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Abstract
The ability to quickly incorporate incoming training data into
a running translation system is critical in a number of ap-
plications. Mechanisms based on incremental model update
and the online EM algorithm hold the promise of achieving
this objective in a principled way. Still, efficient tools for
incremental training are yet to be available. In this paper
we experiment with simple alternative solutions for interim
model updates, within the popular Moses system. Short of
updating the model in real time, such updates can execute in
short timeframes even when operating on large models, and
achieve a performance level close to, and in some cases ex-
ceeding, that of batch retraining.

1. Introduction
Statistical Machine Translation (SMT) systems largely de-
pend on the availability of parallel corpora for training and
tuning. Even more crucial is the availability of sufficient in-
domain training data. That is, parallel corpora from the same
domain the system will be used for. Methods for dealing with
insufficient in-domain data typically fall within the domain
adaptation line of research. Such methods strive to make the
best possible use of the in-domain data or to obtain additional
bilingual data that is similar to the target domain. Generally
speaking, the more in-domain data is available, the better is
the translation.

New training data can become available as more trans-
lations are being produced (e.g. in the case of the Euro-
pean Parliament proceedings), through focused data collec-
tion, or as the result of user feedback to the translation sys-
tem. Specifically, post-editing, i.e. manual correction of au-
tomatic translations, is a useful source for training data.

An additional challenge beyond obtaining sufficient in-
domain training data (or any training data), is feeding the
new data into an existing up-and-running translation system.
A standard way to comprehensively update an SMT model
based on new data is to re-train the model with the entire data
that is available at a given time. This kind of training is often
referred to as batch (re-)training. Such a process is time con-
suming and intensive in computational resources, especially
when large datasets are involved. In consequence, it may not
be feasible to run it often enough, resulting with long lags be-
tween two model batch updates, in which the running system
is not up-to-date with the newest possible model.

Incremental training algorithms address this issue by en-
abling an SMT model update based on the new data rather
than retraining the model from scratch. This is performed,
for instance, by using online versions of the Expectation
Maximization algorithm, that is employed in the alignment
step of the SMT model construction. Incremental training
for SMT models is a relatively new line of research, and ma-
ture tools to perform the required updates efficiently are still
largely missing.

Still, as we show in this paper, other configurations of the
SMT system are also providing means for utilizing new data
in between batch updates. We compare several such config-
urations, where in-domain data is based on spoken language
transcriptions, to assess which methods are practically useful
for quickly updating the model, especially when the new data
belongs to the target domain.

Consider the following setting of an automatic translation
system that is either a standalone translator or as part of a
larger software system. The system is deployed and is being
used, as more training data is becoming available constantly,
e.g. through users who provide corrections to the system’s
translations. To use this data, two kinds of update cycles are
employed: (i) a long cycle (e.g., a week), at which end we
can perform a slow update, that can include re-training, tun-
ing and any other time-consuming tasks; (ii) a short cycle
(a day, for instance) in which we wish to carry out a quick
update consisting of only light-weight tasks that are guaran-
teed to complete in a timely manner. In these short cycles the
model is updated with the newly obtained data. The goal is
to improve the model with respect to the previous slow up-
date, and reflect the received feedback; we do not necessar-
ily expect to obtain as good a performance as the following
slow update, but hope to be in the same ballpark. The fo-
cus of this work is in identifying the most appropriate setting
for quick updates, both in terms of translation quality and of
time. That, with tools that are currently available.

In the remaining sections we provide (Section 2) a short
background about incremental training and domain adapta-
tion techniques, and discuss the effort of each of the steps
in building a phrase-based SMT model; we present the con-
figurations for quick updates that we assessed (Section 3),
and describe the experimental setting (Section 4). Section 5
presents the experiments we conducted and their results, and
Section 6 summarizes the practical takeaways of this study.



2. Background
2.1. Incremental training for SMT

Incremental training methods provide a principled way for
updating an SMT model when more data is received, with-
out re-generating the model from scratch. In addition to ef-
ficiency, such methods hold the promise to reflect updates
immediately, without work interruption, and are therefore of
major importance in many scenarios.

Incremental training for MT often makes use of an online
version of the Expectation Maximization (EM) algorithm [1].
EM is used for the purpose of aligning the bilingual corpus
while computing translation probabilities [2]. In Online EM,
the model parameters are updated after each example or a
small set of examples (mini-batch), and not for the entire
dataset at once. Naturally, online EM is faster than batch
EM, but may be less stable.1

Ortiz-Matrínez et al. [4] use incremental online EM [5] to
update a standard log-linear model. They apply it in the con-
text of Interactive Machine Translation, where conveying to
the user the impression of a highly adaptive system is partic-
ularly important. A method for incrementally updating SMT
models was also proposed within the SMART project [6]. A
large set of features, on top of the standard translation fea-
tures, is extracted from (simulated) post-edited translations.
While the weights of the standard features are tuned offline
and remain stable, the weights of the new ones are updated
after each source-translation pair. Levenberg et al. [7, 8] use
stepwise EM for updating the translation model parameters.
They use IBM Model 1 [2] with HMM alignments [9], col-
lecting counts for translations and alignments and updating
them by interpolating the statistics of the old and the new
data. We employ and assess an implementation of this algo-
rithm within Moses (see Section 5.7).

2.2. Domain adaptation

Domain adaptation is the task of adapting a statistical model
that was trained on a certain domain to perform well on an-
other domain. Generally, domain refers to the distribution of
the (training or test) instances; in language-based tasks this
term may refer to any of topic, style, dialect, genre or a com-
bination of thereof [10].

Domain adaptation is of major importance for SMT, and
in particular for spoken language translation, where bilingual
training data is often scarce, and models are thus heavily re-
lying on out-of-domain corpora for training. Some methods
aim to optimize the use of available corpora through data se-
lection – using only the part of the training data that is more
similar to the target domain, or by instance-weighting, i.e.
giving each example a weight that corresponds to its similar-
ity to the target domain [11, 12, 13]. In [14], such adaptation
in performed on-the-fly without assuming the target domain
is known in advance. Other methods apply focused domain-

1See [3] for a detailed discussion about the variants of online EM.

specific data acquisition, e.g. by web crawling [15].
In many scenarios, though, little or no in-domain data is

accessible in advance. It may be attained at a later stage,
e.g. via user feedback to the translation, in the form of post-
editing. When such data becomes available, it is desirable to
update the model with this data without much delay.

[16] start with an in-domain phrase table, which is then
filled-up with new entries from other corpora. In- and out-
of-domain entries are distinguished with an additional fea-
ture. A more explicit separation of domains is found in the
mixture models approach. Training data is divided into com-
ponents according to the different domains. A model (either
a translation model or a language model) is trained for each
component separately and the models are then weighted and
combined to form a complete model [17, 18]. We use this
approach in some of the configurations we assess. However,
our goal is different: we focus on the capability to perform
the updates quickly. Fortunately, as our results show, these
considerations often go hand in hand, and methods that work
well for domain adaptation are useful also for quick updates.

2.3. SMT model generation

For completeness, we briefly describe the main steps in gen-
erating a basic phrase-based SMT model, from a parallel cor-
pus to a tuned model. Our description corresponds to the
steps as done in Moses [19], but is typical to most phrase-
based SMT systems.

• Preprocessing: The model generation process starts
with preprocessing of the bilingual parallel (sentence-
aligned) corpus, including tokenization, lower-casing,
and removal of sentences that are, e.g., very long.

• Alignment: Following some file preparation steps,
GIZA++ [20], an implementation of the IBM Models,
is applied in two directions (source-target and target-
source) to produce word alignment within each source-
target sentence pair. A symmetrization of the GIZA
bi-directional word alignments follows.

• Phrase table construction: Based on word align-
ments, a translation model is generated: lexical (word)
translation probabilities are computed and phrases are
extracted, scored and stored in a phrase table (PT).

• A reordering table is constructed to model position
change of phrases between the source and the target.2

• A language model (LM) is generated from the target
side of the parallel corpus and possibly additional tar-
get language monolingual data.

• Lastly, tuning takes place in order to optimize the
weights of individual scores (features) within the com-
plete model.

2The abovementioned phrase extraction is also needed for this step; we
chose to include it within the translation model generation step since, as
explained later, we do not update the reordering model in this work.



Large phrase tables, reordering tables and language mod-
els that cannot fit into memory are often binarized for quick
loading and access at translation time. Yet, binarization is
not feasible when very large tables are concerned. Reducing
the size of the tables through filtering based on a given test
dataset is not practical in real world scenarios, and is slow to
process as well, as it also depends on the size of the tables.

Of the above, alignment is the most time-consuming step;
phrase table construction may also requires a substantial
amount of time, especially when binarization is performed;
tuning involves multiple iterations (typically over 20) in
which a development set is translated and evaluated, and is
therefore a highly time-consuming task. Indeed, some of the
steps can be parallelized, yet not all. For instance, in MGIZA
[21], a multi-threaded version of GIZA++, sentences-pairs
are aligned in parallel, saving a substantial amount of time;
still, parameter estimation is based on counts that are accu-
mulated from all aligned sentences, and is not parallelized.
What is often referred to as batch training consists of all the
above steps applied to the entire data.

Figure 1 shows the relative time required to complete
each task, based on an experiment we conducted, with 1 mil-
lion sentence-pairs for training and 1,000 sentence-pairs for
tuning. Both datasets were taken from the Italian-English
corpus of Europarl version 7 [22]. As elapsed time depends
on the specific machine and its load at the time of measure-
ment, we use the Unix time command for obtaining du-
ration information. We look at the accumulated CPU time,
which is roughly equivalent to running on a single CPU. For
intuition, the alignment task used up approximately 21 CPU
hours, which corresponded to about 6 actual hours when run-
ning MGIZA with 4 cores. For comparison, under the same
machine configuration, alignment of 2,000 sentences took
2.5 CPU minutes, and 10,000 sentences required less than 13
minutes. This experiment was performed on a 64 bit Linux
machine, with four 2.67GHz cores and 50GB of RAM.
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Figure 1: Percentage of the time required by each task of the
phrase-based model generation. The times shown here include the
binarization of the corresponding model.

3. Quick update configurations
Let’s recall the scenario we take interest in: An SMT sys-
tem is trained based on a large out-of-domain corpus and
is meant to be used on a different type of dataset, namely
spoken-language texts. The translation service is made avail-
able and gradually in-domain data is flowing in. With this
data we wish to update the system in the most efficient and
effective way. We expect best translations to be produced
when we use all the data we have at our disposal; at the same
time, we do not wish to carry out intensive processes unnec-
essarily. We therefore carry out batch updates periodically
(long-cycles), and in the interim perform quick, short-cycle
updates using the newly obtained data. We wish to identify
the most useful configuration – in terms of time and transla-
tion quality – for performing such short cycle updates. For
that purpose, we examined the following configurations for
quick model updates. Each has its pros and cons, as dis-
cussed below. Figure 2 depicts their phrase table settings.

1. OLD-NEW: In this configuration we use two phrase
tables. We maintain all previously obtained (“old”)
training data, both in-domain and out-of-domain, in
one phrase table and the newly obtained data (“new”)
in a second table. To update the model, we only need
to preprocess and align the new data on its own and
generate a phrase table from it. This is therefore a very
quick way to perform updates.

2. IN-OUT: This setting uses two phrase tables as well,
but now the out-of-domain data is maintained in one
table and the in-domain data in another table. The idea
is to allow better model tuning by letting the tuning
algorithm give preference to the in-domain table. The
drawback is that all in-domain data needs to be pro-
cessed at every short-cycle update, implying a longer
process. As long as in-domain data is limited, this is
not an issue. On the contrary, it can contribute to im-
proved alignment quality and phrase table statistics.

3. 3-TABLES: When in-domain data accumulates, the
IN-OUT setting may become too slow. We therefore
assess another setting that can potentially combine the
benefits of the two above configurations. Here, we use
three phrase tables: one for out-of-domain data and
two for in-domain. The first among the in-domain ta-
bles is used for all previously obtained in-domain data,
and the second for the newly obtained data. This way
we achieve both separation of in- and out-of-domain
data and a quick processing of the new data.

4. BATCH: This is a standard setting for phrase-based
SMT model generation, used for comparison. The en-
tire training data is concatenated and used together,
and a single phrase table is produced. One potential
advantage is, as above, an improved alignment quality.
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Figure 2: Phrase tables in the different configurations. OUT de-
notes out-of-domain data; IN1 is in-domain data previously ob-
tained, and IN2 is the in-domain data we have just received and
wish to use to update the system with. The dashed lines designate
the data that needs to be processed in each update cycle.

In addition to the above, we have experimented with in-
cremental updates via Moses’ dynamic suffix array. We de-
scribe that in Section 5.7.

Required effort Table 1 details which task needs to be per-
formed in each configuration, and the amount of work that
has to be done. We explain the required effort of each con-
figuration through an example, whose timeline is presented
in Figure 3: We consider a specific point in time of an op-
erational translation system. This system was trained with
1 million out-of-domain sentence-pairs before any in-domain
data was available (S1 in the figure); over time, 30,000 in-
domain bi-sentences were received and the system has been
already updated with them in a slow update cycle (S2). Be-
tween the previous slow update and the current point in time,
10,000 in-domain sentences have been obtained, and fed into
the system (q21); now we receive 5,000 more, and wish to
carry out quick update q22.

1M 

S1 S2 S3 

5K 

q22 q21 q23 

10K 30K 

Figure 3: Updates timeline, as described in the example in Sec-
tion 3. Si denotes a slow update and qij a quick update. Boxes
represent the available data: dark-shading for out-of-domain and
light-shading for in-domain.

Config./ Task Prep. Alignment PT LM

OLD-NEW 5K 15K 15K 15K
IN-OUT 5K 45K 45K 45K
3-TABLES 5K 15K 15K 15K
BATCH 5K 1,045K 1,045K 1,045K

Table 1: An example of the required effort of each configuration.
We consider as “new” all data received since the last slow update.

Here we assume that all data received in between slow
updates is small and can be processed together. Preprocess-
ing need not be repeated, but the other steps may perform bet-
ter given more data. As seen in the table, both OLD-NEW and
3-TABLES require minimal processing. The difference be-

tween them is the way the previously-obtained data is stored;
IN-OUT requires a more substantial amount of processing,
and BATCH requires all the data to be processed from scratch.

So far, our discussion focused on phrase tables. Con-
cerning the LM, Table 1 assumes a setting where the LMs
configuration is equivalent to that of the phrase tables. Our
experiments showed that – at least for the language pairs we
assessed – the reordering model does not significantly affect
translation performance; thus, we do not update it in any of
the quick update settings. Tuning is discussed in Section 5.6.

4. Setting
4.1. Datasets

We used three datasets in our experiment, two spoken-
language parallel corpora, transLectures (TL) and WIT3

(WIT3 below), and Europarl that represents a large out-of-
domain corpus, of non-spoken-language.

transLectures
The first spoken-language dataset was obtained via the
transLectures project that is addressing the transcription and
translation of scientific video lectures.3 Translating from En-
glish to French, we used the entire datasets that were avail-
able at the time of the experiments. These consisted of
merely several thousand sentence pairs, that were produced
through manual post-editing of the automatic transcription,
followed by post-edition of the automatic translation of the
transcriptions. The continuous text of the lectures was split
into sentences based on long silences in the speech and with a
maximal sentence-length constraint. This dataset and its pro-
duction represent a typical scenario were in-domain spoken
language data is scarce, hard to collect and slow to arrive.

• Training set: ∼4,000 English-French sentence pairs.
• Development set: 1,000 bi-sentences, used for tuning.
• Test set: 1,360 sentences-pairs.

WIT3
Our first round of experiments was conducted on the TL data.
To confirm the validity of the results across datasets and lan-
guage pairs, and to allow reproducing our results through a
freely available resource, we used another spoken-language
dataset, WIT3 [23]. WIT3 (Web Inventory of Transcribed
and Translated Talks) is a parallel corpus created from tran-
scription and translation of TED talks.4 We used a different
language pair, Italian to English, and 10-times as much train-
ing data as available in the TL dataset.

• Training set: 40,000 sentence-pairs from the Italian-
English WIT3 corpus.5

• Development set: 1,000 bi-sentences of that corpus.
• Test set: 1,000 bi-sentences from the above corpus.

3http://www.translectures.eu/
4http://www.ted.com
5Downloaded from https://wit3.fbk.eu

http://www.translectures.eu/
http://www.ted.com
https://wit3.fbk.eu


Europarl
For each language-pair we used, as part of the training set of
most configurations, 1 million Europarl v. 7 bi-sentences.

4.2. Experimental setup

Phrase-based SMT Moses [19] was the translation system
used for our experiments. When more than one phrase ta-
ble was employed, we used the either option, meaning that
translation options are searched for in either table with no
preference to one table over the other, and while not expect-
ing every translation option to be present in both tables.

Alignment Some experiments assessed the use of incre-
mental training and of dynamic suffix arrays. For fair com-
parison, we used Incremental GIZA [7] in all our experi-
ments rather than GIZA++. However (with the exception of
the experiments described in Section 5.7), we did not use its
incremental capability.

Language Model We trained 5-gram language models on
the target side of the training set(s) using SRILM [24], with
modified Kneser-Ney discounting [25].

Tuning Model weights were tuned with batch MIRA [26].

Evaluation We use Smooth (sentence-level) BLEU [27],
and report the average score over the test set sentences. All
our evaluations were performed on lower case, tokenized
texts, using the standard Moses tools for preprocessing.

5. Experiments and results
In this section we present experiments conducted with the
TL and WIT3 datasets, and their results.

5.1. Batch updates

We start by providing the results of “regular” batch updates,
where the entire training set is used as a single corpus. The
first row of each dataset in Table 2 shows the baseline, when
no new data is used. This is the starting point of a system
that was trained on a large amount of out-of-domain data; in
the second row we show the result when 4K (TL) or 40K
(WIT3) bi-sentence are used to update the phrase table (i.e.
the translation model), but not the LM or the reordering table;
the third row shows results of updating all three.

Dataset Configuration BLEU

transLectures
Baseline 23.9
BATCH, PT only 27.9
BATCH, complete 28.3

WIT3
Baseline 29.4
BATCH, PT only 30.9
BATCH, complete 30.7

Table 2: Results of batch updates.

Unsurprisingly, the addition of the new in-domain data to
the phrase table greatly improves the translation quality; up-

dating the LM and reordering tables adds a bit more on top
of that for transLectures. As mentioned, initial experiments
showed that reordering had insignificant impact on results,
and improvements may thus be mostly attributed to the LM
update; we therefore assessed the performance of all follow-
ing models without updating the reordering table.

5.2. Quick updates

We now evaluate the performance of quick update models.
In these experiments we assume we are about to perform an
update equivalent to q21 in Figure 3. That is, we have re-
ceived some in-domain data earlier, performed a slow update
since, and now receive additional in-domain data, which we
use to quickly update the model. Table 3 shows the results
of the three configurations where only the phrase table is be-
ing updated with the new data, i.e. the language model and
the reordering model are not updated at all. While using the
same amount of data as for the batch updates in Table 2, and
even with this partial model update, each of these configu-
rations outperforms the batch update, over the two datasets.
This result is consistent with prior work on domain adap-
tation (e.g. [17, 18]), but the important aspect that we are
concerned with is that this update is much faster. Instead of
processing over a million sentence pairs, only up to 4,000
(TL) or 40,000 (WIT3) need to be handled.

Dataset Configuration BLEU

transLectures
OLD-NEW 29.4
IN-OUT 29.7
3-TABLES 30.2

WIT3
OLD-NEW 31.2
IN-OUT 31.7
3-TABLES 31.2

Table 3: Quick updates, where only phrase tables are updated.

5.3. Quick updates of the language model

Next, we evaluate the performance when the LM is also up-
dated. We use multiple LMs, separated the same way as the
phrase tables: OLD-NEW and IN-OUT use two LMs, and 3-
TABLES, uses three. This allows quick update of this model
as well. Table 4 shows the results of this set of experiments.

Dataset Configuration BLEU

transLectures
OLD-NEW 31.2
IN-OUT 31.8
3-TABLES 31.6

WIT3
OLD-NEW 32.3
IN-OUT 33.1
3-TABLES 32.3

Table 4: Quick update results, with matching LM and phrase table
configurations.

In all cases, results are improved relative to updating only



the phrase-table (Table 3). Updating the LM was expected to
help, yet here we experimentally see that even a quick LM
update achieves significant improvements, and is useful for
our goal. The best configuration is IN-OUT for both datasets.
This is the slowest of the three configurations; hence, de-
pending on the data size, the other options may also be con-
sidered, and in particular the 3-TABLES option.

We have seen that quick LM update on top of the phrase
table helps; we now wish to verify that updating the LM
alone is not sufficient. Table 5 shows two such experiments
on the WIT3 dataset. In the first, the target side of the WIT3
training corpus was added to the Europarl corpus to generate
a single LM; in the second, the same WIT3 data was used
to produce a separate LM. Note that the first among these is
not a quick update per-se. Yet, LM generation is much faster
than phrase table construction; if the performance is compet-
itive, this can also be an option to consider.

As it turns out, training of a single LM with the addi-
tional data did not improve results relative to the baseline.
Possibly, in-domain data (consisting of less than 4% or the
training data in this case) is diluted in the entire set. More
importantly, we see that the quicker update where the LMs
are separated, is better. The performance is similar to the
configuration where only the phrase table is updated but is
inferior to all configurations where both models are updated.

Configuration BLEU
Single LM 29.4
Separate LMs 31.4

Table 5: WIT3, updating only the language model.

5.4. Separating the LMs for batch training

Following the above results where LM separation helps, we
assess this option with batch updates as well. Here we main-
tain a single phrase table, and separate only the LMs. This
setting is still slow, yet somewhat quicker than a complete
batch update since the previous LM need not be generated,
just the new one. The more time-consuming steps of align-
ment and phrase table construction are still necessary.

Dataset Configuration BLEU

TL
BATCH, single LM 28.3
BATCH, separate LMs 31.6

WIT3
BATCH, single LM 30.7
BATCH, separate LMs 32.6

Table 6: Comparison of batch configurations, with and without sep-
arating the LMs for in/out-of domain data. The single-LM configu-
rations are the same ones shown in Table 2.

Table 6 shows that LM separation significantly improves
results also when the PT is batch-trained, and while not con-
sidered quick, it is useful to separate the LMs between do-
mains also in this case. The results are still inferior to those

obtained by a complete (quick) in-out separation, and are just
slightly better than other quick configurations in Table 4.

5.5. No-adaptation

So far our results included two types of datasets. We also
wish to understand the effect of the different configurations
when only a single domain is concerned. In this setting, IN-
OUT and 3-TABLES are not relevant, only OLD-NEW is, with
or without phrase table and LM separation. The TL data is
too small for this experiment, and we use only WIT3, train-
ing a model with 30K sentence-pairs and updating it with
additional 10K. The results are shown in Table 7. The first
row shows the baseline result before the 10K dataset is used,
and the second shows the result where all data is trained to-
gether in a batch setting. The next two rows show quicker
updates: the first – and the quickest – where both phrase ta-
ble and LMs are separated between old and new data, and the
second, where only the phrase tables are separated.

Configuration BLEU

Baseline 28.2
BATCH 29.2
OLD-NEW 28.5
OLD-NEW, single LM 28.9

Table 7: WIT3 results, where only in-domain data is used.

Now that domain adaptation is no longer a factor, BATCH
achieves the best result. Here, we can see the benefit of gen-
erating models using the entire data. Quick updates are not
far behind, and are faster to carry out. In this setting, sep-
arating LMs of the same domain is not useful, and a better
model is obtained when more data is used. Notice, though,
that these scores are inferior to those obtained in the previous
experiments. Out-of-domain data is very useful, and as this
is case, quick update methods should still be considered.

5.6. Tuning

Each of the above models was tuned individually before be-
ing evaluated. Still, separate experiments show that tuning is
not strictly required for every update. Tuning is likely nec-
essary when a configuration is changing, e.g. in terms of
components, the data split between them, or the balance be-
tween the datasets. When these remain relatively fixed, and a
small amount of data is added, tuning may be skipped. Two
examples are shown in Table 8. In each, the first row shows
the result of a model trained with the Europarl corpus and
with partial TL data. The next two models (rows 2 & 3 for
each experiment) use additional 1,000 bi-sentences and differ
only in the tuning – while the first was re-tuned, the second
was not, and used instead the tuned weights of the baseline
model. We see that by re-tuning we obtain a small gain in
performance; yet, we greatly lose in terms of time. In many
cases, then, tuning can be skipped for intermediate updates,
and reserved only for slow updates.



Setting Configuration BLEU

TL, 2K; IN-OUT

Baseline 27.76
Re-tuned 28.45
Not re-tuned 28.31

TL, 4K; OLD-NEW

Baseline 28.51
Re-tuned 29.37
Not re-tuned 29.19

Table 8: Tuning with all available data vs. using a model with the
same configuration tuned with a smaller amount of data.

So far we have seen several options for model updates
that can be applied very quickly. Using the Moses server,
once an updated model is ready, it can be loaded into memory
practically instantaneously, replacing a previous instance of
the server that was loaded with a previous model. That is,
as long as all large models are binarized. We can assume
binarizing is done during slow updates, and that small models
can be loaded quickly and fit into memory easily. With IN-
OUT we run into the risk that in-domain data also becomes
large; this is not an issue for the 3-TABLES configuration,
where the processed data always remains small.

5.7. Incremental training and dynamic suffix arrays

We have extensively experimented with incremental GIZA,
and with updates through the dynamic suffix array in Moses.6

Suffix arrays constitute an alternative to phrase tables, where
the entire training data is maintained in memory rather than
in a phrase table [28]. Dynamic suffix arrays [7] further en-
able inserting or deleting training instances, thus updating the
translation model without retraining. Although very efficient
in comparison to batch training, the process of incrementally
updating a model with these tools is not as fast as one would
expect. Apart from preprocessing and alignment of the new
data (which are required in any case), it requires, prior to the
alignment, updating the vocabulary and cooccurrence files,
as well as the HMM probabilities. These statistic updates,
which operate over the respective files of the entire data, need
to be done independently of the size of the new data. It is
therefore not efficient to run it per sentence, but rather per
mini-batch. Once the new data has been aligned, inserting
each bi-sentence into the suffix array is needed to have the
translation system updated. Apparently, this is a time con-
suming process and cannot be considered a real-time update.
Creating a phrase table for the new data, and loading another
instance of the Moses server, is significantly faster.

We have run multiple comparative experiments with
phrase tables vs. suffix arrays, and with combinations of
them both, and observed a significant drop in results when-
ever the suffix array was used, with or without Incremental
GIZA. For instance, for the same setting in Table 2, row 1,
the BLEU score dropped from 23.9 to 20.8 when the phrase
table was replaced with a suffix array. A possible reason is

6We thank Abby Levenberg for his support at this part of the study.

the fact that the inverse translation probabilities are missing
in this data structure. Moreover, when an update takes place,
the translation server becomes unusable, maintaining the suf-
fix array in memory takes up a large amount of memory and
the updated model cannot be saved into disk, but needs to be
reconstructed later. Further, updates to the LM are not sup-
ported, although this issue was addressed in [8]. All these
make this data-structure currently difficult to use or rely on.7

The potential advantage of principled incremental train-
ing is obvious. Taking into account the previously accumu-
lated data is expected to produce better statistics; doing so
while maintaining the system live and constantly updated is
a highly sought-after goal. Yet, aligning all data, regardless
of the domain, is not always beneficial. Thus, once such
tools are stable and efficient, quick updates may be used in
conjunction with incremental training and suffix arrays. For
instance, out-of-domain data can be maintained in a phrase
table, while in-domain data that needs updating is loaded into
a suffix array. Preparations for alignment are longer, but the
advantage in comparison to IN-OUT is that only alignment of
the new data is necessary, but not phrase-table generation.

6. Conclusions

This work focused on identifying simple configurations of
phrase-based SMT systems, which allow updating the under-
lying model quickly when new training data becomes avail-
able. We have emphasized the applicability to domain adap-
tion, which is particularly relevant for spoken language ap-
plications, where seed in-domain parallel resources are typ-
ically scarce or altogether absent. Still, we have shown that
this type of updates is suitable also for single-domain set-
tings. We assessed multiple configurations, some of which
are based on proven methods from domain adaptation re-
search, to highlight the preferred ones both in terms of trans-
lation quality and of processing speed. We described how
quick updates can be integrated into the lifecycle of an oper-
ational SMT system, enabling efficiently maintaining trans-
lation quality while keeping the system up and up-to-date.

Our results show that quick updates are competitive with
batch retraining on corpus concatenation, a strong baseline,
while being orders of magnitude faster. We have seen that
a complete separation of in- and out-of-domain data usually
results with best translation quality; yet, this option may be-
come slow over time. The 3-TABLES configuration we pro-
posed solves this issue, albeit at the price of some drop in per-
formance. A potential improvement for this configuration,
that we intend to investigate, is to reserve some, moderate
size in-domain data for training together with the new data,
benefiting from the potential improved alignment, while still
keeping the update fast.

7In summer 2013, a new implementation of the dynamic suffix array has
been introduced in Moses, where all standard 5 features are computed. Some
of the above issues may have been handled. To the best of our knowledge
this is still work-in-progress and we have not experimented with it so far.
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