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Abstract
In this paper, we address the problem of extracting and integrating bilingual terminology into
a Statistical Machine Translation (SMT) system for a Computer Aided Translation (CAT) tool
scenario. We develop a framework that, taking as input a small amount of parallel in-domain
data, gathers domain-specific bilingual terms and injects them in an SMT system to enhance
the translation productivity. Therefore, we investigate several strategies to extract and align
bilingual terminology, and to embed it into the SMT. We compare two embedding methods
that can be easily used at run-time without altering the normal activity of an SMT system:
XML markup and the cache-based model. We tested our framework on two different domains
showing improvements up to 15% BLEU score points.

1 Introduction

Recent studies (Federico et al., 2012; Läubli et al., 2013; Green et al., 2013) have shown sig-
nificant productivity gains when human translators post-edit machine translation output rather
than translating documents from scratch. This evidence has raised interest in the integration
of machine translation systems within CAT software. In this context, an important open issue
is how to support translators with domain-specific information when dealing with highly spe-
cific texts, i.e. manuals coming from different domains (information technology (IT), legal,
agriculture, etc.). Translation tools such as Google Translate,1 Bing Translator2 or open source
SMT systems such as Moses (Koehn et al., 2007) trained on generic data are the most common
solutions, but they often result in unsatisfactory translations. A valuable alternative to support
professional translators is represented by online terminology resources, e.g. IATE,3 which are
continuously updated and can be easily queried. However, the manual use of these services
can be very time demanding when working with a CAT tool. For these reasons, the automatic
identification and integration of bilingual domain-specific terms into an SMT system is a crucial
step towards increasing translation quality of high-specific texts in a CAT environment. This
also reduces translators’ initial overload when dealing with different domains, because termi-
nological lists are managed directly by the SMT system and no additional human intervention
for retrieving domain-specific terminology is required.
1 http://translate.google.com/ 2 http://www.bing.com/translator
3 Inter-Active Terminology for Europe, http://iate.europa.eu/
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In this paper, we propose a framework for extracting bilingual terms from parallel data and
using them to enhance the performance of an SMT system embedded in a CAT tool. We focus
on a real scenario, where a large translation project is split across different translators and each
translator post-edits daily a limited amount of sentences provided by the SMT system. Our
approach takes advantage of such post-edited data to gather bilingual domain-specific terms.
The parallel data produced every day are then used to continuously improve a generic machine
translation system by (i) automatically injecting the bilingual terms into the SMT system, and
(ii) optimising the log-linear weights on this specific data.

Bilingual term extraction is performed in two steps. First, the source and the target sides
of the data are processed by a keyword extractor to identify the most relevant terms in each
language. Taking advantage of the parallel data, each monolingual term in the source language
is paired with a term in the target language. We perform this step by comparing different tech-
niques, showing that simple approaches based on word alignment and term translation are more
robust and more efficient than the state-of-the-art method based on supervised classification
(Aker et al., 2013).

As regards the integration of the bilingual terms in an SMT system, we cannot apply well-
known approaches (Bouamor et al., 2012) adding the terms to training data or at the end of
the phrase table, because in our CAT scenario we cannot stop the translation service and let
translators wait for a long training time. For this reason, we investigate for the first time the
integration of cache-based translation and language models (Bertoldi et al., 2013) in the context
of terminology embedding comparing them with the XML markup technique. The cache-based
model makes it possible to periodically add bilingual terms into an SMT system in real-time,
without the need to stop it. In addition, we compare the cache-based models with a recently
developed technique, namely the Realtime Adaptive Translation Systems with cdec (Denkowski
et al., 2014), that, based on lexicalized synchronous context-free grammars, takes as input the
whole source and post-edited sentences and automatically updates the models. The evaluation
of our framework on two different domains (IT and medical) suggests that: (i) an SMT model
enriched with the identified bilingual terms substantially improves translation quality in terms
of BLEU score over a generic SMT system; (ii) strategies to integrate terminology need to
take into consideration also the surrounding context of a translated term; (iii) in order to take
advantage of the continuous appending of new information inside the SMT system a constant
updating of the contribution of each component in the log-linear model is needed.

2 Bilingual Domain-Specific Terminology Generation

We propose a two-step approach to extract bilingual terminology for machine translation that
requires only small amounts of parallel data (few hundred), as foreseen in a CAT scenario. The
first step is the extraction of domain-specific terms from monolingual data (target and source
sides of the parallel data), while the second is the creation of bilingual terminology starting
from the monolingual ones. In order to obtain the best possible performance, we compare
different approaches in both steps. At the monolingual level, we test the extraction using three
unsupervised term extraction tools. For bilingual alignment, we compare different alignment
strategies. The two steps are detailed in the following subsections.

2.1 Monolingual Terminology Extraction
In order to find the best performing approach to identify monolingual terms, we compare three
available term extractors: the KX toolkit (Pianta and Tonelli, 2010), TWSC (Pinnis et al., 2012)
and AlchemyAPI.4 Given our experimental scenario, where no or little training data are avail-
able, we chose three unsupervised terminology extractors supporting different languages.

4 http://www.alchemyapi.com/products/features/keyword-extraction/
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KX is a terminology extractor, which combines frequency information and part-of-speech
patterns of n-grams to identify the most relevant terms in a corpus. It is freely available for
English and Italian and was the first-ranked unsupervised system in the Semeval2010 task on
keyword extraction (Kim et al., 2010). TWSC follows an approach which is very similar to KX,
integrating morpho-syntactic patterns with statistical features. One of the main differences w.r.t.
KX is the implementation of different co-occurrence statistics to rank term candidates, and the
treatment of nested terms. Nevertheless, we expect the performance of these two tools to be
very similar. A third system considered is AlchemyAPI. This commercial tool employs sophis-
ticated statistical algorithms and linguistic approaches to analyse textual content and extract
topic keywords, but no further implementation details are given.

2.2 Bilingual Terminology Alignment
Once the lists of monolingual terms for the source and target language are automatically gath-
ered, the alignment across languages is created. We propose and compare different strategies.

Given a source term and the parallel sentence pair in which it appears, a set of possible
translations is found by either translating the term or by applying a word aligner. In both cases,
we use a technique similar to the methodology proposed by (Ehrmann et al., 2011), where the
translation system the word aligner are trained on the same data from which the bilingual termi-
nology is extracted. The main idea is that the translation system should know how to translate
a source term, since it has seen it in the training data; this reduces the number of untranslated
terms. Moreover, this allows us to take advantage of monolingual term extractors and regular
phrase extraction method, used to build the phrase table, to generate bilingual terminology.

Given a set of possible translations for each term, the correct translation is retrieved tak-
ing advantage of the parallelism between source and target sentences, whereby two methods
are investigated: sentence lookup or term lookup. With the first, a target translation from the
candidate list is accepted as correct if it matches a span in the target sentence. With the second,
a translation is accepted if it has also been identified as a term in the target sentence by the
monolingual term extractor. The term lookup method reduces the number of extracted bilingual
terms, but guarantees a better quality of the alignments.

In our experiments, we compare our strategies with Term Aligner, a state-of-the-art bilin-
gual alignment tool, based on the method proposed by Aker et al. (2013). In this method, the
authors treat bilingual term alignment as a classification problem. An SVM binary classifier
is trained on data derived from the multilingual thesaurus EuroVoc, using language dependent
and independent features. The former ones are based on bilingual dictionaries created by the
GIZA++ tool, while the latter use cognate-based features, e.g. the longest common subsequence
ratio. The cognate features are binarized using a manually defined threshold. Since the original
work focuses on term alignment in comparable corpora, we limit the tool to search for terms
that appear in the same parallel sentence pair. Moreover, we use the same GIZA++ dictionaries
built for identifying term translation.

3 Enhancing Terminology Translation

After the extraction of domain-specific bilingual terms, they need to be integrated into the work-
flow of the SMT system. We focus on a real scenario, where a large translation project is split
into partitions with around 3,000 tokens, which represent the average workload of a profes-
sional translator in the post-editing task per day. Translating partitionn, the decoder is sup-
ported by the extracted and aligned bilingual terminology from previous partitions (partition1
. . . partitionn−1) using the XML markup or the cache-based models. To further improve the
translation quality of partitionn, the decoder accesses the log-linear weights from the previous
partition, which were tuned beforehand with MERT (Bertoldi et al., 2009).
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Given the extracted terms and the parallel sentences, we improve the translation capability
of the SMT system by: (i) using the bilingual terms during the translation process and (ii)
running an incremental tuning on different sets of parallel sentences coming from different
working days.

3.1 Integration of Bilingual Terms into SMT

Since we place our work a CAT scenario, where an SMT system should continuously provide
suggestions to the translator for each source sentence, we cannot integrate bilingual terms by
retraining the whole model (Bouamor et al., 2012) or switching off the system and adding
the terms at the end of the phrase table (Bouamor et al., 2011). Also the incremental training
method introduced by Levenberg et al. (2010), which makes it possible to continuously add data
without retraining the model, is not the best solution in our setting, because it tends to penalise
terms with ambiguous translations favouring the most frequent and generic translations. For
these reasons, we test two methods that can be easily used at run-time without altering the
normal work of the SMT system and differentiate domain-specific from general translations:
the widely-used XML markup and the cache-based model (Bertoldi et al., 2013).

XML Markup With the XML markup approach, external knowledge is directly passed to
the decoder by specifying the translation of specific spans of the source sentence. In case
of multiple translations of the same source span, a score can be used to indicate the level of
association between the source and target phrases.

Cache-Based Models In this work, we propose for the first time the use of the cache-based
translation and language models (Bertoldi et al., 2013) for embedding bilingual terms into the
SMT system. The main idea behind these models is to combine a large static global model with
a small, but dynamic local model. This allows users to define and dynamically adapt domain-
specific models that are combined during decoding with the global SMT models built on the
training data. Differently from XML markup that only substitutes the annotated source strings
with a given translation without considering the surrounding context for proper lexical choice,
the cache-based model offers a better integration of the terms into the final translation.

The cache-based model relies on a local translation model (CBTM) and language model
(CBLM). The first is implemented as an additional phrase table providing one score. All en-
tries are associated with an ‘age’ (initially set to 1), corresponding to the time when they were
actually inserted. Each new insertion causes an ageing of the existing phrase pairs and hence
their re-scoring; in case of re-insertion of a phrase pair, the old value is set to the initial value.
Phrase pairs in the model are scored based on the decaying function, whereby we test different
rewarding and penalizing functions (hyperbola, power, exponential, cosine) as well as a con-
stant function, where the ’age’ is always set to 1. Similarly to the CBTM, the local language
model is built to give preference to target terms found by the extraction tool. Each target term
stored in CBLM is associated with a decaying function of the age of insertion into the model.
Both models are used as additional features of the log-linear model in the SMT system.

3.2 Incremental Tuning

The continuous extraction and collection of bilingual terms changes the capability of the SMT
to correctly translate new sentences and the contribution of each component in the log-linear
model. For this reason, when a new partition of parallel sentences is available (partitionn),
bilingual terms are first extracted. Then, before using them in the cache-based or XML markup
module, the tuning step is performed using partitionn−1 as development set and taking ad-
vantage of all terms extracted from partition1 to partitionn−2. When the new weights are
computed, the bilingual terms extracted from partitionn−1 are added to the terms obtained
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from all the previous partitions, and the new configuration of the SMT system is used to trans-
late partitionn. The aim of this procedure is to update the weights of each feature taking into
consideration the new translation capability of the model. The initial configuration of the log-
linear weights used by MERT at time n−1 is that obtained optimizing the system at time n−2.
Once the new weights are computed, the old weights need to be overwritten. This is done
by passing the new weights to Moses through XML tags for each incoming sentence, which
required to extend Moses with this new option.

An issue with incremental tuning is the risk of over-fitting of the model on a small de-
velopment set, when it differs from the test set. In our scenario, this is prevented by the fact
that all the sets come from the same document, or from different documents on similar topic
in the same project. Although it is important to tune an SMT system on a sufficiently large
development set, reasonably good weights can be obtained even if such data are very few, as
shown in Bertoldi and Federico (2009). In our framework, it is not possible to concatenate all
the previous partitions to enlarge the development set, because the presence of already extracted
bilingual terms in the cache-based models would artificially favour the cache-based components
during the tuning.

4 Experimental Setting

In this Section, we propose a set of experiments aimed at showing the capability of our frame-
work to extract high quality domain-specific bilingual terms from a small amount of parallel
data and to integrate them in the translation task. The translation direction considered is from
English to Italian. To identify the best monolingual term extraction tool as well as the most suit-
able bilingual alignment approach, we use freely available data, which were manually annotated
to better evaluate all the intermediate steps of the experiment. Two datasets belonging to the IT
domain, namely a portion of GNOME project data (4,3K tokens)5 and KDE Data (9,5K),6 are
used for domain-specific term extraction.

The whole framework, including the machine translation part, is tested on a subset of the
EMEA corpus (Tiedemann, 2009) for the medical domain (18K tokens) and an IT corpus (18K),
extracted from a software user manual (Federico et al., 2014). Each corpus is split in partitions
of around 3,000 tokens, i.e. the daily workload of a professional translator in post-editing,
resulting in 6 partitions each.

For each translation task, we use the statistical translation toolkit Moses (Koehn et al.,
2007), where the word alignments were built with the GIZA++ toolkit (Och and Ney, 2003).
The IRSTLM toolkit (Federico et al., 2008) was used to build the 5-gram language model.

For a broader domain coverage of the generic SMT system, we merged parts of JRC-
Acquis (Steinberger et al., 2006), Europarl (Koehn, 2005) and OpenSubtitles2013 (Tiedemann,
2009), obtaining a training corpus of 37M tokens and a development set of ∼25K tokens. The
generic SMT system used in all our experiments is trained on this merged general resource. The
difference in size between the specific and the generic data is evident, i.e. approximately few
thousands vs. more than 30 million tokens. For both domains, this reflects a real CAT scenario,
where only a small quantity of domain-specific data is available.

Manual Terminology Annotation In order to evaluate the quality of the bilingual terms,
we create a terminological gold standard for the IT domain. Two annotators with linguistic
background were asked to mark all domain-specific terms in the monolingual GNOME and
KDE corpora. Domain-specificity was defined as all (multi-)words that are typically used in the
IT domain and that may have different translations in other domains. Then, the annotators had
to manually create a bilingual pair if two domain-specific terms in a source and target sentence

5 https://l10n.gnome.org/ 6 http://i18n.kde.org/
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GNOME - KDE (English) GNOME - KDE (Italian)

KX AlchemyAPI TWSC KX AlchemyAPI TWSC

# of Terms 1115 665 496 950 304 765
Precision 0.293 0.393 0.413 0.271 0.309 0.362

Recall 0.596 0.571 0.372 0.452 0.167 0.481
F1 0.393 0.466 0.391 0.339 0.213 0.412

Table 1: Evaluation of monolingual term extraction for English and Italian

were found, one being the translation of the other. The average Cohen’s Kappa on GNOME and
KDE data computed at token level was 0.66 for English and 0.53 for Italian, which corresponds
to a substantial and moderate agreement following Landis and Koch (1977). This annotation
effort resulted in the identification of 874 domain-specific bilingual terms in the two datasets.7

5 Evaluation

In this Section, we report the quality of monolingual term extraction and the bilingual alignment.
For each domain we evaluate the performance obtained by applying different approaches to the
integration of bilingual terms into an SMT system. Evaluation of the extracted monolingual
and bilingual terms is performed on the manually annotated KDE and GNOME datasets by
calculating precision, recall and f-measure. The BLEU metric (Papineni et al., 2002) is used to
automatically evaluate the translation quality of the EMEA and the IT manual datasets.

5.1 Monolingual Term Extraction
Our first evaluation concerns monolingual term extraction from English and Italian documents
provided by the KX, AlchemyAPI and TWSC extraction tools.

As shown in Table 1, KX tends to overgenerate when extracting English terms. It extracts
the highest number of expressions, which results in a high recall, but low precision. On the
other hand, TWSC extracts the least English terms. Based on F1, we observe that AlchemyAPI
is the best performing tool when extracting English terms. On Italian data, TWSC achieves the
best F1 score, while AlchemyAPI performs worst due to the lack of Italian resources within the
Linked Open Data (LOD) cloud.8 KX shows a similar behaviour when extracting terms both
from English and from Italian data, i.e. low precision and high recall. In summary, we select
AlchemyAPI as the best performing term extractor for English and TWSC for Italian, to be used
in the next phase.

5.2 Bilingual Term Alignment
In this step, we evaluate our strategies (i.e. Word Alignment and SMT n-best) to align mono-
lingual terms and compare them against the performance of Term Aligner (see Section 2.2).
We consider two different settings: in the first one, we use the two monolingual lists, which
are automatically extracted by AlchemyAPI for English and TWSC for Italian. In the second
one, instead, parallel terms are built starting from the monolingual terms, which were manually
annotated to create the gold monolingual datasets.

Focusing on the translation projections, in the top part of the Table 2 (real situation with
automatically extracted terms), we observe that the term lookup approaches, where the align-
ments are generated by word alignment and SMT n-best method, are too restrictive and output
few bilingual terms, resulting in high precision but low recall. The sentence lookup strategies
7 The annotated data are made freely available to the research community under
http://hlt.fbk.eu/technologies/bittercorpus
8 http://linkeddata.org/
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Automat. Ext. Translation Projection Term Aligner
Monol. Terms Word Alignment SMT n-best cognate threshold

sent. lookup term lookup sent. lookup term lookup 0.1 0.3 0.5 0.7

Precision 0.207 0.440 0.192 0.413 0.079 0.249 0.333 0.435
Recall 0.270 0.101 0.406 0.178 0.223 0.054 0.079 0.053

F1 0.233 0.164 0.256 0.246 0.116 0.085 0.128 0.094

Gold Translation Projection Term Aligner
Standard Word Alignment SMT n-best cognate threshold

sent. lookup term lookup sent. lookup term lookup 0.2 0.4 0.6 0.8 1.0

Precision 0.463 0.768 0.426 0.779 0.498 0.782 0.916 0.949 0.970
Recall 0.399 0.285 0.577 0.517 0.573 0.458 0.402 0.389 0.315

F1 0.425 0.415 0.483 0.616 0.526 0.577 0.558 0.549 0.474

Table 2: Bilingual term alignment using the automatically extracted monolingual terms and the
gold standard

are more tolerant, identifying more bilingual terms and having a better recall. In terms of F1,
the SMT n-best strategies have better scores compared to word alignment methods. This is due
to the possibility to select a correct target term from the n-best translations and not only from the
single option generated by word alignment. As for the Term Aligner tool, we run experiments
with different cognate similarity thresholds from 0.1 to 1.0 with steps of 0.1, and a classifier
trained on the EuroVoc data, as reported in the original paper by Aker et al. (2013). The best
performance on term alignment is achieved with threshold of 0.5, and, in general, this method
tends to align few bilingual terms but with high quality. Nevertheless, the alignment quality
is substantially lower compared to the translation projection approaches. This can be deduced
from the difference between the bilingual terms used to train the classifier and our test set.

When using monolingual terms provided by human annotators (bottom part of Table 2), we
obtain significantly higher results compared to the real scenario described before. In this case,
the SMT term-lookup method performs best. This implies that term lookup is more sensitive to
the heterogeneity in automatically extracted data than the approach based on sentence lookup.

Term Aligner often obtains a precision close to 1, which is similar to the original results
reported by Aker et al. (2013). This indicates that the method performs very good if it operates
with high-quality data like our gold standard or the EuroVoc dataset. Nevertheless, it is sensitive
to domain specificity and to the homogeneity of the terms to be aligned.

In summary, we compared several alignment approaches, i.e. Translation Projection with
Word Alignment and SMT n-best method, both in combination with sentence and term lookup.
Our evaluation included also Term Aligner with different thresholds. The SMT n-best approach
always outperforms the others, whereby Term Aligner is negatively affected by heterogeneous
data, showing the lowest performance with automatically extracted monolingual terms.

5.3 Translation Evaluation

After identifying the best tool for monolingual term extraction and the best approach for bilin-
gual alignment, we carry out the final translation evaluation, based on the EMEA and IT manual
datasets.

As described in Section 3, we split our data into several partitions and each of them is
translated by: (i) a baseline SMT system that was built with the general resource, without em-
bedding terminology; (ii) XML markup approach to embed the terminology paired with the
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IT manual Tuning Part 1 Part 2 Part 3 Part 4 Part 5 Part 6 Document level

Baseline non-inc 23.21 36.75 25.16 20.76 23.50 19.39 25.58
Baseline increm 23.21 35.61 23.31 24.10 25.47 20.40 26.00

XML markup non-inc 23.21 36.61 25.88 25.67 25.54 22.39 27.40*
XML markup increm 23.21 37.52 27.32 25.25 27.68 22.80 28.01*

Cache-based TM/LM non-inc 23.21 35.85 26.71 27.51 28.58 25.26 28.66*
Cache-based TM/LM increm 23.21 35.88 28.01 27.98 30.77 26.84 29.46*

EMEA Tuning Part 1 Part 2 Part 3 Part 4 Part 5 Part 6 Document level

Baseline non-inc 22.19 22.03 24.80 26.50 21.66 23.80 23.53
Baseline increm 22.19 22.09 24.99 27.04 21.10 24.47 23.69

XML markup non-inc 22.19 24.72 24.09 24.51 21.54 23.87 23.51
XML markup increm 22.19 22.58 23.45 26.71 22.25 26.54 24.09

Cache-based TM/LM non-inc 22.19 23.17 27.09 28.95 25.97 26.71 25.73*
Cache-based TM/LM increm 22.19 22.34 27.54 28.58 26.72 28.04 25.96*

Table 3: Automatic evaluation (BLEU) based XML markup and cache-based approach (bold re-
sults = best performance ; * statistically significant compared to baseline)

baseline SMT system; (iii) cache-based model, where the bilingual terminology was used to
generate CBTM and CBLM in support of the general SMT system. The probability passed to
the XML markup for each bilingual term is set according to the translation probability obtained
by the SMT system used to project the source term onto the target language. Since a source term
may have different translation candidates, the different translation probabilities give preference
to more probable translations. Furthermore, XML markup cannot handle overlaps between dic-
tionary entries. In our experiments, we found only 15 cases where the entries overlap, whereby
we give preference to longer source terms.

For each set of partitions, the incremental tuning was run to update the log-linear weights.
For a comparison, we also run MERT on each partition starting with flat weights (non-
incremental tuning).

In Table 3, we report BLEU scores for each partition separately (columns “Part #”), as well
as the evaluation on the whole corpus (column “Document level”). The approximate randomiza-
tion approach Clark et al. (2011) is used to test whether differences among system performances
are statistically significant at document level. Results in the table marked with * are statistically
significantly better than the baseline with a p-value < 0.05.

Comparing the baseline XML markup and the cache-based methods, we notice that the
translation performance of cache-based models always outperforms significantly all the other
methods in both domains. This is also confirmed at partition level, with few exceptions for
the initial partitions. The XML markup performs better than the baseline in both domains, but
statistical significance is obtained only for the IT domain. Among different decay functions in
the cache-based models, we report only the negative power decay function of the age, which
achieves the best overall performance. This confirms the results described in Bertoldi et al.
(2013) also when the approach is applied to a different context. To our surprise, the constant
function did not outperform the reported decay function.

At document level, the incremental tuning always outperforms the results obtained start-
ing MERT with flat weights. It is interesting to notice that the gap between the performance
obtained by the incremental tuning and the standard approach generally increases partition after
partition. This behaviour is more evident for the EMEA corpus, suggesting a more coherent
distribution of sentences in the dataset. This favourable situation allows the incremental tuning
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IT manual Part 1 Part 2 Part 3 Part 4 Part 5 Part 6

Available bilingual terms per partition 0 162 288 402 485 627
Coverage of bilingual terms in phrase table [%] 0 11.11 14.58 15.67 15.46 14.03

Coverage of source terms in source sentences [%] 0 0.80 7.86 19.79 17.64 20.21
Coverage of target terms in reference sentences [%] 0 77.78 91.75 92.79 82.90 75.80

EMEA Part 1 Part 2 Part 3 Part 4 Part 5 Part 6

Available bilingual terms per partition 0 259 402 540 662 761
Coverage of bilingual terms in phrase table [%] 0 11.58 11.19 11.30 10.12 9.99

Coverage of source terms in source sentences [%] 0 13.67 17.34 24.44 20.57 24.34
Coverage of target terms in reference sentences [%] 0 83.04 69.37 73.75 69.96 70.90

Table 4: Extracted and used bilingual terms for the IT and medical domain partitions

to better leverage the optimized weights of the previous partitions. Although the IT data show
different levels of difficulty in the partitions (e.g. Partition 2 is easier to be translated than Par-
tition 6), the incremental tuning is still able to smooth such differences and computes weights
capable to produce better translations. The proposed framework has shown to be a valuable
alternative to the well known XML markup method outperforming it in both domains.

Analysis of bilingual terms in test set To better understand the performance of our frame-
work, Table 4 reports additional statistics related to (i) the number of extracted terms used by
the SMT system to translate the current partition (ii) the number of bilingual terms covered by
the baseline phrase table, (iii) the percentage of unique terms that have the source side in the
source part of the test set and (iv) the percentage of terms that have the source side in the source
part of the test set and the target side in the reference part of the test set.

As expected, the number of terms increases after each partition giving a larger contribution
to the SMT system. Analysing the percentage of extracted terms covered by the phrase table,
we noticed that on average around 14% of the terms in the IT domain are known by the baseline
system, while only 10% are covered for the medical domain. On one hand, this explains the
lower performance on average of the baseline system translating the medical domain in com-
parison to the IT domain. On the other hand, it does not motivate the larger improvements for
the IT compared to the EMEA domain, because less terms can contribute to enhance translation
quality. Larger improvements in IT are also not supported by the larger number of source terms
covered in the medical domain (ninth versus fourth row in Table 4), which indicates that more
EMEA bilingual terms are used to cover source spans than the IT domain.

These quantities do not consider two important aspects. The first one is the impact of
the target terms on the reference sentences. In the IT, we are able to extract more terms that
have the correct translation in the reference test set (on average 85% for IT with peaks larger
than 90% against 70% for EMAE). The second aspect is the level of repetitiveness of terms in
each document. To estimate it, we compute the repetition rate (Tiedemann, 2010) that measures
how often n-grams are repeated in the whole document. Although it is not limited to domain-
specific terms, since it includes all possible n-grams, we consider it a good approximation.
Both documents are quite repetitive (32.49 for IT and 12.94 for EMEA), but in the IT corpus
repetitiveness is more than twice as high than in the EMEA one. These two aspects suggest that
the IT corpus contains more domain-specific terms and we are able to provide translations that
better fit the references. This last aspect is crucial for the XML markup that, by definition, is
more sensitive to the quality of bilingual terms than the cache-based approach. This is confirmed
in the EMEA experiments where the XML markup is not able to significantly outperform the
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baseline, while the cache-based approach can produce more than 2 BLEU points improvements.

Manual evaluation of translated sentences In order to investigate to what extent the ap-
proaches differ from a translator’s point of view, we manually inspected the translations pro-
duced by the XML markup and cache-based approach. The quality of the two translation ver-
sions generally reflects the results reported in Table 3. The XML markup approach tends not
to take into account the surrounding context of a translated string, while the cache-based one
usually shows a better context-awareness. Specifically, it usually provides a better agreement
between adjective and noun (which in Italian bear gender and number information). It also tends
to provide more frequently the correct agreement between noun and verb, and even to translate
English verbs in the progressive form as nouns, when appropriate. Instead, sentences translated
with XML markup often contain gaps as well as agreement and reordering issues because not
all terms are translated. We report an example where the source sentence is “Following are the
steps for windows operating system.”. The XML markup output is “seguente sono i passaggi
per finestre operanti data del sistema.”, while the cache-based translation “seguenti sono i pas-
saggi per finestre sistema operativo.”. In the second version, the agreement between “seguenti”
(“following”) and the verb is correct, while it is missing in the XML markup output. Besides,
the cache-based model translated “operating system” as a multi-word (“sistema operativo”),
while it is translated word by word in the XML markup version.

These differences are more evident in the medical domain, where the language is highly
specific and noun phrases are often composed by complex noun chains (e.g. ‘an in vitro mam-
malian cell assay’, ‘increased lipid and uric acid values’), with implicit underlying dependen-
cies. This is confirmed also by the results reported in Table 3, showing that translation quality
is generally lower than for the IT domain.

6 Cache-Based Model vs. Online Adaptation Model with cdec

To complete our evaluation, we compare the XML markup and the cache-based approach with
the Realtime Adaptive Translation Systems with cdec,9 (henceforth Realtime cdec) an online
model adaptation system. Differently from the cache-based approach, it automatically extracts
new translation rules from the whole source and post-edited sentences and adds them to the
translation grammar. This system takes advantage of cdec (Dyer et al., 2010), a standalone
decoder, aligner, and learning framework for SMT. cdec allows us to train word-based and
phrase-based models, as well as models based on lexicalized synchronous content-free gram-
mars (SCFG), which was used in our experiment. The adaptation of cdec to work in real time
requires the use of Fast Align (Dyer et al., 2013) to perform on-the-fly word alignment between
source and post-edited sentences. This makes possible the incremental addition of information
to the translation models after a sentence is translated. Furthermore, Realtime cdec adapts the
Bayesian language model using the hierarchical Pitman-Yor process approach, whereby MIRA
(Chiang, 2012) is used to optimize the discriminative parameters of the decoder.

In our experiments we use the Realtime cdec similarly to the scenario described in Section
3.2. Each sentence pair (source, post-edition) from partitionn−1 is added to the model and
used by MIRA to optimise the weights. The initial weights employed by MIRA for the first
sentence pair at time n − 1 are obtained after optimizing the system on the last sentence pair
of partitionn−2. When all the sentence pairs from partitionn−1 are added, all the source
sentences from partitionn are translated. It is worth to notice that this setting favours the
Realtime cdec compared to the cache-based or XML markup method, because it adds the whole
sentence and not only the bilingual terms.10

9 http://www.cs.cmu.edu/˜mdenkows/cdec-realtime.html
10 The cache-based model can also take advantage of non-terminological n-grams but it requires alignment between
source and post-edited sentences, which is out of the scope of this paper.
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IT manual Part 1 Part 2 Part 3 Part 4 Part 5 Part 6 Document level

Cache-based TM/LM 23.21 35.88 28.01 27.98 30.77 26.84 29.46*
Realtime cdec 14.25 14.36 27.56 35.85 31.21 39.04 27.90*

Table 5: Comparison between the cache-based method with Moses and the Realtime Adaptive
Translation Systems with cdec

Table 5 illustrates the performance translating the IT manuals using our proposed approach
and the Realtime cdec. Although both systems were tuned on the same development set, we ob-
serve that cdec/MIRA needs more parallel data to adjust the pre-tuned parameters when translat-
ing a new domain.11 Only after adding the sentence pairs from the first three partitions, Realtime
cdec is able to outperform the cache-based approach and taking advantage of the content of the
whole sentences from the next partitions to substantially improve over the cache-based model.
On the contrary, the cache-based approach tuned with MERT shows to be less affected by the
change of a domain and performs better with the first partitions at cost of lower performance in
the last partitions resulting in a better BLEU score at document level.

Since Realtime cdec enhances its translation capability using the whole source and post-
edited sentences, it is difficult to measure the impact of terminology. To overcome this problem,
we evaluate only the correctness of the translated terms in the target sentences, and not the
whole sentence itself. Therefore, we asked a linguist to manually evaluate the bilingual terms
automatically extracted from the IT manuals. 403 out of 627 were marked as correct translation
in the domain and we used them to check if our approach and the Realtime cdec are able to
correctly translate these terms. On the whole document, we counted 1,538 occurrences of
extracted terms in the target sentences generated by cdec. Although the cache-based model is
not using the alignment information from the source and post-edited sentence, we counted 1,495
occurrences of terms in target sentences. For both methods, around 90% of these occurrences
are correct translations in the references. Moreover, we measure an overlap of 85% of bilingual
terms (appearing in source, target and reference sentences) between the cache-based method
and Realtime cdec. These results show that both methods, Realtime cdec with the alignment
information and our proposed framework embedding the extracted terminology, are able to
correctly manage the translations of the domain-specific vocabulary.

7 Related Work

Our work is based on a framework that includes the monolingual extraction of domain-specific
terms from a small parallel corpus, bilingual term alignment, and the integration of the bilingual
terminology into an SMT system. In the past years, a number of techniques have been applied
to the task of bilingual multi-word extraction from parallel or comparable corpora. Most of
the work (Daille et al., 1994; Wu and Chang, 2003; Vintar and Fišer, 2008; Kim et al., 2009)
focuses on identifying monolingual candidates using linguistic knowledge, statistical methods,
or a combination of the two.

As for the bilingual alignment of terms, Aker et al. (2013) cast this task as a classification
problem and use the EuroVoc thesaurus as training data. Their work mainly focuses on the
quality of the extracted alignments, where the performance often reaches 100% precision. Our
approach, however, shows a better performance due to the domain specificity of our dataset.
The alignment algorithm proposed by Bouamor et al. (2012) is based on a vector space model.
The entries in the vectors are co-occurrence statistics between the terms computed over the en-

11 We performed experiments with different C-values of 0.1, 0.01 (default), 0.001, 0.0001, whereby we obtained best
results using a C-value of 0.0001 for initial parameter tuning and 0.01 in the learning approach during translation.
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tire corpus. Furthermore, their embedding methods focus on concatenating the newly obtained
bilingual data to the existing corpus or adding entries directly into the phrase table. The neces-
sity of dealing with several domains implies the need to keep a large static translation model
separate from specific parallel data, e.g. bilingual terminology. Thurmair and Aleksić (2012)
extract terms and lexicon entries from SMT phrase tables. In their approach they apply lin-
guistic, lexicon and frequency filters to obtain good lexicon entries. Similarly, we also access
the phrase table to build our bilingual terminology, whereby our filter relies on the term and
sentence lookup approach.

Furthermore, there has been research done on the integration of domain-specific parallel
data into SMT, e.g. dictionaries or bilingual terminology, either by retraining new and general
parallel resources or adding new entries to the phrase table (Langlais, 2002; Ren et al., 2009;
Haddow and Koehn, 2012; Pinnis et al., 2012). Furthermore, Okita and Way (2010) investi-
gate the effect of integrating bilingual terminology in the training step of an SMT system, and
analyse in particular the performance of a word aligner sensitive to multi-word expressions and
translation smoothing. As opposed to their approach, we do not have prior knowledge about the
bilingual terminology, since we extract it on the fly based on the document to be translated. As
a post-processing step, Itagaki and Aikawa (2008) propose a way to identify terminology trans-
lations from SMT output and automatically swap them with user-defined translations. Since
the manual development of terminological resources is a time intensive and expensive task,
our framework continuously builds bilingual terminology knowledge from the already trans-
lated sentences. In order to tackle term translation and the out-of-vocabulary issues, Arcan
et al. (2012) used the multilingual web to built a parallel domain-specific corpus based on the
vocabulary to be translated. Additionally, Arcan et al. (2014) extend their work focusing on
disambiguated term extraction using the rich lexical and semantic knowledge of Wikipedia.

8 Conclusion

In this paper, we propose a framework to enhance translation quality by exploiting bilingual
terms extracted from the parallel sentences daily produced by professional translators. The
results show that an SMT model enriched with the identified bilingual terms substantially im-
proves translation quality in terms of BLEU score over a generic baseline system. Furthermore,
we investigate the integration of the extracted bilingual terms into the SMT system. For the first
time we report on the usage of the cache-based model in the context of terminology embedding,
whereby we compare results with the widely-used XML markup. The ability of the cache-based
model to take into consideration the surrounding context of a translated term allows it to out-
perform the XML markup approach. In addition, we report a better performance in bilingual
term alignment compared to the state-of-the-art Term Aligner.

In the future, we plan to integrate the proposed framework into a professional post-editing
environment, measuring the translators’ productivity gain using automatically extracted termi-
nology. Furthermore we plan to combine the strengths of the cache-based model treating a
term as one translation unit and the Realtime cdec approach of embedding the incrementally
extracted bilingual knowledge from the whole sentence into the translation system.
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