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Abstract 

We introduce a method for learning to 
translate out-of-vocabulary (OOV) words. The 
method focuses on combining sublexical/con-
stituent translations of an OOV to generate its 
translation candidates. In our approach, wild-
card searches are formulated based on our 
OOV analysis, aimed at maximizing the 
probability of retrieving OOVs’ sublexical 
translations from existing resource of machine 
translation (MT) systems. At run-time, transl-
ation candidates of the unknown words are 
generated from their suitable sublexical 
translations and ranked based on monolingual 
and bilingual information. We have incorpora-
ted the OOV model into a state-of-the-art MT 
system and experimental results show that our 
model indeed helps to ease the negative 
impact of OOVs on translation quality, 
especially for sentences containing more 
OOVs (significant improvement). 

1 Introduction 

Many sentences are submitted to machine translate 
(MT) systems every day, and an increasing number 
of such translation services are available between 
various source and target language pairs. For 
example, both Google Translate 1  and Windows 
Live Translator2 can promptly translate a block of 
text or a web page. 

                                                           
1 http://translate.google.com 
2 http://www.microsofttranslator.com 

Due to the creativity and diversity in natural 
languages, not all source words are known to MT 
systems specifically their translation model (i.e., 
phrase table or syntax-based translation rules), in 
which case most of the current systems treat them 
as out-of-vocabulary (OOV) words and leave them 
untranslated. However, leaving unknown OOVs 
untouched in the output translation may degrade 
the overall translation quality since the lexical 
choices and reordering around the OOVs may be 
negatively impacted. The problem of OOV could 
be better handled if a model recognized and 
translated the constituents of an OOV word. 

In general, the causes of unknown words can be 
mainly categorized into the following. OOVs result 
from segmentation error in the source language 
(e.g., 滲血症 is erroneously split into two words 滲 
and 血症 which leads to an OOV 血症). Another 
source of OOVs can be attributed to name entity 
such as person, location and organization. Finally, 
OOVs may originate from low-frequency 
abbreviations (e.g., 體協 athletic association) and 
combination forms (e.g., eyebank, widebody) of 
common words (e.g., bank, body). In this paper, 
we focus on handling OOVs of the last type, 
abbreviation and combination, which, according to 
our OOV analysis in Section 4, accounts for one 
fourth of OOVs. 

Consider the Chinese sentence “王燕 的 上肢 肌
力 恢復 了 兩級” (the muscle strength of wang yan’s 
upper limbs has regained by two levels). If MT 
systems do not cover “上肢” in the translation 
model, typically it, an OOV, will be sent out 
untouched to the output. Better result might be 
obtained by first finding translations for the OOV’s 



constituents such as “upper” (for the 上 part) and 
“limbs” (for the 肢  part), and combining these 
sublexical translations (“upper” and “limbs”) to 
yield the reference translation: “upper limbs”. We 
can find these sublexical translations via wildcard 
queries, “上*” and “*肢” where * stands for any 
Chinese character. Intuitively, by extracting and 
combining the translations of OOVs’ sublexical 
constituents (i.e., Chinese ideographs), we could 
correctly translate the unknown. 

We present a model that automatically retrieves 
translations of OOVs’ constituents from existing 
bilingual resource in a MT system that, if 
combined, are expected to translate OOVs. An 
example sublexical translation process for the 
unknown “上肢” is shown in Figure 1. Wildcard 
search may find related sublexical translations, for 
example, “appeal, rise, upper, and surface” for 
query “上*” and “body, extremity, and limbs” for 
query “*肢”, but some are not appropriate for the 
unknown. Our model constrains the choices of the 
sublexical translations and removes unlikely ones 
by analyzing a collection of monolingual and 
bilingual lexical databases. We describe the 
process in more detail in Section 3. 

 
Figure 1. An example translation candidate list 

for the OOV “上肢”. 
 

At run-time, for an OOV in a source sentence, 
our model retrieves a limited number of 
translations for its constituents and generates an 
ordered list of its translation candidates based on 
bilingual lexical correspondences and monolingual 
fluency. The ordered candidate list returned by the 
proposed model can provide translation choices for 
human translators directly, or can be incorporated 
into MT decoders to ease the negative impact of 
OOVs on translation quality. 

2 Related Work 

Recently, translating OOV words in the field of 
machine translation has received much attention. 
In this paper, we address one aspect of translating 
OOVs by combining translations of OOVs’ 
constituents retrieved using wildcard queries and 
MT system’s existing resources. 

While this paper focuses on translating the 
source words with no translation equivalents in the 
bilingual resources of MT systems via sublexical 
translations, interesting approaches were presented 
to generate additional bitexts from comparable, but 
not parallel, bilingual texts (Fung and Cheung, 
2004; Munteanu and Marcu, 2005). Adding more 
parallel data to MT systems, though may not be 
always available for some language pairs, tends to 
reduce the number of OOVs. On the other hand, 
some work began to extract translations for 
unknown words from external knowledge sources 
such as dictionaries and the Web. Unknown words 
were replaced by their definitions or translations in 
dictionaries (Vilar et al., 2007; Eck et al., 2008), or 
by translations mined from large-scale web data 
(Nagata et al., 2000; Cao and Li, 2002). In our 
method, translations reside within MT systems’ 
training corpus not from external knowledge. 

Recent work has been done on translating 
different OOV cases: name entities (NE), 
compounds, and morphological variants. Knight 
and Graehl (1997) introduced a transliteration 
model to tackle proper names while Hassan and 
Sorensen (2005) presented a NE translating 
approach that combines NE translation and 
transliteration in a single framework. On the other 
hand, Cao and Li (2002) and Tanaka and Baldwin 
(2003) focused on translating compound words, 
especially noun phrases, via statistical approach 
and translation templates. Furthermore, in 
languages (e.g., Arabic) where morphological 
variants are a major cause of OOVs, much work 
was described to transform these variants into in-
vocabulary word forms (Koehn and Knight, 2003; 
Yang and Kirchhoff, 2006; Arora et al., 2008). In 
contrast, we focus on translating OOVs resulting 
from abbreviations of source phrases or 
combination forms of common words. These two 
cover some portion of name entities and noun-
noun and adjective-noun compounds (e.g., 邊貿 
border trade (NN), and 新規 new regulations (AN)). 

Type an OOV here   
--------------------------------------------------------------
Sublexical/constituent translations of the OOV 
上: appeal, appeals, best, board, rising, risen, surface, top, 

upper, well, … 
肢: body, extremity, extremities, limb, limbs, … 
 
Ordered translation candidates for the OOV 
1. upper limbs 2. upper body 3. appeals body 
4. appeal body 5. rising limb 6. limb surface 
7. body surface 8. rising limbs 9. rising body 
10. risen body 



In the studies more closely related to our work, 
Marton et al. (2009) proposed a paraphrase model 
that replaces OOVs with in-vocabulary equivalents. 
Paraphrases were learnt based on word alignments 
computed over a large additional set of bitexts. 
And Mirkin et al. (2009) paraphrased OOV words 
via entailment rules derived from monolingual 
corpora and manually compiled synonym 
thesaurus. These studies are similar in spirit to our 
work. However, we do not address the problem via 
paraphrasing. In our model, the wildcard 
translation searches of OOVs’ constituents might 
retrieve their source-language paraphrases with 
translations. Instead of using these source 
paraphrases, we directly use the target translations. 

Recently, Li and Yarowsky (2008) presented an 
unsupervised method for extracting the mappings 
between full-form phrases and their abbreviations 
that are OOVs. The main difference from our work 
is that, in their approach, they need a reverse MT 
system and they focus on solving OOVs of name 
entities. Our approach generates translations for 
OOVs of abbreviations and combinations, which 
cover common words (e.g., 成名 became famous, 
邊貿 border trade and 新規 new regulations) as well 
as name entities. In addition, our wildcard searches 
for translations of OOVs’ constituents from 
existing resources of MT systems can be viewed as 
finding the translations of their full-form words. 

3 The OOV Model 

Submitting sentences with OOV words to MT 
systems does not work very well. They typically 
generate the corresponding target-language 
translations by matching exact words or phrases in 
their translation model. Unfortunately, OOVs have 
no matches and MT systems would ignore or 
directly copy them to the output. To translate an 
OOV, a promising approach is to automatically 
transform the exact-match lookup into a set of 
wildcard searches that are expected to find the 
common sublexcial translations of the OOV. 

3.1 Problem Statement 

We focus on finding translations of an OOV word 
from existing bilingual resource (e.g., MT phrase 
table) via constituent or sublexical lookups. These 
translation candidates are ranked and returned as 
the output of the model. The returned candidates 

can be examined by human translators directly, or 
passed on to MT decoders (e.g., Moses) to ease the 
impact of OOVs. Sublexical wildcard searches 
tend to lead to a lot of noise. Thus, it is crucial that 
sublexical translations be constrained to confident 
ones. At the same time, the set of the OOV’s 
translation candidates cannot be so large that it 
overwhelms the users or the subsequent (typically 
computationally expensive) decoders. Therefore, 
our goal is to return a reasonable-sized set of 
translation candidates that contain suitable 
translations of the OOV word. We now formally 
state the problem that we are addressing. 

Problem Statement: We are given a database of 
translation equivalents TE (e.g., MT phrase table) 
trained on a parallel corpus C (e.g., Hong Kong 
Parallel Text), large-scale monolingual corpus CT 
(e.g., English Gigaword), and an out-of-vocabulary 
word O. Our goal is to generate a ranked list of 
translation candidates that are likely to provide 
suitable translations for O. For this, we identify the 
constituents o1, …, om of O, retrieve, and evaluate 
the translations of oi from TE by partial matching 
oi. The retrieved translations of oi, if combined, are 
likely to translate O. 

In the rest of this section, we describe our 
solution to this problem. First, we define a strategy 
for finding sublexical translations, translations of a 
constituent of an OOV word (Section 3.2). This 
strategy relies on reformulated wildcard searches 
in replace of the original exact-match derived from 
the OOV analysis on the development data (more 
details in Section 4.2). Then, we show how our 
model assembles sublexical translations of the 
OOV and ranks the assembled candidates at run-
time according to bilingual and monolingual 
consideration (Section 3.3). 

3.2 Finding Sublexical Translations 

For a given OOV, we attempt to find relevant 
translations of its constituents. Our sublexical 
translating process is shown in Figure 2. 

 
Figure 2. Outline used to find sublexical translations. 

(1) Retrieve possible translations for a constituent 
of an OOV from translation equivalent TE 

(2) Extract sublexical translations and restrain 
translation choices 

(3) Prune less probable sublexical translations 
(4) Output translation candidates for the constituent



Retrieving Translations. In the first stage of the 
translating process, we retrieve translations for a 
constituent of an OOV from a bank of translation 
equivalents TE. We transform the traditional exact-
match search for an OOV’s translations into a 
sequence of wildcard sublexical lookups for 
constituents’ translations. By doing so, the OOV 
may be decomposed and translated. Figure 3 shows 
the algorithm for retrieving translations for a 
constituent of an OOV. 

In Step (1) of the algorithm we initiate TransCol 
to collect possible translations of a constituent c of 
an OOV O. Based on the constituent c of O and its 
position in O, we formulate wildcard queries for 
c’s translations (Step (2)). We will describe how to 
formulate search queries according to position in 
Section 4. In Step (3), for each query, we retrieve 
translations from TE and append them to TransCol. 

 
Figure 3. Retrieving possible sublexical translations. 

 
Take the constituent “上” and “肢” of the OOV 

“上肢” for example. The wildcard queries “上*” 
and “*肢” generated by the algorithm yield the sets 
of translation pairs {<“上訴”,“appeal for”>, <“上
升”,“increasing of”>,…,<“上段”,“upper block”>} 
and {<“ 四 肢 ”,“extremities”>, <“ 四 肢 ”,“four 
limbs”>,…,<“義肢”, “prosthesis”>}, respectively. 
Extracting and Restraining Translations. In the 
second stage, we extract the sublexical translations 
based on redundancy, and constrain the translation 
words to frequent ones in view of composing 
proper translations for the OOV. 

The input to this stage is the possible 
translations of a constituent obtained from the 
previous stage, represented by <source word, 
target phrase> pairs. The output of this stage is a 
set of <source word, target N-gram> pairs, in 
which target N-gram cover different surface forms 
of the same lemma (e.g., “limb” and “limbs”). 

The method for extracting and selecting frequent 
sublexical translations involves generating target-
language N-grams in target phrase, constraining 
the choices of target words by consulting a target-

language lexicon, and filtering out infrequent 
words. Each step is discussed more detailed below. 

For each <source word, target phrase> pair, we 
first generate target N-grams from the target 
phrase. Take <“四肢”, “four limbs”> for instance. 
Target N-grams include “four”, “limbs”, and “four 
limbs”. Second, content words (e.g., nouns and 
verbs) in the N-grams are constrained to ones seen 
in a lexical database (e.g., WordNet). Obviously, if 
a word is unseen in a lexicon, it is probably not a 
good translation. Third, we prune infrequent N-
grams. To compare fairly, the occurrence count is 
accumulated over inflected word forms sharing the 
same lemma. For the purpose, we use a lemmatizer 
(Bird et al., 2008) in our implementation. Above 
method would yield commonly-seen sublexcial 
translations in the form of <source word, target N-
gram>. Notice that target N-grams would cover 
many inflectional forms for the constituent, which 
is generally beneficial to the subsequent sentence 
translation task. 
Pruning Less Probable Translations. In the third 
and final stage (Step (3) in Figure 2), we prune less 
probable sublexical translations of OOV based on 
bilingual associations. In the previous step, to 
extract the translations of the constituent c, each 
<source word, target phrase> pair is transformed 
to inflectional N-grams, <source word, target N-
gram> pairs. Some N-grams, however, are less 
related to c. To achieve better computation 
efficiency and translation accuracy, we remove 
less probable sublexical N-gram translations before 
combining an OOV’s sublexical translations. 

First, we exploit a bilingual dictionary (e.g., 
bilingual WordNet) to build reference bilingual 
associations. In the following, we describe two 
approaches for building reference associations. 

 All-constituent approach: For each entry 
<source phrase, target phrase> in the 
dictionary, we build bilingual associations 
between all constituents in the source phrase 
and all N-grams in the target phrase. Once a 
source constituent co-occurs with a target N-
gram, an association between them is built. 

 Salient-constituent approach: Associations 
are only registered between the salient 
constituent of the source phrase and all N-
grams of the target phrase for each dictionary 
entry <source phrase, target phrase>. We 
define that a constituent of a source phrase is 
a salient constituent if it is most associable to 

procedure RetrieveTranslations(c,O,TE) 
(1) TransCol = φ  
(2) Queries = formulateQuery(c,position(c, O)) 

for each query in Queries 
(3)    TransCol += { findTranslations(query,TE) } 

Return TransCol 



the target phrase. Formally speaking, the 
salient constituent c* for the <source phrase, 
target phrase> is chosen satisfying   

( )arg max ,  
c

Dice c target phrase =   

2 ( ,  )
arg max

( ) (  )c

Count c target phrase
Count c Count target phrase

⋅

+
where c denotes a constituent in source 
phrase and Count(·) the frequency in the 
dictionary. Note that the set of associations 
generated by this approach is a subset of that 
generated by all-constituent. 

Once the bilingual associations are constructed, 
we prune <source word, target N-gram> pair of a 
query constituent c if (c, target N-gram) is unseen 
in the reference associations. 

Notice that different approaches (all-constituent 
and salient-constituent approach) can be leveraged 
for different applications since all-constituent aims 
at high recall and salient-constituent high precision. 
In our implementation, we first refer to all-
constituent associations to prune and maintain high 
recall rate. If there are still too many candidates, 
we then turn to the salient associations to prune 
more aggressively. After pruning, the output of this 
stage is a set of translation pairs expected to have 
strong constituent-translation associations. Also 
note that the reference bilingual associations in this 
stage could be modeled as soft constraint and the 
frequency of associations registered could be used 
as a feature for run-time candidate ranking. 

 
Figure 4. Candidate generating and ranking at run-time. 

3.3 Run-Time Candidate Ranking 

Once the sublexical translations of an OOV are 
found, our model then generates and ranks 
translation candidates for the OOV using the 
procedure in Figure 4. 

For each constituent c of the given OOV O, we 
first retrieve its probable sublexical translations 
SubTrans, including inflected forms, from TE 
using the method described in Section 3.2 (Step 
(1a)). SubTrans is a list of <source word, target N-
gram> pairs, where source word contains a 
constituent of O. Then, we use bidirectional 
conditional probability to measure the association 
strength between the OOV’s constituent c and its 
translation in SubTrans, and record such 
information at corresponding position (Step (1b)). 
Following the format in Step (1a), elements in 
CandList are of the form (c, <source word, target 
N-gram>, Psub(target N-gram|c) × Psub(c|target N-
gram)). Two-way conditional probability 
Psub(target N-gram|c) and Psub(c|target N-gram) are 
trained on bitexts C where the unit of token in the 
source language is constituent not word. 

Once we acquire translations of each constituent 
of the given OOV, we are ready to generate the 
OOV’s translation candidates. Although the 
translation scope of an OOV is much smaller than 
that of a whole sentence, re-ordering of an OOV’s 
sublexical translations can still happen (e.g., “air 
adjustment” for “調氣” where “air” is aligned to 
“氣” and “adjustment” to “調”). For this, both 
straight and inverted candidates are generated 
during sublexical translation combination. 

In Step (2), we initialize Straight and Inverted to 
collect the OOV’s translation candidates by 
composing its sublexical translations in straight 
and inverted order. During candidate generation, 
Straight and Inverted iteratively cover more span 
of the OOV (Step (3)), collecting constituent 
translations and multiplying sublexical translation 
probabilities at the same time. For each assembled 
translation candidate tc, its translation probability 
(Ptrans) is estimated by the product of two-way 
conditional probabilities of the sublexical 
translation pairs as: 

( ) ( )sub , sub ,
i

O i i j i j i
c O

P c target N - gram P target N - gram c
∈

×∏  

where ci denotes a constituent of O and target N-
grami,j a sublexical translation for ci composing tc. 

Apart from bilingual information, we further 
leverage monolingual information to prune and 

procedure EvaluateCandidates(O, TE, C, CT) 
for each constituent c in OOV O 

(1a)   SubTrans=RetrieveSublexTrans(c, O, TE) 
(1b)   CandList[position(c, O)]=BilingualInfo(SubTrans,c,C)
(2a)Straight=CandList[1] 
(2b)Inverted=CandList[|O|] // |O| denotes the length of O 

for each constituent position cp>1 in ascending 
constituent positions of O

(3a)    Straight⊗ =CandList[cp] 
for each constituent position cp<|O| in descending 

constituent positions of O
(3b)    Inverted ⊗ = CandList[cp] 
(4a)Straight=MonolingualInfo(Straight, CT) 
(4b)Inverted=MonolingualInfo(Inverted, CT) 

Candidates = Straight + Inverted 
(5)  RankedCandidates=Sort Candidates in decreasing 

order of P 
(6)  Return top N RankedCandidates with P exceeding θ



estimate assembled translation candidates. In Step 
(4), we first prune less probable word 
combinations in the target language, and, for those 
which survive the pruning, further incorporate 
target language model probabilities PTLM into 
Straight/Inverted. For pruning, we calculate MI 
value, regarded as a good measurement for the 
possibilities of word combinations, of each bigram 
w1 and w2 in an assembled candidate using 

( )( )1 2 2 1 2 1 2MI( , ) log Pr( , ) Pr( ) Pr( )w w w w w w=  
After merging straight and inverted cases, in 

Step (5) we rank translation candidate, tc, based on 
bilingual translation probabilities and target 
language model: 1 2

trans TLM( ) ( ) ( )P tc P tc P tcλ λ= ×  where 
λi is the feature weight and 

i
λ∑  equals to one. 

Target language model plays an important role in 
ranking translation candidates especially when 
straight and inverted candidates are all taken into 
account, leading to the same translation probability 
(Ptrans). In that case, PTLM helps to differentiate the 
fluency of the composed translations. 

Finally, the N top-ranked candidates whose 
probabilities (P) exceed a threshold θ are returned 
as the likely translations of the given OOV. Notice 
that θ will be tuned for better translation quality. 
An example translation of an OOV “上肢” (upper 
limbs) is shown in Figure 1. 

4 Experimental Setting 

The OOV handling model was designed to find 
translations of OOV words from existing bilingual 
resources that are likely to help human translators 
or MT systems ease the negative impact of OOVs. 
As such, the model will be trained and evaluated 
over translation task on top of an existing MT 
system. More specifically, we incorporate the 
OOV model into an existing Chinese-to-English 
MT system and carry out the evaluation process. 

4.1 Underlying SMT System and Data Sets 

The proposed OOV model focused on translating 
OOV words by exploiting existing bilingual 
resource (e.g., phrase table) in a MT system. 
Therefore, our model was built on top of a 
statistical MT system which accepts translation 
suggestions of our OOV model. We used the state-
of-the-art phrase-based MT system, Moses (Koehn 
et al., 2007), as our underlying decoder. It provides 

simple XML markup for plugging in external 
knowledge without changing any component such 
as translation or language model. In this paper, we 
leveraged the markup language to incorporate 
OOVs’ translation candidates. 

To train Moses’ translation model, we used 
Hong Kong Parallel Text (LDC2004T08) and 
Xinhua News Agency (LDC2007T09). Chinese 
sentences were word segmented by the CKIP 
Chinese word segmenter (Ma and Chen, 2003). 
Common settings were used to run Moses: 
GIZA++ (Och and Ney, 2003) was used for word 
alignment, grow-diagonal-final for bidirectional 
word alignment combination, and phrase extraction 
heuristics in (Koehn et al., 2003) for bilingual 
phrase pairs. We exploited English Gigaword 
Third Edition (LDC2007T07) and SRILM toolkit 
(Stolcke, 2002) to build trigram language model. 

In our OOV model, on the other hand, we 
leveraged WordNet 3.0 and bilingual WordNet 
(Huang et al., 2004) to filter sublexical translations 
(Section 3.2). To prune less probable translation 
candidates of OOVs at run-time (Section 3.3), we 
used Web 1T 5-gram First Edition (LDC2006T13) 
for MI calculation. As for the run-time candidate 
ranking (Section 3.3), we exploited the same 
parallel corpora and target-language corpus used 
for Moses to estimate bilingual translation 
probabilities (Ptrans) and target-language fluency 
(PTLM), respectively. 

4.2 Query Formats and Bilingual Resource 

Length Number of OOVs Percentage (%)
1 56 4.4 
2 683 53.7 
3 352 27.7 
4 225 9 
5 25 2 

6+ 42 3.3 
Table 1. The number of OOVs w.r.t. OOVs’ lengths. 

 
To study the problem of translating OOV words, 
we used NIST MT-08 test set consisting of 1,273 
unknown words in 637 sentences out of a total of 
1,357 sentences. Among these 1,273 distinct OOV 
words, we first inspected the number of OOVs 
with respect to their lengths, i.e., the number of 
characters (Table 1). One could see from Table 1 
that OOVs of two characters accounted for more 
than half of the OOV cases. As a result, we 
focused on translating two-character unknown 



words. To further analyze the portion of OOV 
types, formulate appropriate query in replace of the 
exact-match search, and determine good bilingual 
resource for sublexical translation retrieval, we 
randomly selected 100 sentences containing only 
two-character OOVs from MT-08 set. OOVs in 
these 100 sentences were classified into 10 types 
shown in Table 2 according to their reference 
translations manually extracted from reference 
sentences. Since our model aimed to retrieve and 
combine translations of an OOV’s constituents, it 
targets specifically at translating OOV words of 
the Combination Forms in Table 2. 
 
Type Description of the type Example Freq
Name 
Entity 

Name entities could be 
transliterated 

布希(bush) 
膠州(jiaozhou)

12 

Segmenta-
tion Error 

Words erroneously split by 
the segmentation system 

領式 (開領式) 
會兒(這會兒) 

16 

Order 
Variants 

Character sequence within is 
reversed without changing 
the original meaning 

療治 (治療) 
(treat) 

1 

Writing 
Variants 

Simplified vs. traditional 
Chinese characters 

念書 (唸書) 
(study) 

1 

Informal Words used in conversation 
or informal writing 

看頭 (worth 
watching)

6 

Domain 
Specific 

Domain specific 
terminologies 

勤務 (service 
support)

2 

Old Use Words rarely in use now 古稀 

(60 years old)
8 

Rare 
Paraphrase 

Words could be translated 
by paraphrases 

訪談  

(interview) 
25 

Word + 
Suffix 

Words composed by a 
content character 
(underscored) and a  not 
translatable function 
character 

忙著 (busy) 
爐子 (stove) 

4 

Combina-
tion Form 

Words could be translated 
by combining sublexical 
translations 

上肢 (upper 
limbs)

肌力 (muscle 
strength)

25 

Table 2. OOV types and their descriptions and examples. 
 

    Example Query 
Form 

# translatable 
OOVs OOV Matched

c1* and c2* 17 上肢(upper limbs) 上方 肢體

c1* and *c2 9 上肢(upper limbs) 上方 四肢

*c1 and c2* 2 震魔(quake demon) 地震 魔鬼

*c1 and *c2 1 鍾體(bell body) 時鐘 身體

Table 3. Query formulation with matched examples. 
 

Intuitively, there are four ways to formulate the 
query for sublexical translations for a two-
character OOV c1, c2. Table 3 shows that the first 
and second query formulation of adding wildcard * 
can retrieve most relevant translations. Therefore, 
our model adopted these two query forms. 

Additionally, to determine the effectiveness of 
various bilingual resources for finding sublexical 
translations, we compared translation hit rates of 
OOVs of different resources based on above two 
query forms. Among Lin Yutang’s dictionary 
(http://humanum.arts.cuhk.edu.hk/Lexis/Lindict/), 
LDC translation lexicon (LDC2002L27), and 
character-based and word-based phrase table, hit 
rates of Combination Form OOVs were 0.64, 0.68, 
0.60, and 0.88, respectively. Word-based phrase 
table resulted in the highest hit rate, thus chosen as 
our bilingual resource for sublexical translation 
retrieval. Apart from its high hit rate, there are 
other advantages in using word-based phrase table: 
it includes different inflectional word forms and is 
more domain-relevant to the NIST MT test set. 

4.3 Parameter Tuning 

In this subsection, we describe the pilot experiment 
with the development data set of 50 sentences 
randomly selected from NIST MT-08 set. Each 
sentence contained at least one OOV. We used the 
data to fine-tune the two parameters in our system: 
the maximal number of translation candidates 
returned by the OOV model N and the filtering 
threshold θ used to prune improbable translation 
candidates at run-time, thus differentiating OOVs 
of Combination Form from those that are not. 

The size of the returned translation suggestions 
for OOVs could not be so large that overwhelm 
subsequent users or decoders. Therefore, our goal 
was to return reasonable-size translation candidates 
for an OOV word with its correct translations 
ranked higher. To choose a suitable N, we 
exploited the sentences with Combination Form 
OOVs in the developing data and evaluated the 
performance of translating these OOVs using hit 
rate and Mean Reciprocal Rank (MRR). Here, 
MRR was defined as a measure of how much effort 
needed for a user to locate the first correct 
translation for the given OOV word in the ranked 
candidate list. Table 4 summarized the hit rates 
and MRRs at different values of N. We eventually 
set N to 10 considering coverage, MRR, and time 
complexity of decoding. 

N hit rate MRR 
5 8/25 0.27 
10 11/25 0.28 
20 12/25 0.28 
40 12/25 0.28 

Table 4. Hit rates and MRRs at different candidate sizes. 



On the other hand, a threshold θ on the 
probability of translation candidate was used for 
pruning and determining the applicability of our 
model on OOV word (Some OOVs are not suitable 
for the solution in this paper). To select a suitable θ, 
we compared translation results at different levels 
of filtering thresholds on the developing data 
(Figure 5). As indicated, when the threshold was 
larger than -7, very few translation candidates were 
considered, leading to not much difference from 
the underlying Moses. On the other hand, when 
lower than -13, more noisy translations were 
incorporated, resulting in a decline in translation 
quality. We chose -12, the best performing 
threshold (probably achieved balanced 
performance between translations’ precision and 
coverage), as our threshold to prune less probable 
candidates or to activate our OOV model. 

 
Figure 5. BLEU scores of different filtering thresholds. 

5 Evaluation Results and Discussion 

We report the experimental results in this section. 
First, we report the translation performance of the 
underlying MT system, Moses, with and without 
our OOV model using BLEU (Papineni et al., 
2002). We then show example translations of some 
OOVs generated by our system and point out the 
future improvement of our OOV model. 

5.1 Experimental Results 

During the evaluation, we used NIST MT-06 test 
set, containing 1,664 sentences, for testing. In this 
test set, there were 933 distinct unknown words 
scattered in 859 sentences, and its number of 
OOVs with respect to OOVs’ length was much 
alike to that of the developing set. In the 
experiment, out of the 933 OOV words, our model 
generated translation candidates for the 170 

distinct two-character OOV words in 351 
sentences. Note that the parameter θ in the OOV 
model determines its applicability, i.e., whether a 
combination-form translation is acceptable or not 
(for subsequent Moses). The produced 
combination-form translation candidates were 
incorporated into Moses using XML markup. 

Table 5 shows the overall performance of the 
underlying Moses and the CST system (Moses 
with combined sublexical translations). Although 
the difference in BLEU score between them is not 
very significant, the improvement in brevity 
penalty (BP) is noticeable. That is, the CST system 
generated sentences closer to the reference 
translations in length. A slightly better BLEU score 
implies the additional words provided by our 
model achieved better or at least similar translation 
accuracy compared to the underlying Moses 
system. 

System BLEU BP # words
Moses 21.46 0.928 41052 
CST 21.56 0.939 41707 

Table 5. Performance of two systems (# sentence=1664). 
 

System BLEU BP # words
Moses 17.41 0.912 10833 
CST 17.83 0.951 11583 

Table 6. Performance of two systems (# sentence=351). 
 

If we look at the performance of the 351 
sentences in the test set for which our OOV model 
provided translation candidates, the CST system 
significantly outperformed Moses in BLEU and, 
encouragingly, improved the BP relatively by 4.4% 
(Table 6). The significance test was performed 
using bootstrap resampling in (Koehn, 2004). 

The experimental results show that we were able 
to translate some portion of the OOV words 
without degrading the performance of an existing 
MT system and the translation quality of the 
sentences was substantially improved with our 
automatic translation suggestions for OOV words. 

5.2 Example Translations 

In this subsection, we examine example English 
translations for OOV words provided by our model 
and we point out future direction for our model. 

Table 7(a) shows four examples in which the 
reference translations of the OOVs were ranked 
high by our OOV model (bold-faced) and the 
underlying decoder chose the correct translations 



for the OOVs. One may find that the combined 
words in the OOVs’ translations belong to 
different part-of-speech (POS) sequences: “korean 
war” (AN), “border trade” (NN), “became famous” 
(VA) and “new regulations” (AN). This indicates 
wildcard search for sublexical translations of our 
model could handle combination-form OOVs of 
various POS combinations. In addition, as 
suggested by Example 4, accurate OOV translation 
indeed has an impact on lexical choice of OOV’s 
surrounding words or even on the overall fluency. 
Example 

sentence 1 
… 雙方 曾 在 一九五 0 年 至 一九五三 年 的 
韓戰 時期 相互 敵對。 

OOV 
(reference) 

韓戰 (korean war) 

Sorted 
translations 

korean war, korea war, koreans war, korean 
armistice, korean military, … 

Moses … the two sides had been in years during 1950s to 
一九五三 years 韓戰 period mutual hostility . 

CST … the two sides had been in years during 1950s to 
一九五三 years of the korean war period mutual 
hostility . 

Example 
sentence 2 

... 中國 雲南 與 緬甸 的 貿易 ( 含 邊貿 ) 總
額 達 6.3 億 美元 … 

OOV 
(reference) 

邊貿 (border trade) 

Sorted 
translations 

border trade, bilateral trade, borderline trade, …, 
border trading, … 

Moses … china 's yunnan province and myanmar trade 
( including 邊貿 ) amounting to 630 million u.s. 
dollars … 

CST … china 's yunnan province and myanmar trade 
( including border trade )a total of 630 million 
u.s. dollars … 

Example 
sentence 3 

…突然 間 成名 多金 的 美麗 演員 

OOV 
(reference) 

成名(find fame, became famous) 

Sorted 
translations 

became famous, become famous, becoming 
famous, becomes famous, … 

Moses …suddenly 成名 , 多金 beautiful actors 
CST …suddenly became famous, 多金 beautiful actors
Example 

sentence 4 
中國 電子 銀行業務 管理 新規 將 於 3 月 1 

日 起 施行 

OOV 
(reference) 

新規 (rules, regulations, new regulations) 

Sorted 
translations 

planning new, provides new, new regulations, 
new rules, …, new provisions, … 

Moses china 's electronic 銀行業務 新規 management 
will be held on march 1 date for the 
implementation of the 

CST china 's electronic 銀行業務 management of the 
new regulations will come into effect on march 1 

Table 7. (a) Examples with OOVs correctly translated. 
Sorted translation candidates of OOVs and translations 
of the source sentences by Moses and CST are shown. 

 
Additionally, Table 7(b) displays three example 

sentences where translations of OOV words 
partially match their reference. In Example 6, 
although our OOV model ranked the correct 

translation “three cars” at the top choice, Moses 
chose “three trucks” for the OOV probably based 
on local consideration of the target language model. 
Moreover, BLEU may underestimate CST’s 
performance: for Example 7, “salary payment”, 
though does not match the reference, may be an 
acceptable translation. 
Example 

sentence 5 
南韓 女子 競速 滑冰 選手 李寶拉 … 

OOV 
(reference)

競速 (speed) 

Sorted 
translations

speed competition, accelerating competition, …, 
speed races, … 

Moses south korean woman 競速 李寶拉 skating team …
CST south korean woman speed races 李寶拉 skating 

team … 
Example 

sentence 6 
…58 公里 處 發生 三車 相撞 事故 , 一 輛 轎
車 、 一 貨車 和 一 輛 油罐車 撞 在一起 … 

OOV 
(reference)

三車 (three-vehicle, three car) 

Sorted 
translations

three cars, three vehicles, motor third, jeep three, 
three trucks, triple car, … 

Moses … 58 kilometers in 三車 collision incident , a car , 
a truck and a truck oil tanker collided together … 

CST … 58 kilometers in a collision of three trucks , 
cars and a truck and a truck oil tanker collided 
together … 

Example 
sentence 7 

… 根據 法律 規定 專門 制定 了 報刊 轉載  
付酬的 標準 。 

OOV 
(reference)

付酬 (payment , remuneration) 

Sorted 
translations

remuneration paid, …, salary payment, paying 
salaries, pay salaries, pays salaries, … 

Moses … under the law specifically enacted which 
touched 付酬 standards . 

CST …under the law specifically enacted which 
touched on salary payment standards . 

Table 7. (b) Examples with OOVs partially translated. 
 

Examples 8-9 in Table 7(c) illustrate that there 
is room for future improvements of our system. In 
Example 8, despite the fact that our model found 
the correct sublexical translations “snow storm” of 
the OOV “風雪”, it reference translation is in the 
form of one-word compound “snowstorm”. 
Therefore, we would like to accommodate such 
cases by adding such compounds into our 
candidate lists. Furthermore, in the last example in 
Table 7(c), we observed the need for sense 
disambiguation of constituents (i.e., Chinese 
character). In this case, the character “班” in OOV 
“減班” may be associated with many senses, like 
“班級” (class), “航班” (flight), “值班” (shift), and 
“車班 ” (schedule), resulting in many possible 
choices of translations. Since it is difficult to 
disambiguate such constituent without the help of 
contextual information of the OOV word, we plan 
to incorporate OOVs’ contexts (other than OOVs 



themselves) into our module as features for better 
OOV translation quality. 
Example 

sentence 8 
…我們 終於 看到 風雪 已經 停 了 。 

OOV 
(reference) 

風雪 (snowstorm, blizzard, snow) 

Sorted 
translations 

snow storm, snow storms, ice storm, … 

Moses … we can finally see 風雪 has stopped . 
CST … we can finally see snow storms have stopped . 
Example 

sentence 9 
火車 的 班次 也 是 減班 。 

OOV 
(reference) 

減班 (reduce schedule, reduce frequency) 

Sorted 
translations 

reducing class, cutting class, reduced flights, cut 
flights, reduced class, reduce flights, reduce class, 
cutting flights, … 

Moses the class size , train frequency is 減班 . 
CST the class size , train frequency is cutting class . 

Table 7. (c) Examples for future improvements. 

6 Summary 

We have introduced a method for generating 
translation suggestions for OOV words from a MT 
system’s existing bilingual resource via sublexical 
translations. The promising experimental result 
indicates that as a preprocessing step before a 
state-of-the-art phrase-based decoder, Moses, our 
OOV model genuinely provides good translations 
for unknown words and that out-of-vocabulary 
words are in fact in-vocabulary on the sublexical 
level for languages such as Chinese. Apart from 
the future improvements we point out in Section 
5.2 for our model, we would also like to 
incorporate paraphrasing techniques such as 
(Marton et al., 2009) and (Mirkin et al., 2009) for 
better OOV translation quality and coverage. 
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