
A Cocktail of Deep Syntactic Features
for Hierarchical Machine Translation

Daniel Stein, Stephan Peitz, David Vilar, and Hermann Ney
Lehrstuhl für Informatik 6
RWTH Aachen University

Aachen, Germany
surname@informatik.rwth-aachen.de

Abstract

In this work we review and compare
three additional syntactic enhancements
for the hierarchical phrase-based transla-
tion model, which have been presented
in the last few years. We compare their
performance when applied separately and
study whether the combination may yield
additional improvements. Our findings
show that the models are complementary,
and their combination achieve an increase
of 1% in BLEU and a reduction of nearly
2% in TER. The models presented in this
work are made available as part of the Jane
open source machine translation toolkit.

1 Introduction

Hierarchical phrase-based translation has
proven to be one of the most successful ap-
proaches for statistical machine translation
(Chiang, 2007). The approach can be con-
sidered to be a formal syntactic model, since
the underlying structure is a grammar lacking
linguistic knowledge. Given the increasing avail-
ability of linguistic parsers for many languages,
hybrid approaches which incorporate deep syn-
tactic knowledge often improve the translation
quality. The goal is to enforce a more fluent
grammar structure on the output hypotheses.
Various groups report improvement over their
baseline systems with different approaches,
but it is not clear whether the benefits of the
different methods are complementary or if they
rather address the same issues.

In this work, we compare three recent syntac-
tic methods that enhance the translation qual-

ity. We measure their performance individu-
ally and in combination with each other on a
medium sized NIST Chinese-English task, and
offer some analysis of typical translation exam-
ples. All the presented methods are released
as part of the open source hierarchical machine
translation toolkit Jane (Vilar et al., 2010).

This paper is organized as follows: We briefly
recapitulate the hierarchical phrase-based model
for machine translation in Section 2. We then
describe the additional syntactical models used
in this paper in Section 3. Results and detailed
analysis on the NIST Chinese-English task are
presented in Section 4. We conclude the paper
in Section 5.

1.1 Related Work

One of the first papers to incorporate syntac-
tic knowledge in a statistical machine transla-
tion model was (Yamada and Knight, 2001), al-
though the performance was not on par with
other state-of-the-art approaches at that time.
Further development in this direction achieved
competitive results, as can be seen in (DeNeefe
et al., 2007) and later publications by the same
group.

In contrast to these studies, which propose
new models centered around the syntactic infor-
mation, we focus mainly on methods that can be
easily incorporated into an existing hierarchical
system. In this work, we employ soft syntac-
tic features comparable to (Vilar et al., 2008).
These features measure how much a phrase cor-
responds to a valid syntactic structure of a given
parse tree. Further, we include a dependency
language model in a string-to-dependency model

in the spirit of (Shen et al., 2008). We also de-
rive soft syntactic labels as in (Venugopal et al.,
2009), where the generic non-terminal of the hi-
erarchical system is replaced by a syntactic la-
bel.

Other approaches in this field like (Chiang et
al., 2009) and (Marton and Resnik, 2008) go
into similar directions, but create a rather large
quantity of features. We chose not to include
their approaches into our comparison, since the
risk of converging to poor local optima during
the optimization procedure increases when too
many features are available, thus making it dif-
ficult to draw clear conclusions.

2 Hierarchical Machine Translation

The hierarchical phrase-based approach can be
considered to be an extension of the standard
phrase-based model. In this model, we allow
the phrases to have “gaps”, i.e. we allow non-
contiguous parts of the source sentence to be
translated into possibly non-contiguous parts of
the target sentence. The model can be for-
malized as a synchronous context-free grammar
(Chiang, 2007). The bilingual rules are of the
form

X → 〈γ, α,∼〉 , (1)

where X is a non-terminal, γ and α are strings of
terminals and non-terminals, and ∼ is a one-to-
one correspondence between the non-terminals
of α and γ.

Two examples of this kind of rules for the
German-to-English translation direction are

X → 〈ich habe X∼0 gesehen, I have seen X∼0〉
X → 〈um X∼0 zu X∼1, in order to X∼1X∼0〉

where the indices in the non-terminals represent
the correspondence between source and target
“gaps”. This model has the additional advan-
tage that reordering is integrated as part of the
model itself, as can be seen in the above exam-
ples.

2.1 Heuristics for Hierarchical Phrase
Extraction

The phrase extraction process can be consid-
ered to consist of several steps, in each stage

generating the phrases with a given number of
non-terminals. The first step is the same as for
the standard phrase-based model. Given a word
aligned training corpus, phrases are typically de-
rived by finding word groups in the source and
target languages so that no alignment point is
outside of this block for either language. The
phrases thus extracted contain no gaps and are
denoted as initial phrases.

Having this set of initial phrases, we search for
phrases which contain other smaller sub-phrases
and produce new phrases with gaps. This pro-
cess is iterated until the phrases with the desired
maximum number of gaps are extracted.

In our system, we apply common settings and
restrict the number of non-terminals for each hi-
erarchical phrase to a maximum of two, which
are also not allowed to be adjacent on the source
side. The gaps are allowed to span a maximum
of 10 words. The phrase translation probabili-
ties are computed as relative frequencies.

For language pairs like Chinese-English, the
alignments naturally tend to be very non-
monotonic. In addition, many words are left
unaligned when using grow-diag or similar align-
ment combination heuristics. These artifacts
may affect the quality of the extracted phrases
(both initial and hierarchical) and degrade
translation performance.

In order to counteract this effect we apply the
following three heuristics for the extraction of
initial phrases:

1. We expand the initial phrases to cover
unaligned words adjacent to the phrase
boundaries. Note that actually this is
not a heuristic, but a strict application of
the above (informal) definition of phrases.
Common practice however is to extract only
the shorter phrases that fulfill the given
condition. The principle is illustrated in
Figure 1(b).

2. We extract all single-word pairs derived
from each alignment point, even if it vio-
lates the phrase rule mentioned above. For
example, two consecutive words in one lan-
guage aligned to a single word in the other
are typically only extracted as a complete

A

B

C

X Y Z

D

(a) Normal phrase
blocks

A

B

C

X Y Z

D

(b) Extension of
phrases

A

B

C

X Y Z

D

(c) Single word
heuristic

A

B

C

X Y Z

D

(d) Extraction of
non-aligned word
pairs

Figure 1: Extraction heuristics applied for initial
phrases

phrase, but we also include each word pair
as an independent phrase with a low prob-
ability. An example can be seen in Fig-
ure 1(c). The motivation is to be able to
produce translations, possibly only partial,
for all the words that have been seen in
the training data, even if the word does not
show up in the same context.

3. Similarly, all unaligned source words are
paired with the unaligned target words and
produce additional initial phrases, also with
a low probability. An example is shown in
Figure 1(d).

The additional phrases that are generated
when applying these heuristics are not con-
sidered for the later extraction of hierarchical
phrases. This is due to the large number of
phrases that could be extracted when consider-
ing the whole set of initial phrases, which would
pose efficiency problems for the translation pro-
cess. In our experiments, the heuristic methods
already increased the number of initial phrases
roughly by a factor of 2.

2.2 Non-Syntactic Features

Our baseline system follows the usual log-linear
model formulation (Och and Ney, 2002). We
employ 14 features as given in the following list:

• Phrase translation probabilities in source-
to-target and target-to-source directions.

• Single word lexicon models at phrase level,
also in both directions.

• Word and phrase penalties.

• Source-to-target and target-to-source
length ratio features for each phrase.

• One binary feature for hierarchical rules,
one for the glue rule and one for phrases
that do not perform reordering.

• Three binary features activated when a
phrase has been seen more than one, three
or five times (Mauser et al., 2006).

We are aware that this is already quite a large
quantity of models for minimum error rate train-
ing. However, these features proved to be very
effective for the Chinese-English translation di-
rection and resulted in a strong baseline.

3 Syntactic Features

Unlike other work, like e.g. (Galley et al., 2004),
we are not enforcing any syntactical integrity
during the extraction process. Instead we pro-
duce additional information for each phrase. We
mark those phrases that do not fit in the model
with a binary feature. In this way we allow the
corresponding scaling factors to decide whether
the phrase can still be used during decoding.
This also means that a scaling factor of zero
allows the decoder to fall back to the baseline
system during the minimum error rate training.

We parse the English target sentences with
the Stanford parser1, which is able to produce
deep syntactic parses as well as dependency
structures (de Marneffe and Manning, 2008).

In the following we will present the three syn-
tactic models that we analyze in this work.

1http://nlp.stanford.edu/software/lex-parser.shtml

3.1 Parse Matching

The first model that we employ is also the sim-
plest one. Given a monolingual sentence (be it
in the source or the target language) and the
associated parse tree, we will say that a lexical
phrase extracted from this sentence is syntacti-
cally valid if it corresponds to the yield of one
of the nodes in the syntax tree.

With this model, we hope that we can guide
the decoder to prefer phrases that are syntac-
tically sound rather than using arbitrary word
combinations that spread over the boundaries of
syntactic constructs. Two features are derived
from this procedure. The first one measures the
relative frequency with which a given phrase did
not exactly match the yield of any node. This
feature is straightforward to compute for the ini-
tial phrases. We extend this concept to hierar-
chical phrases by considering them as valid if the
originating initial phrase was syntactically valid
and every phrase which was suppressed in order
to generate the gaps was also syntactically valid.

In the second feature, we soften up this rather
hard decision. For example, we might want to
penalize phrases that miss a valid node by one
word only less than others that have a bigger
mismatch with the parse tree. The second fea-
ture thus measures the relative distance to the
next valid node, i.e. the average number of words
that have to be added or deleted to match a syn-
tactic node, divided by the phrase length. Hier-
archical phrases are treated in a similar way as
above.

This approach corresponds to the “binary”
and “relative” soft syntactic features described
in (Vilar et al., 2008). In Figure 2, an example
is given. A phrase consisting of the words “A
China insurance” would be considered a valid
phrase because it matches the syntactic node
“NP”. In contrast, the phrase consisting of the
words “China insurance” does not match any
node, and would need to either add one word
(e.g. “A”) or delete a word like “China” to
match a valid node. It thus has a relative dis-
tance of 0.5. Note that, from this example, it is
also apparent that the parser output is poor for
some sentences since it does not seem to recog-

nize the verb “starts” properly.

3.2 Soft Syntactic Labels

Another possibility to extend the hierarchical
model and include syntax information is to ex-
tend the set of non-terminals in the hierarchical
model from the original set of generic symbols
to a richer, more syntax-oriented set. With this,
we hope to improve the syntactic structure of
the output sentence. For example there may be
rules which ensure that there is a verb in the
translation of every source verb phrase.

However, augmenting the set of non-terminals
also restricts the parsing space and thus we alter
the set of possible translations. Furthermore, it
can happen that no parse can be found for some
input sentences. To address this issue, our ex-
traction is extended in a similar way as in the
work of (Venugopal et al., 2009). In this model,
the original generic non-terminal X is not sub-
stituted, rather the new non-terminals are ap-
pended as additional information to the phrases
and a new feature is computed based on them.
In this way the original parsing and translation
spaces are left unchanged. In contrast to the
above work, where the authors expand the set
of linguistic non-terminals to include a large set
of new symbols, we restrict ourselves to the non-
terminals that are to be found in the syntax tree.

Each initial phrase is marked with the non-
terminal symbol of the closest matching node as
described in the above subsection. When pro-
ducing hierarchical rules, the gaps are labelled
with the non-terminal symbols of the corre-
sponding phrases instead of the original generic
non-terminal X. It is important to point out
that the syntax information is extracted from
the target side only, but the substitution of
the corresponding non-terminal symbol is car-
ried out both on the source and the target sides
(with the same non-terminal on both sides).

For every rule in the grammar we store infor-
mation about the possible non- terminals that
can be substituted in place of the generic non-
terminal X, together with a probability for each
combination of non-terminal symbols. More for-
mally, let S be the set of possible syntax non-
terminals. Given a rule r with n gaps, we de-

A China insurance supervisory project starts in Beijing

DT NNP

NP

NP

NN JJ NN

NP

NNS

PP

IN NNP

S

Figure 2: Deep syntactic parse for the sentence “A China insurance supervisory project starts in Beijing”.
For the parsematch feature, an example for a valid phrase is marked green and a non-valid one is marked
red.

fine a probability distribution p(s|r) over Sn+1,
where s denotes a possible combination of syn-
tax non-terminal symbols to be substituted in
the rule, including the left-hand-side.

For each derivation d we compute two addi-
tional quantities. The first one be denoted by
ph(Y |d) (h for “head”) and reflect the probabil-
ity that the derivation d under consideration of
the additional non-terminal symbols has Y ∈ S
as its starting symbol. This quantity be needed
for computing the probability psyn(d) that the
derivation conforms with the extended set of
non-terminals.

For the exact definition of these two quantities
we separate the case where the top rule of deriva-
tion d is an initial phrase (in which case the
derivation consists only of one rule application)
and the general case where the top rule is a hi-
erarchical one. If the top rule r of d corresponds
to an initial phrase, the probability distribution
for the non-terminals for d equals the distribu-
tion of rule r, i.e. ph(s|d) = p(s|r),∀s ∈ S.
Given that only one rule has been applied, the
derivation fully conforms with the extended set
of non-terminals, thus in this case psyn(d) = 1.

For the general case of hierarchical rules, let d
be a general derivation, let r be the top rule and
let d1, . . . , dn be the sub-derivations associated
with the application of rule r in derivation d.
For determining if the derivation is consistent
with the extended set of non-terminals we have
to consider every possible substitution of non-
terminals in rule r and check the probability of
the n sub-derivations to have the corresponding

non-terminals. More formally:

psyn(d) =
∑

s∈Sn+1

(
p(s|r) ·

n+1∏
k=2

ph(s[k]|dk−1)

)
,

(2)
where the notation [·] denotes addressing the el-
ements of a vector. The index shifting in the
product in Equation 2 is due to the fact that the
first element in the vector of non-terminal sub-
stitutions is the left-hand side of the rule, and
this has to be taken into account when multiply-
ing with the probabilities of the sub-derivations.
Note also that although the sum is unrestricted,
most of the summands will be left out due to a
zero probability in the term p(s|r).

The probability ph is computed in a similar
way, but the summation index is restricted only
to those vectors of non-terminal substitutions
where the left-hand side is the one for which
we want to compute the probability. More for-
mally:

ph(Y |d) =∑
s∈Sn+1:s[1]=Y

(
p(s|r) ·

n+1∏
k=2

ph(s[k]|dk−1)

)
. (3)

3.3 String-to-Dependency

Given a dependency tree of the target language,
we are able to introduce language models that
span over longer distances than shallow n-gram
language models. In Figure 3, we can for ex-
ample evaluate the left-handed dependency of
the structure “In”, followed by “industry”, on
the structure “faced”. For this, we employ a

In

recent

years the textile

industry

in

China

faced

serious

difficulties

Figure 3: Dependency parsing for the sentence “In recent years, the textile industry in China faced serious
difficulties”.

simple language model trained on dependency
structures and compute the probability for the
trigram “In industry faced-as-head”.

Rather than parsing the structures during de-
coding, we already apply the Stanford parser
on the training material. Here, the sentences
are generally well-formed and produce accurate
parsing results, as opposed to an n-best list of
the hypotheses. (Shen et al., 2008) use only
phrases that meet certain restrictions. The first
possibility is what the authors called a fixed de-
pendency structure. With the exception of one
word within this phrase, called the head, no out-
side word may have a dependency within this
phrase. Also, all inner words may only depend
on each other or on the head. For a second struc-
ture, called a floating dependency structure, the
head dependency word may also exist outside
the phrase. More formally:

Let depj denote the dependency of a word j on
another word. A dependency structure depi...j is
called fixed on head h, iff

• deph 6∈ [i, j]

• ∀k ∈ [i, j] ∧ k 6= h, depk ∈ [i, j]

• ∀k 6∈ [i, j], depk = h ∨ depk 6∈ [i, j]

and floating with children C for a non-empty set
C ⊆ {i, . . . , j} iff

• ∃h 6∈ [i, j], s.t. ∀k ∈ C, depk = h

• ∀k ∈ [i, j] ∧ k 6∈ C, depk ∈ [i, j]

• ∀k 6∈ [i, j], depk 6∈ [i, j].

We mark all phrases that meet these restric-
tions with a binary feature, but again do not

limit the total phrase translation entry table.
Additionaly, we store the dependency informa-
tion in our phrase table, and further memorize
for all hierarchical phrases if the gaps were de-
pendent on the left or on the right side.

The approach in (Shen et al., 2008) relies on
reconstructing the dependency tree of a hypoth-
esis at decoding time by a bottom-up approach.
In this work, we opted for a simpler approach
and just penalize if the new phrase filling the
gap in a larger hierarchical rule is pointing into
the wrong direction, i.e. is pointing to the left
when the hierarchical rule is expecting the gap
to point to the right and vice versa. This in-
troduces three features for merging errors to the
left, merging errors to the right and the number
of non-valid dependency structures used.

In a rescoring step on n-best lists, carried
out after the decoding, we reconstruct as much
of the dependency tree as possible. On these,
we compute probabilities using three language
models: one for left-side dependencies, one for
right-side dependencies and one for head struc-
tures.

This approach has the drawback that badly
reconstructed dependency trees tend to have
only a few probability scores and thus to score
higher than better structured trees in other sen-
tences. We saw this effect in early experiments,
even if we penalized every reconstruction er-
ror. Therefore, we decided to include a language
count feature that is incremented each time we
compute a dependency language model score,
similar to the word penalty used for the normal
language model.

Chinese English

Train Sentences 3 030 696

Words 77 456 152 81 002 954

Vocabulary 83 128 213 076

Singletons 21 059 95 544

Dev Sentences 1 664

Words 42 930 172 324

Vocabulary 6 387 17 202

OOVs 1 871 50 353

Test Sentences 1 357

Words 36 114 149 057

Vocabulary 6 418 17 877

OOVs 1 375 43 724

Table 1: Statistics for the Chinese-English corpus

4 Experimental Results

We used the Chinese-English NIST 2006 evalu-
ation set as a development corpus and the NIST
2008 evaluation set as the blind test corpus. The
systems were trained on a medium-sized train-
ing set. Statistics can be found in Table 1. All
systems were optimized for the BLEU score us-
ing Och’s MERT method (Och, 2003), with all
scaling factors initialized with a value of 0.1.
For rescoring with trigram dependency language
models we generated 100-best lists after the op-
timization process.

Translation results obtained applying the
methods discussed in Section 3 are shown in
Table 2. All three methods yield improve-
ments over the baseline system. The string-to-
dependency method has very strong improve-
ments in TER, while the soft syntactic labels
perform very good in terms of BLEU. The parse-
match approach is somewhat in between. The
combination of the methods also leads to nice
synergies. With the exception of the combina-
tion of parsematch and dependency, all pairs of
combinations are better than their single feature
systems. The combination of all three methods
is best in terms of TER on the test set and only
0.3% worse than the best system on BLEU.

In Table 3, we present translation examples
for two sentences, where the typical influence
of the three methods on the translation out-

come can be seen. The baseline translation
usually produces most of the reference words
and is understandable, but not very fluent.
The parsematch approach prefers syntactically
sound chunks but on the downside it often intro-
duces unwanted fragments of a larger structure
that do not make sense anymore in the given
sentence. The dependency structure prefers sen-
tences with a higher fluency but also seems to be
more verbose, which is probably one of the main
reasons why it fails to improve the n-gram preci-
sion score and thus the improvements in BLEU
are less than in TER. The syntactic label fea-
tures prefer similar labels as seen in the training.
This generally works fine, but sometimes fails on
sentences that are derived from newspaper head-
lines, as is often the case in the NIST corpus. In
that case, an active form of the verb is usually
preferred over a passive verb form, which leads
to some decrease of the translation performance.

It seems that the methods all effect different
aspects of the translation process, and that by
combining these methods the resulting sentences
are in general better than the baseline.

5 Conclusion

In this work, we considered several syntacti-
cally motivated enhancements for the hierarchi-
cal phrase-based translation system. We studied
their influence on translation performance when
applying them separately and how they interact
with each other. The combination of the meth-
ods shows improvements over each single one.
We can see that the models complement each
other, as shown by the translation examples.

We also presented our implementation deci-
sions, such as the heuristics applied at phrase
extraction time. In addition, all these methods
are released as open source for non-commercial
purposes within the framework of Jane. We feel
this is the right thing to do, as many times pa-
pers do not include enough details for replicating
the results by other groups.

Acknowledgements

This work was partly realized as part of the
Quaero Programme, funded by OSEO, French

NIST ’06 (dev) NIST ’08 (test)

BLEU[%] TER[%] BLEU[%] TER[%]

baseline hierarchical 31.37 63.16 24.04 68.37

parsematch 31.37 63.09 24.36 67.89
dependency 32.23 61.93 24.61 66.69
syntax labels 32.22 62.12 24.99 67.15

parsematch + dependency 32.03 62.45 24.61 67.57
syntax labels + parsematch 32.36 62.27 25.31 67.28
syntax labels + dependency 32.90 61.39 25.39 66.66

syntax labels + parsematch + dependency 32.89 60.99 25.11 66.39

Table 2: Results for the additional syntactic models on the NIST ’06 and the NIST ’08 test set

reference Of course, I hope that all of these worries are needless.

baseline Of course, I hope that all these are worried that is.

parsematch (par) Of course, we hope that all concerned that this is groundless.
syntactic labels (syn) Of course, I hope that all this concern is that.
dependency (dep) Of course, we hope that all this worry is groundless.

dep + par Of course, we hope that all these are worried about is the.
dep + syn Of course, I hope that all this worry is unnecessary.
syn + par Of course, I hope that all this worry is groundless.

dep + syn + par Of course, I hope that all this worry is superfluous.

reference I think I’m someone who doesn’t easily lose his temper.
That’s my own feeling, at least.

baseline I would like to the people I is not an easy miffed,
at least , I feel this is the case.

parsematch I think I am a person who is not easy miffed,
at least this is my own feelings.

syntactic labels I think I am a person who is not easy miffed,
at least , I feel that the answer is in the affirmative.

dep I think I am a person who is not easy miffed,
at least this is my own feelings.

dep + par I think I am a person who is not easy miffed,
at least this is my own feelings.

dep + syn I think I is a person who is not easy miffed,
at least this is my own feelings.

syn + par I think I am a person who is not easy miffed,
at least this is my own feelings.

dep + syn + par I think I am a person who is not easy miffed,
at least i have the feeling that’s the way it is.

Table 3: Example translations with the various methods

State agency for innovation and partly funded
by the European Union under the FP7 project
T4ME Net, Contract No. 249119.

References

David Chiang, Kevin Knight, and Wei Wang. 2009.
11,001 new features for statistical machine trans-
lation. In Proceedings of Human Language Tech-
nologies: The 2009 Annual Conference of the
North American Chapter of the Association for
Computational Linguistics, pages 218–226, Boul-
der, Colorado, June.

David Chiang. 2007. Hierarchical Phrase-
Based Translation. Computational Linguistics,
33(2):201–228, June.

Marie-Catherine de Marneffe and Christopher D.
Manning. 2008. The Stanford typed dependencies
representation. In Coling 2008: Proceedings of the
workshop on Cross-Framework and Cross-Domain
Parser Evaluation, pages 1–8, Manchester, UK,
August. Coling 2008 Organizing Committee.

Steve DeNeefe, Kevin Knight, Wei Wang, and Daniel
Marcu. 2007. What can syntax-based MT learn
from phrase-based MT? In Proceedings of the 2007
Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural
Language Learning (EMNLP-CoNLL), pages 755–
763.

Michel Galley, Mark Hopkins, Kevin Knight, and
Daniel Marcu. 2004. What’s in a translation
rule. Proceedings of the Human Language Tech-
nology Conference / North American Chapter of
the Association for Computational Linguistics An-
nual Meeting, 4:273–280.

Yuval Marton and Philip Resnik. 2008. Soft syn-
tactic constraints for hierarchical phrased-based
translation. In Proceedings of the 48th Annual
Meeting of the Association for Computational Lin-
guistics: Human Language Technologies, pages
1003–1011, Columbus, Ohio, USA, June.

Arne Mauser, Richard Zens, Evgeny Matusov, Saša
Hasan, and Hermann Ney. 2006. The RWTH
Statistical Machine Translation System for the
IWSLT 2006 Evaluation. In Proceedings of the In-
ternational Workshop on Spoken Language Trans-
lation (IWSLT), pages 103–110, Kyoto, Japan,
November.

Franz Josef Och and Hermann Ney. 2002. Discrimi-
native Training and Maximum Entropy Models for
Statistical Machine Translation. In Proceedings of
the 40th Annual Meeting of the Association for
Computational Linguistics (ACL), pages 295–302,
Philadelphia, PA, July.

Franz Josef Och. 2003. Minimum Error Rate Train-
ing in Statistical Machine Translation. In Proceed-
ings of the 41th Annual Meeting of the Association
for Computational Linguistics (ACL), pages 160–
167, Sapporo, Japan, July.

Libin Shen, Jinxi Xu, and Ralph Weischedel. 2008.
A New String-to-Dependency Machine Transla-
tion Algorithm with a Target Dependency Lan-
guage Model. In Proceedings of the 46th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages
577–585, Columbus, Ohio, June.

Ashish Venugopal, Andreas Zollmann, Noah A.
Smith, and Stephan Vogel. 2009. Preference
Grammars: Softening Syntactic Constraints to
Improve Statistical Machine Translation. In Pro-
ceedings of Human Language Technologies: The
2009 Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics, pages 236–244, Boulder, Colorado, June.

David Vilar, Daniel Stein, and Hermann Ney. 2008.
Analysing Soft Syntax Features and Heuristics for
Hierarchical Phrase Based Machine Translation.
In International Workshop on Spoken Language
Translation, pages 190–197, Waikiki, Hawaii, Oc-
tober.

David Vilar, Daniel Stein, Matthias Huck, and Her-
mann Ney. 2010. Jane: Open source hierarchi-
cal translation, extended with reordering and lex-
icon models. In ACL 2010 Joint Fifth Workshop
on Statistical Machine Translation and Metrics
MATR, pages 262–270, Uppsala, Sweden, July.

Kenji Yamada and Kevin Knight. 2001. A Syntax-
based Statistical Translation Model. In Proceed-
ings of the 39th Annual Meeting of the Association
for Computational Linguistics (ACL), pages 523–
530, July.

