
On Beyond TM: When the Translator Leads the Design of a Translation
Support Framework

Reginald L. Hobbs Clare R. Voss Jamal Laoudi

Army Research Laboratory Army Research Laboratory ARTI,Inc
2800 Powder Mill Road 2800 Powder Mill Road 1555 King Street Suite 400

Adelphi, MD 20783 Adelphi, MD 20783 Alexandria, VA 22314

hobbs@arl.army.mil voss@arl.army.mil jlaoudi@arl.army.mil

Abstract

Commercial off-the-shelf machine translation
engines and translation support tools, such as
translation memory (TM), have been devel-
oped primarily for translating grammatically
well-formed, edited text. The real-world, for-
eign language (FL) document collections that
our translators work with consist instead of
noisy and complex image files. We are cur-
rently conducting experiments that involve
building and evaluating the effectiveness of
different multi-component workflows for the
automated processing and translation of these
FL images into English text. To support the
project’s ongoing needs for translations, we
are developing a software framework de-
signed with and for our translator that (i)
streamlines users’ access to and capability to
add-in and modify existing online tools and
data resources (ex. MT, TM, dictionaries,
morphological analyzers, LM), (ii) builds per-
sistent data objects for later re-use, and (iii)
provides users with a configuration screen
page to select the tools and data resources for
their sessions, to set their tools’ options and
display options for their translation screen
page. This paper introduces our extreme pro-
gramming approach to the software engineer-
ing of this new, hands-on translator’s
framework called TREAT (Toolkit and Re-
source Environment to Assist Translation),
where the translator---as subject matter expert
and experienced software user---participates
fully in the software design, evaluation, and
iterative modification processes.

1 Introduction

The Army Research Laboratory conducts experi-
ments in enhancing, constructing, and evaluating
MT engines and resources. The evaluation side of
our experiments requires “ground truth” (GT)
character files of the FL text and “reference trans-
lations” (RT) of the English text. In observing our
team’s translator translate FL texts into RTs, we
noticed the range of translation-support resources
and methods that he applied to the tasks. Given his
experience with semi-automated and fully auto-
mated MT metrics and his prior involvement in our
design of MT user-support and evaluation tools,
we decided to leverage his knowledge and involve
him directly in the creation of a toolkit that would
assist him as well as other translators on our pro-
ject. While translators may rely on TM and other
tools to help with productivity and consistency,
they lack a user-centered software framework for
assembling different categories of translation tools
and customizing their tools and translation screen.
 In this paper, we begin with an overview of our
software engineering approach and principles for
designing a translator’s toolkit framework and then
present the categories of tools in use by our trans-
lator for inclusion in the framework. We then re-
view an example use of existing resources in a
translation task and conclude the paper with an
introduction to the TREAT framework that we
have implemented and continue to refine.

2 Design Approach

The design approach for creating TREAT com-
bines two separate, but complementary software
engineering paradigms: extreme programming and

user-centered design. This combination allows us
to leverage our translator’s experience on different
translation tasks and in using different translation
software. As depicted in Figure 1, we distinguish
three stakeholder roles in creating such a frame-
work: lead builder (developer), lead designer, and
user. In small-scale software development projects,
the builder and the designer may be the same per-
son and typically the builder/designer does not
have the subject matter expertise of the intended
users. As a result, their understanding of the users’
tasks and the users’ software needs is several steps
removed from the user, even when an extensive
requirements engineering process is undertaken to
document the user’s needs.
 By choosing an expert translator as lead de-
signer of the toolkit framework, we quickly hear
back from the “user” when the implementation of
design desiderata by a developer does not support
the intended use case. That is, the expert conducts
both the capability evaluation (validating that the
software “does” its share, for example, providing
correct data and analyses to support specific tasks)
and the usability evaluation (determining that the
user can make use of the software features to effec-
tively complete specific tasks).

Figure 1 User-centered Design

2.1 Extreme Programming & User-Centered
Design

Extreme Programming (XP) is the concept of cre-
ating software very quickly through the use of
rapid prototyping and incremental development. In
Extreme Programming Explained, XP is defined as
“a light-weight methodology for small- to medium-

teams developing software in the face of vague or
rapidly changing conditions”. (Beck, 1999) The
XP software engineering paradigm has been de-
scribed by six principles: 1) embrace change, 2)
keep the design simple, 3) minimize investment
upfront, 4) support incremental change, 5) create
functional releases of the software and 6) continu-
ally re-design based on user feedback.
 Extreme programming shortens application de-
velopment time by compressing the life-cycle and
sharing design, coding, and testing between two or
more software developers. Our work adheres to
these principles both (i) with the choice of an in-
terpreted programming language (as opposed to
compiled), such as JavaScript, Java, or Perl, to cre-
ate rapidly revisable, functional software proto-
types with web pages as the user interface and (ii)
with user feedback incrementally guiding which
features to add, modify, or delete as the GUI for
framework software evolves.

User-centered design seeks to involve the end-
user in all aspects of the software life-cycle, from
initial concept through operational fielding, includ-
ing the maintenance of a system through user feed-
back and change requests. Variations of user-
centered design, such as participatory design and
contextual design, are all methods for building
software that maps to user expectations and needs.
 With the lead design/expert translator in the role
of the end user, we identified several principles to
follow in the development of this framework:

 Keep it simple/short: keep all user-tool in-
teractions as short and intuitive as possible

 Keep it simple/uncluttered: keep all user-
views (GUIs) as open and uncovered as
possible, ex. make sure tools and resources
are non-intrusive: the tools should not get
in the way of the translator

 Put the user in charge: enable user to hide
or show tools, making them accessible if
requested but suppressed if necessary.

 Support the translator-in-training: provide
users with easy access to guide and hints.

 Provide extensibility for incorporating new
tools: enable user to easily add new tools
and expand framework’s capabilities

 Support customization by incorporating
new resources: enable experienced users to

create their own data repositories and to
import data of others

2.2 Progression of User Abilities

Users do not remain at the same level of perform-
ance as they interact and gain familiarity with a
software application over time. By definition, an
experienced user is someone who has performed a
task enough times to have internalized the underly-
ing rules or heuristics for effectiveness. We distin-
guish two dimensions of “experience” among our
intended framework users: experience at transla-
tion tasks and experience using software tools.
 There are translators who are task experts, but
have little or no software tool support. There are
translators-in-training who are novices at the task,
but have been exposed to numerous tools. Our
translator is an expert along both dimensions.
There are also those translators that would fall in
the middle in terms of using software and ability to
translate foreign language texts. For example, non-
native speakers of English who were educated in a
foreign language may be expert translators into
their language, but not into English.
 The framework currently supports four levels of
users: beginning, learning, intermediate, and ad-
vanced.

 Beginning user: Translates using default
tools and tool settings “As-is”.

 Learning user: Makes choices and selects
appropriate tool settings for using avail-
able tools.

 Intermediate user: Customizes framework
by adding their own data resources or set-
tings to unique tool configurations.

 Advanced user: Adds new tools to the
framework to solve more complicated
tasks.

3 Categories of Tools in the Framework

There are many categories of tools at different lev-
els of maturity and capability that may provide
support in translating texts in TREAT. In the fol-
lowing sections, we describe these general catego-
ries and provide examples of available commercial
or open source tools and data resources that can be
included or linked to from within TREAT.

3.1 MT Engines and Multi-MT Tools

MT engines are now available for fully automated
and customized translation of digital texts. They
vary widely in underlying construction methods
(dictionary-based, symbolic rule-based, example-
based, phrase-based, syntax-based) and produce
output translations that differ significantly in accu-
racy and fluency. Although MT engines will fail in
domains that they were not built or trained to trans-
late when compared against the translation quality
of human translators, there are tasks (such as
document triage and filtering) that do not require
full publication-quality, high-fluency in the target
language. Studies now document how MT engines
can be used effectively to assist translators on these
tasks. (Bonet, 2009)

Figure 2 Web client access to multiple MT engines

Our research needs in building and evaluating mul-
tiple MT engines provided the catalyst for the de-
velopment of MTriage, a front-end tool that
communicates with several MT engines. (Hobbs et.
al., 2008) The web client for MTriage hides the
details of configuration settings and transactions
with individual MT engines from the users, ena-
bling them to focus on their translation task by
eliminating their need to learn the details of a sepa-
rate GUI for each engine.
 Figure 2 depicts the implicit workflows in
MTriage available to the translator using the front-
end client to access remote MT web services. The
design of MTriage further supports the user in a
range of research-related tasks---such as, aligning
and storing reference translations, generating mul-
tiple parallel corpora, deriving bilingual lexicon

entries for updating MT engines---by automatically
handling the formatting, organization, and display
of the intermediate translation artifacts.
 MTriage, as set up within TREAT, can make
available one or more its engines (dictionary-based
MT engines that use word-for-word lookup, rule-
based engines that use syntactic and other linguis-
tic information for translation, statistically-trained
engines created using large amounts of parallel
corpora) to improve productivity in filtering and
gisting tasks.1

3.2 Dictionaries

Online dictionaries serve the same purpose as con-
ventional hard-copy dictionaries: allowing the
translator to look up words and review the range of
their meanings, some times accompanied by ex-
emplar sentences or usage notes. Online dictionar-
ies may also provide conventional and alternate
word spellings, syllabification, part-of-speech
(POS) and other linguistic information helpful to
the translator in choosing the correct words or
phrases.
 A translator whose native language is the source
language (SL) may use monolingual target lan-
guage (TL) dictionaries to validate their word
choice during translation. This situation arises in
situations typically when texts in “less-commonly
taught languages” (LCTLs) are translated by im-
migrant speakers and then post-edited in a quality
control phase by English native speakers. Simi-
larly, native speakers may rely on both SL-to-TL
and TL-to-SL dictionaries to ascertain which fa-
miliar SL phrases contain “true” SL words and
which are idiosyncratic loan words that require
alternate translations.
 There are many readily available online dic-
tionaries, such as Merriam-Webster Online and
Dictionary.com, which our translators use as
needed. Specialized resources, like thesauri that
provide synonyms and associated terms, are also
available online and as web services. WordNet, the
original English lexical database developed and

1 In the last year, we have augmented MTriage to incorporate
the statistically trained post-MT editors custom-built with the
MOSES open-source framework, that is available under GNU
General Public License at http://www.statmt.org/moses/. Since
MTriage already opens new windows from its right-click op-
tion, we do not recreate this extension within TREAT for the
separate web-enabled translation of web pages or smaller
segments of text from documents. (per Gaspari, 2007)

maintained at Princeton, displays synsets (sets of
synonyms) for a given word, its context of use in a
phrase or sentence, and links up and down the
WordNet knowledge structure to hypernyms and
hyponyms for ontologically-related terms.
 As we have witnessed our current project trans-
lator’s extensive use of numerous dictionaries (de-
scribed further in subsection ahead on dictionary
“mashups”), we designed TREAT to allow users to
configure it with access to all dictionaries available
to them, including any they built for their own use.

3.3 Translation Memory (TM)

Translation memory (TM) tools and their larger
database-enabled TM systems enable users to im-
port their own or others’ TM data, i.e., the natural
language translations already produced and en-
coded in format-standardized structures, text files,
or databases, to build their own new TMs, and to
modify and store their TMs while translating texts
that require high accuracy, publication-level trans-
lations. Typically the users are also able to set the
values of features via the TM application interface
for the type, length, and proportion of matched text
that is automatically generated during the user’s
translation process.
 Translators vary in the degree to which they
work at their individual tasks with TMs. Our trans-
lators’ experience suggests that using TMs intro-
duces a significant learning curve when the users
are not computer-savvy. Nonetheless, there is gen-
eral consensus that TMs can augment translators’
productivity, consistency, and effectiveness in two
types of cases:
 where document collections exhibit a high de-

gree of passage replication, as occurs within
genres such as technical users’ guides, instruc-
tion manuals, public announcements, and pro-
cedural documentation

 where the document content is specific to a topic
or subject matter domain and so the text comes
from a sublanguage with a controlled vocabu-
lary (set perhaps by a terminology management
system), simplified or redacted sentence struc-
tures, conventionalized expressions or abbrevia-
tions and a high frequency of domain-specific,
unambiguous phrases.

When a TM for an industry or for a domain is sup-
plied to the translator by the client to support stan-

http://www.statmt.org/moses/

dardization and consistency across a proprietary
document collection, the translators may have ac-
cess to it directly (such as in TMX file) or indi-
rectly from different software interfaces, such as a
web-enabled GUI or a given desktop application.

Figure 3 Omega-T Translation Memory Tool

Commercially available TM systems include SDL
Trados and LingoTek. 2 Our translators have
worked with Omega-T, an open-source, freely
available TM tool (see screenshot in Figure 3).
Omega-T’s features include support for fuzzy (par-
tial) mapping of phrases, the ability to handle mul-
tiple TMs simultaneously, the use of external
glossaries, compatibility with TMX (Translation
Memory Exchange) XML data, and UTF-8 encod-
ing for non-Latin character sets.3
 Given that translators will also create their own
stores of their translated phrases so that their work
remains internally consistent. (Smith, 2007), we
have designed TREAT to allow users to configure
it with access to one or more TM tools.

3.4 Transliteration Tools & Named Entity
Extraction

Transliterations are mapping patterns that convert
characters that are native to one script into another
script. MT engines typically give their users the
option of applying a built-in transliteration scheme
to “not found words” (NFWs, words not found in
the MT lexicon) when they cannot read the SL
script, and so want to “see” what the NFW is. So
for translation of an alphabetic or syllabic script

2 Garcia (2005) writes that Trados has provided the de facto
standard for over 20 years.
3 Sourceforge application available at http://www.omegat.org/

into English, transliteration schemes will “roman-
ize” or map non-Latin characters into Latin letters.
 Tools, such as Basis Technology’s Translitera-
tion Assistant and Google’s ta3reeb online translit-
eration tool 4 apply standardized transliteration
schemes for Arabic-to-English translations.
There are several standards for transliteration, in-
cluding the Intelligence Community (IC) standard,
the US Board on Geographic Names (BGN) and
the Standard Arabic Technical Transliteration Sys-
tem (SATTS). Ad-hoc (non-standard, and often
impromptu and inconsistent) transliterations appear
in situations where non-Latin characters are not
readily available, such as Arabic-language chat-
rooms, instant message boards, text messages, or
some social networking sites.

Table 1 MT output for alternate name spellings

Correct Arabic Spelling Alternate Arabic Spelling

معمر القذافي معمر قذافي
Statistical MT Muammar Gaddafi Muammar Gaddafi
Rule-based MT Moamar Al-Qadhaffi long-lived

While transliteration may help MT users sound

out and recognize “named entities” in the MT out-
put, i.e. the proper names of persons, locations, or
organizations, the existence of multiple translitera-
tion schemes across MT engines yields multiple
ways of “spelling out” those names. These variants
can cause problems for post-MT software such as
Named Entity Extractors (NEE)s that must discern
which scheme was used in order to reconcile and
standardize the spellings. Table 1 illustrates the
impact on two types of MT of variant spellings and
transliterations, which in turn cascades into NEEs.

With variation in the use of diacritics in Arabic,
there can be multiple correct spell-outs of Arabic
names in English. A further complication arises
with MT when a word in a proper name is recog-
nized (not a NFW) and is translated literally by the
lexicon, as occurs in the case of long-lived, as out-
put by the rule-based MT engine.

The challenge for translators in deciding how to
handle named entities is to establish one consistent
transliteration scheme that they apply across-the-
board in their TL texts, whether that scheme is one
that they choose or one that their client has identi-
fies in advance. TREAT supports the user in cre-
ating their own scheme or applying an available
standard that they upload to the framework.

4 http://www.google.com/transliterate/arabic/

3.5 Morphological Analyzers

A morphological analyzer typically reads an SL
input token and generates one or more analyses of
that token’s internal structure and content. The
range and depth of linguistic information varies
widely with each analyzer, from the simplest that
output only one-best stemmed forms to the most
extensive that output listings of all possible combi-
nations of derivational and inflectional sub-
analyses of each token, where each sub-analysis
includes linguistic specifics such as lemmas,
grammatical feature values, and glosses.

Figure 4. Buckwalter-Based Lookup Tool (BBLT)

One such extensive analyzer that is widely used
among MT developers is the Buckwalter Arabic
Morphological Analyzer (Buckwalter, 2004).
When we discovered the English glosses for lem-
mas within the lexicon of this analyzer, we realized
this would provide us with another way to translate
Arabic tokens into English. Figure 4 is a screenshot
of the tool built to look up English glosses for fully
analyzed Arabic tokens (Micher et. al, 2008).

Our project translator, a native speaker of Ara-
bic, makes use of BBLT when he wants to see all
possible token-for-token translation combinations
at once in tabular form for a sentence that he is
translating. TREAT has been designed so that us-
ers can import and access morphological analyzers
(or their own customized versions like BBLT) as
desired during translation.

4 Resource Mashup5

One challenging subtask in translation can be to
isolate the specific sense or meaning of a SL word

5 A mashup is an application that combines data or functional-
ity from two or more external sources to create a new service.

or phrase as used in context, and then to find its
closest TL translation without incurring new or
unintended nuances of meaning in the TL sentence.
The first part of this subtask, isolating the mono-
lingual word sense, is called word sense disam-
biguation (WSD). When carried out however
during translation, the challenges of WSD on the
SL side are compounded by the need for WSD of
each possible TL translations of the isolated SL
sense. Since bilingual translators are quite rarely
equally proficient in both the SL and TL, they find
that must tackle WSD for one or both languages.
Furthermore WSD may tap into cultural, collo-
quial, or domain-specific meanings that are not
familiar to the translator.

Figure 5. Steps toward Word Sense Disambiguation

 The process of selecting the contextually ap-
propriate word choice in both the SL and the TL
led our translator to develop an iterative process of
looking up over a dozen individual words in bilin-
gual lexicons that initially stunned the non-
translators, but was then later easily recognized by
an experienced translation teacher as a practice he
explicitly taught to new translators. We relate this
description of the iterative process here because it
led us to realize that we also wanted to provide for
mashup tools within TREAT. This mashup is
compelling example of the creativity that can arise
with easy access to resources and tools.

Figure 5 The following example in traces two
round-trip Arabic-English-Arabic translations and
one round-trip English-Arabic-English translation.
The Arabic text to be translated was: “آتاب صورة”.
with an initial word-for-word translation by the
human translator yielding “Copy Book” in English.

This literal translation did not appear to fit the con-
text of the rest of the document. The translator sus-
pected that the second word sense (read from right-
to-left) “آتاب” was off due to uncommon usage.
 Round 1: The translator used an online Arabic-
to-English (A2E) dictionary to yield six possible
English translations of the Arabic token: school,
book, work, compilation, publication, and volume.
 From the context of the original Arabic text, the
words “text”, “school”, “book”, “work”, and “vol-
ume” are discarded. The word “publication” was
selected from the original list as the closest in
meaning, based on context. This English word was
then translated into Arabic using Google’s online
English-to-Arabic (E2A) dictionary, producing
eight tokens or phrases: “آتب“ ,” إعلام“ ,” آتاب ”,
 الكتب نشر“ and ,” إذاعة“ ,” نشرة“ ,” إشهار“ ,” منشور“
 Of these possibilities, the Arabic word .” وغيرها
 .seemed the best fit ”إعلام“
 Round 2: Translating “إعلام” using the A2E dic-
tionary yielded six translations: information, notifi-
cation, notice, publication, advice, and intimation.
 The word “notice” appeared to be closest to the
desired context. Translating “notice” using the
E2A online dictionary generated 14 possibilities,
none however similar to the original Arabic token.
The translator then used a monolingual English
dictionary to find synonyms of the word “Notice”:
acknowledge, advert, allude, catch, clock, descry,
detect, dig, discern, distinguish, espy, heed, make
out, mark, mind, note, recognize, refer, regard,
remark, see, spot, take in, flash on, get a load of,
look at, and pick up on. The word “note” was se-
lected then as the best candidate of these choices.
 Round 3: The word “Note” was translated using
a different E2A online dictionary6 , returning the
Arabic token مُذَآَّرَه. The translator standardized the
diacritization of the token to produce a disambigu-
ate version of the Arabic token: مذآرة. Translating
this token using A2E dictionary resulted in a list of
English words that included the word: “memo.”
This word fit the original context the best, so the
final best translation of the original Arabic phrase
was set to “Memo Copy”.

5 TREAT: The Translator’s Framework

Our translator became very adept at switching be-
tween tools and using the various formatted out-

6 http://translate.reference.com/

puts as resources for other tasks. Experience with
and exposure to the many available tools that as-
sisted our translator became the catalyst for con-
structing a framework for consolidating access to
the tools. The Toolkit and Resource Environment
to Assist Translation (TREAT) is the result.

Figure 6 TREAT Configuration Page

TREAT is a front-end to multiple tools and is writ-
ten as a simple web page user interface. There are
two main pages that are viewed by the translator: a
configuration page and the translation page.

The screenshot in Figure 6 shows the configura-
tion page. This page is only displayed during the
initial start-up of the tool, to allow the translator
the ability to set-up the environment prior to the
translation tasks. For each category of tool, there is
a drop-down menu for the choice (or choices) of
tools to be made available. Each of the selected
tools will appear on the pop-up context menu
available during translation as well as on the tool-
bar located at the bottom of the translation page.

There is also an area on the configuration page
to allow the translator to pre-load custom resources
for use during translation. Translators develop their
own local transliteration schemes and spelling
techniques for translated text. Abjad or consonan-
tary languages, like Arabic, require the speaker to
supply the vowels, leading to more than one ac-
ceptable spelling of a word. Domain dictionaries
are also a useful resource that may be preloaded
from the configuration page to be used by tools
that have the ability to import external data. Lan-
guage models are the component within a statisti-
cal MT engine that is used to optimize the fluency
of the English output.

6 Observations and Ongoing Work The settings for the translation page are also
available on the configuration page. Pre-processing
activities for handling the source language data,
such as segmentation or punctuation processing,
can be selected during configuration. The transla-
tor can choose whether to make their progress visi-
ble through automatic highlighting and if the
toolbar should be shown. Contextual information
on the source language document, such as genre,
domain, encoding, and language script are denoted
during configuration.

In this paper, we have motivated our design, de-
velopment, and user-centered approach to TREAT
as a software framework, where an expert transla-
tor participates on the project as both designer and
evaluator. We expect TREAT will evolve as we
expose it to new users. In particular, we will track:
(i) features that translators-in-training use immedi-
ately to establish framework defaults for learners,
(ii) resources and tools that more experienced
translators actively upload and select to evaluate
what new items or categories to include in
TREAT, and (iii) high frequency sequences of tool
and resource usage for new mash-up ideas.

References

K. Beck. Extreme Programming Explained: Embrace
the Change. Addison-Wesley. 1999

Josep Bonet. Is machine translation useful for transla-
tors? The technological environment in the Euro-
pean Commission DG Translation. Translingual
Europe 2009, May 13-14, Prague, Czech Republic

Tim Buckwalter. Issues in Arabic Orthography and
Morphology Analysis, The Workshop on Computa-
tional Approaches to Arabic Script-based Languages,
COLING 2004. Geneva.

Ignacio Garcia. Long term memories: Trados and TM
turn 20. Journal of Specialised Translation 4 (July
2005); pp.18-31.

Federico Gaspari & John Hutchins. Online and free!
Ten years of online machine translation: origins, de-
velopments, current use and future prospects. MT
Summit XI, 10-14 Sep 2007, Copenhagen, Denmark. Figure 7 TREAT Translation Page

Reginald Hobbs, Jamal Laoudi, & Clare R.Voss. 2008.
MTriage: web-enabled software for the creation, ma-
chine translation, and annotation of smart docu-
ments. Proc. of the 6th Language Resources and
Evaluation Conference (LREC 2008), Marrakech,
Morocco.

The translation page (Figure 7) is designed to

be as simple as possible with only two main text
areas on the page: the upper text area for the source
language text being translated and the lower text
area for the target language text translations. The
tools selected on the configuration page appear as
icons on a toolbar at the bottom of the page. This
toolbar can be hidden to maximize the real estate
on the screen for translation. The selected tools
also appear as entries on the pop-up context menu
that can be opened by right-clicking the mouse
anywhere on the translation page interface. The
TREAT framework can take advantage of user set-
tings and internal coding to automatically modify
the page layout, for example, moving the scroll-bar
to the right side of the GUI to support right-to-left
Arabic scripts.

Jeffrey Micher and Clare Voss. Buckwalter-based
Lookup Tool as Language Resource for Arabic Lan-
guage Learners. Proc. of ACL-08: Software Engi-
neering, Testing, and Quality Assurance for NLP,
pgs 66-67, Columbus, June 2008.

Ross Smith. Your own memory? The Linguist 47 (1),
February-March 2008; pp. 22-23.

