

(iii) Pattern-Mining from Clusters:
Following the cluster identification process in the
previous step, this step mines frequent patterns
from the extracted clusters. To this end, the
occurrence probability of every pattern of each
cluster is computed and patterns having proba-
bility greater than 0.8 are regarded as patterns.
For example, if a cluster has 5 tweets and a
tri-gram “great way start” occurs in four out of
5 tweets, then it can be regarded as a frequent
pattern (tri-gram). This procedure is repeated for
every pattern in each cluster to extract the list
of frequent patterns. Thereafter, the duplicate
frequent patterns identified from two or more
clusters are filtered to generate unique set of
frequent patterns P .

(iv) Identification of Implicit Self-Referential
Tweets:
The first step of this whole procedure held tweets
which have no explicit pattern as self-referential
tweets, called implicit tweets. This step will im-
prove the recall of the self-referential tweets iden-
tification process. This step matches the identified
patterns from previous step in implicit tweets to
extract implicit self-referential tweets. To this end,

first an implicit tweet is tokenized in to tri-grams
and thereafter these set of tri-grams are matched
with the set of frequent patterns P using Jaccard
similarity. Finally, a tweet that has Jaccard simi-
larity greater than a threshold 0.6 is considered as
a implicit self-referential tweets. This procedure is
repeated for every tweets of It to generate a set of
implicit self-referential tweets, Is. For example,
table 2 presents 3 example implicit self-referential
tweets identified from It.

Pattern matched implicit self-referential tweets
1. great way start nothing.
2. waking with stomach pains best way start day.
3. battling cousin always great way end day.

Table 2: Implicit self-referential tweets identified from
It

(v) Merging of Implicit and Explicit Tweets:
Finally, in this step, the identified implicit self-
referential tweets are added to the set of explicit
self-referential tweets to generate a final set of
self-referential tweets i.e. S = Es ∪ Is. In
the remaining paper, this curated corpus of self-
referential tweets is used for experimental evalua-
tion.

3.4 Model Learning and Classification

In recent years, deep learning has become an
emerging trend in the field of text mining and nat-
ural language processing. The semantic model-
ing of textual data using deep learning approaches
has drawn significant attention among the research
community. Various neural network-based models
including CNN, LSTM, and DNN are used for di-
verse text modeling applications such as document
classification, machine translation, speech recog-
nition, and so on. Detection of self-deprecating
sarcasm is one such application that is largely
unexplored. To this end, we modeled the self-
deprecating sarcasm detection as a deep-learning
problem.

On analysis, it is found that the long sequence
of words or phrases plays an important role to
construct a self-deprecating sarcastic patterns,
such as love being ignored, office on sunday,
and happy to be late in a tweet. Therefore, to
model the long-sequences based self-deprecating
sarcastic pattern, LSTM seems a perfect fit. Using
model learning through LSTM, a self-referential
tweet is classified as a Self-Deprecating Sarcasm
(SDS) or Non Self-Deprecating Sarcasm (NSDS).
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A detailed discussion about the model learning
and classification is presented in following sub-
section.

Input Layer:
In this layer, a self-referential tweet, containing
n words, is given as an input. In this manner,
each self-referential tweet is converted to a
self-referential input vector where every word is
replaced with its index value of the dictionary,
i.e., SεR1×n. Further, each self-referential input
vector is padded and converted in the matrix form.
The padding is used to make every input of same
length. Thereafter, padded input vector is passed
to the next layer (i.e., embedding layer).

Embedding Layer:
In the padded vector from the input layer, all
the words are replaced with their corresponding
representation vector or embeddings. In this
paper, we have used pre-trained GloVe 200-
dimensional embeddings trained on a Twitter
corpus of 27 billion tokens. As a result of this
procedure, the self-referential input tweet matrix
is converted to SεRL×D, where L is the maxi-
mum tweets length and D represents embedding
dimension.Thereafter, the embedding layer output
is passed to the LSTM layer.

LSTM:
Hochreiter and Schmidhuber (1997) proposed
LSTM architecture, which is a type of RNN. It
is easier to train an LSTM model in comparison
to an RNN model. Moreover, it also overcomes
the vanishing gradient problem while back prop-
agation through time. In LSTM, the long term
temporal dependencies can be easily captured be-
tween two time steps using the memory cell. Fig-
ure 2 presents the architecture of LSTM, where
each memory cell consists of input gate it, forget
gate ft, and output gate ot. These digital gates are
responsible for memory update mechanism, and it
acts as a function for the current input xt and pre-
vious hidden state ht−1.

An LSTM model is trained using equations 2,
3, 4, 5, 6, and 7. Equations 2 and 3 present in-
put and forget gates, whereas equations 5, 6, and
7 present output gate, new cell state, and hidden
state, respectively.

it = σ(Wi[ht−1, xt] + bi) (2)
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Figure 2: The architecture of LSTM

ft = σ(Wf [ht−1, xt] + bf ) (3)

qt = tanh(Wq[ht−1, xt] + bq) (4)

ot = σ(Wo[ht−1, xt] + b0) (5)

ct = ft � ct−1 + it � qt (6)

ht = ot � tanh(ct) (7)

In equation 4, the non-linear activation function
– tanh is used to squash the value between -1 and
1, and it plays a role for cell state to forget the
memory. On the other hand, non-linear activation
function, sigmoid (σ) generates an output in
the interval [0, 1]. LSTM works as the gating
function for the three gates, which are discussed
in the previous paragraph. Since it has a value in
interval [0, 1], the information across the gates are
either passed completely or not.

FC and Output Layers:
The output from the LSTM layer is passed to the
fully connected dense layer followed by a sigmoid
activation function. We have used binary cross-
entropy as the loss function, used 40 epochs for
training the model, batch-size of 256, verbose is
2, and adam as an optimizer. The dataset is di-
vided into training and testing parts for experimen-
tal evaluations wherein 80% of the data is used for
training and remaining 20% is used for testing pro-
cedure.

4 Experiments Setup and Results

In this section, we discuss the experimental evalu-
ation of the proposed approach.
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4.1 Experimental Settings

We have implemented the experimental setup
for data crawling, data pre-processing, and self-
referential tweets identification tasks in Python
2.7, model training and classification tasks in
Python 3.5, and used Keras neural network
API for LSTM model. Table 3 presents the hyper-
parameters values of LSTM model used in the pro-
posed approach.

Hyper-parameters Value
Embedding dimension 200
Padding sequences 20
Spatial dropout (after embedding layer) 0.4
Number of neurons 256
Dropout (after LSTM layer) 0.4

Table 3: Hyper-parameters values for LSTM model
used in our proposed approach

4.2 Datasets

The proposed approach is evaluated over three
Twitter datasets including two benchmark datasets
by Ptácek et al. (2014) and SemEval-2015. The
authors released only tweet-ids for these bench-
mark datasets due to privacy concerns. Therefore,
a crawler is developed in Python 2.7 to curate
tweets corresponding to provided tweet-ids us-
ing Twitter REST API. However, few tweets were
deleted or protected and, as a result, we were un-
able to crawl all the tweets. A brief statistics about
these two datasets is given in the first two rows of
table 4. Apart from the two benchmark datasets,
we curated a Twitter dataset from 1st April to 19th
May 2019 using “#sarcasm” hashtag. We refer this
dataset as Twitter-280 and its statistical sum-
mary is given in the third row of table 4. Simi-
larly, we crawled non-sarcastic tweets using two
#not, #hate hastags. Table 5 presents the statistics
of identified self-referential tweets after the self-
referential tweets identification module. Table 6
presents the final statistics of the balanced and un-
balanced datasets generated from table 5.

Datasets #Sarcasm #Non-sarcasm Total
(#tweets)

Ptácek et al. (2014) 53088 98195 151283
SemEval-2015 1526 2366 3892
Twitter-280 13786 14949 28735
Total (#tweets) 68400 115510 183910

Table 4: Statistics of the crawled datasets

Datasets #Sarcasm #Non-sarcasm Total
(#tweets)

Ptácek et al. (2014) 29580 37767 67347
SemEval-2015 761 1609 2370
Twitter-280 6971 7017 13988
Total (#tweets) 37312 46393 83705

Table 5: Statistics of identified self-referential tweets
by the self-referential tweets identification module

4.3 Evaluation Metrics

This section discusses the standard data mining
metrics – precision, recall, and f-score, which are
used to evaluate the proposed approach. Formally,
these metrics in terms of True Positives (TP), False
Positives (FP), and False Negatives (FN) are de-
fine in equations 8, 9, and 10, where TP is de-
fined as the number of correctly classified as SDS
tweets, FP is defined as number of NSDS tweets
misclassified as SDS tweets, and FN is defined
as number of SDS tweets misclassified as NSDS
tweets.

Precision (π) =
TP

FP + TP
(8)

Recall (ρ) =
TP

FN + TP
(9)

F-score (F1) =
2× π × ρ
π + ρ

(10)

4.4 Evaluation Results

This section presents the experimental evaluation
results over the three datasets discussed in sub-
section 4.2. All the experimental evaluations are
performed using an LSTM model trained on 40
epoch. Table 7 presents the performance eval-
uation results of our proposed approach using
the LSTM model on balanced and unbalanced
datasets in terms of three evaluation metrics. On
analysis, it can be observed from this table that
in terms of all the three evaluation metrics, the
proposed approach performs comparatively bet-
ter on balanced datasets and shows slightly lower
performance on unbalanced datasets. Another in-
teresting observation from this table is that, in
terms of all the three evaluation metrics, proposed
approach performs best on Ptácek et al. (2014)
dataset. Further, table 7 shows that the proposed
approach performs comparatively better on the
balanced version of our created dataset.
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Datasets #Sarcasm #Non-sarcasm Total
(#tweets)

Ptácek et al. (2014) Balanced 14500 14500 29000
Unbalanced 5750 23000 28750

SemEval-2015 Balanced 500 500 1000
Unbalanced 250 1100 1350

Twitter-280 Balanced 5000 5000 10000
Unbalanced 500 2000 2500

Table 6: Statistics of the balanced and unbalanced datasets generated from table 5

Datasets Evaluation results
π ρ F1

Ptácek et al. (2014) Balanced 0.93 0.94 0.93
Unbalanced 0.92 0.89 0.90

SemEval-2015 Balanced 0.86 0.84 0.85
Unbalanced 0.93 0.75 0.83

Twitter-280 Balanced 0.90 0.92 0.93
Unbalanced 0.89 0.86 0.88

Table 7: Performance evaluation of our proposed
approach using LSTM on balanced and unbalanced
datasets presented in table 6

4.5 Comparative Analysis

To be the best of authors knowledge there is no
prior work on self-deprecating sarcasm detection
using deep learning approach. However, a rule and
machine learning-based approach was presented
by the authors in Abulaish and Kamal (2018) and
proposed approach is compared with that one.
In Abulaish and Kamal (2018), authors consid-
ered Ptácek et al. (2014) dataset to detect self-
deprecating sarcasm in tweets. We implemented
Abulaish and Kamal (2018) to evaluated its ef-
ficacy over the three datasets. Figures 3 and 4
present the comparative performance evaluation of
the proposed approach with Abulaish and Kamal
(2018) in terms of precision, recall, and f-score
over balanced and unbalanced version of all the
three datasets, respectively.

It can be observed from figures 3 and 4 that
the proposed LSTM-based deep learning approach
outperforms Abulaish and Kamal (2018) in terms
of precision, recall, and f-score on both balanced
and unbalanced datasets. However, Abulaish and
Kamal (2018) reported slightly better performance
in terms of precision and f-score results on Ptácek
et al. (2014) dataset.

5 Conclusion and Future Work

In this paper, we have proposed a new approach
using LSTM-based deep learning for detecting
self-deprecating sarcasm in textual data. The
self-deprecating sarcasm is a special category of

sarcasm in which users apply sarcasm on them-
selves. One of the major applications of this work
is to promote self-deprecating marketing strate-
gies. The proposed approach is evaluated over
three Twitter datasets, including two benchmark
datasets, and the experimental results are promis-
ing. It also performs significantly better than one
of the state-of-the-art methods, which used rule-
based and machine learning techniques for self-
deprecating sarcasm detection. Exploring new
patterns and consideration of multimedia contents
for self-deprecating sarcasm detection seems one
of the promising directions of future research.
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