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Abstract.  We describe a Machine Translation (MT) approach that is specifically
designed to enable rapid development of MT for languages with limited amounts
of online resources. Our approach assumes the availability of a small number of
bi-lingual speakers of the two languages, but these need not be linguistic experts.
The bi-lingual speakers create a comparatively small corpus of word aligned
phrases and sentences (on the order of magnitude of a few thousand sentence
pairs) using a specially designed elicitation tool.  From this data, the learning
module of our system automatically infers hierarchical syntactic transfer rules,
which encode how syntactic constituent structures in the source language transfer
to the target language.  The collection of transfer rules is then used in our run-time
system to translate previously unseen source language text into the target
language.  We describe the general principles underlying our approach, and
present results from an experiment, where we developed a basic Hindi-to-English
MT system over the course of two months, using extremely limited resources.

1. Introduction
Corpus-based Machine Translation (MT)
approaches such as Statistical Machine Translation
(SMT)  (Brown et al, 1990), (Brown et al, 1993),
(Vogel and Tribble, 2002), (Yamada and Knight,
2001), (Papineni et al, 1998), (Och and Ney, 2002)
and Example-based Machine Translation (EBMT)
(Brown, 1997), (Sato and Nagao, 1990) have
received much attention in recent years, and have
significantly improved the state-of-the-art of
Machine Translation for a number of different
language pairs.  These approaches are attractive
because they are fully automated, and require orders
of magnitude less human labor than traditional rule-
based MT approaches.  However, to achieve
reasonable levels of translation performance, the
corpus-based methods require very large volumes of
sentence-aligned parallel text for the two languages
– on the order of magnitude of a million words or
more.  Such resources are currently available for
only a small number of language pairs.  While the
amount of online resources for many languages will
undoubtedly grow over time, many of the languages
spoken by smaller ethnic groups and populations in

the world will not have such resources within the
foreseeable future.  Corpus-based MT approaches
will therefore not be effective for such languages for
some time to come.

Our MT research group at Carnegie Mellon,
under DARPA and NSF funding, has been working
on a new MT approach that is specifically designed
to enable rapid development of MT for languages
with limited amounts of online resources.  Our
approach assumes the availability of a small number
of bi-lingual speakers of the two languages, but
these need not be linguistic experts.  The bi-lingual
speakers create a comparatively small corpus of
word aligned phrases and sentences (on the order of
magnitude of a few thousand sentence pairs) using a
specially designed elicitation tool.  From this data,
the learning module of our system automatically
infers hierarchical syntactic transfer rules, which
encode how constituent structures in the source
language transfer to the target language.  The
collection of transfer rules is then used in our run-
time system to translate previously unseen source
language text into the target language.  We refer to
this system as the “Trainable Transfer-based MT
System”, or in short the XFER system.
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In this paper, we describe the general principles
underlying our approach, and the current state of
development of our research system.  We then
describe an extensive experiment we conducted to
assess the promise of our approach for rapid ramp-
up of MT for languages with limited resources: a
Hindi-to-English XFER MT system was developed
over the course of two months, using extremely
limited resources on the Hindi side.  We compared
the performance of our XFER system with our in-
house SMT and EBMT systems, under this limited
data scenario.  The results of the experiment
indicate that under these extremely limited training
data conditions, when tested on unseen data, the
XFER system significantly outperforms both EBMT
and SMT.

We are currently in the middle of yet another
two-month rapid-development application of our
XFER approach, where we are developing a
Hebrew-to-English XFER MT system. Preliminary
results from this experiment will be reported at the
workshop.

2. Trainable Transfer-based MT Overview
The fundamental principles behind the design of our
XFER approach for MT are: (1) that it is possible to
automatically learn syntactic transfer rules from
limited amounts of word-aligned data; (2) that such
data can be elicited from non-expert bilingual
speakers of the pair of languages; and (3) that the
rules learned are useful for machine translation
between the two languages.  We assume that one of
the two languages involved is a “major” language
(such as English or Spanish) for which significant
amounts of linguistic resources and knowledge are
available.

The XFER system consists of four main
sub-systems: elicitation of a word aligned parallel
corpus; automatic learning of transfer rules; the run
time transfer system; and a statistical decoder for
selection of a final translation output from a large
lattice of alternative translation fragments produced
by the transfer system.  The architectural design of
the XFER system in a configuration in which
translation is performed from a limited-resource
language to a major language is shown in Figure 1.

Figure 1. Architecture of the XFER MT System and
its Major Components

Figure 2. The Elicitation Tool as Used to Translate
and Align an English Sentence to Hindi.

3. Elicitation of Word-Aligned Parallel Data
The purpose of the elicitation sub-system is to
collect a high quality, word aligned parallel corpus.
A specially designed user interface was developed
to allow bilingual speakers to easily translate
sentences from a corpus of the major language (i.e.
English) into their native language (i.e. Hindi), and
to graphically annotate the word alignments
between the two sentences.  Figure 2 contains a
snapshot of the elicitation tool, as used in the
translation and alignment of an English sentence to
Hindi.  The informant must be bilingual and literate
in the language of elicitation and the language being
elicited, but does not need to have knowledge of
linguistics or computational linguistics.

The word-aligned elicited corpus is the
primary source of data from which transfer rules are
inferred by our system.  In order to support effective
rule learning, we designed a “controlled” English
elicitation corpus.  The design of this corpus was
based on elicitation principles from field linguistics,
and the variety of phrases and sentences attempts to
cover a wide variety of linguistic phenomena that
the minor language may or may not possess.  The
elicitation process is organized along “minimal
pairs”, which allows us to identify whether the
minor languages possesses specific linguistic
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phenomena (such as gender, number, agreement,
etc.).  The sentences in the corpus are ordered in
groups corresponding to constituent types of
increasing levels of complexity.  The ordering
supports the goal of learning compositional
syntactic transfer rules.  For example, simple noun
phrases are elicited before prepositional phrases and
simple sentences, so that during rule learning, the
system can detect cases where transfer rules for NPs
can serve as components within higher-level transfer
rules for PPs and sentence structures.  The current
controlled elicitation corpus contains about 2000
phrases and sentences.  It is by design very limited
in vocabulary.  A more detailed description of the
elicitation corpus, the elicitation process and the
interface tool used for elicitation can be found in
(Probst et al, 2001), (Probst and Levin, 2002).

4. Automatic Transfer Rule Learning
The rule learning system takes the elicited, word-
aligned data as input.  Based on this information, it
then infers syntactic transfer rules.  The learning
system also learns the composition of transfer rules.
In the compositionality learning stage, the learning
system identifies cases where transfer rules for
“lower-level” constituents (such as NPs) can serve
as components within “higher-level” transfer rules
(such as PPs and sentence structures).  This process
generalizes the applicability of the learned transfer
rules and captures the compositional makeup of
syntactic correspondences between the two
languages.  The output of the rule learning system is
a set of transfer rules that then serve as a transfer
grammar in the run-time system.  The transfer rules
are comprehensive in the sense that they include all
information that is necessary for parsing, transfer,
and generation.  In this regard, they differ from
“traditional” transfer rules that exclude parsing and
generation information.  Despite this difference, we
will refer to them as transfer rules.

The design of the transfer rule formalism
itself was guided by the consideration that the rules
must be simple enough to be learned by an
automatic process, but also powerful enough to
allow manually-crafted rule additions and changes
to improve the automatically learned rules.

The following list summarizes the
components of a transfer rule.  In general, the x-side
of a transfer rules refers to the source language (SL),
whereas the y-side refers to the target language
(TL).

Figure 3. An Example Transfer Rule along with its
Components

1. Type information:  This identifies the type of
the transfer rule and in most cases corresponds
to a syntactic constituent type.  Sentence rules
are of type “S”, noun phrase rules of type “NP”,
etc.  The formalism also allows for SL and TL
type information to be different.

2. Part-of speech/constituent information: For
both SL and TL, we list a linear sequence of
components that constitute an instance of the
rule type.  These can be viewed as the “right-
hand sides” of context-free grammar rules for
both source and target language grammars. The
elements of the list can be lexical categories,
lexical items, and/or phrasal categories.

3. Alignments:  Explicit annotations in the rule
describe how the set of source language
components in the rule align and transfer to the
set of target language components.  Zero
alignments and many-to-many alignments are
allowed.

4. X-side constraints:  The x-side constraints
provide information about features and their
values in the source language sentence.  These
constraints are used at run-time to determine
whether a transfer rule applies to a given input
sentence.

5. Y-side constraints:  The y-side constraints are
similar in concept to the x-side constraints, but
they pertain to the target language. At run-time,
y-side constraints serve to guide and constrain
the generation of the target language sentence.

6. XY-constraints: The xy-constraints provide
information about which feature values transfer
from the source into the target language.
Specific TL words can obtain feature values
from the source language sentence.
Figure 3 shows an example transfer rule along

with all its components.
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Learning from elicited data proceeds in three
stages: the first phase, Seed Generation, produces
initial “guesses” at transfer rules.  The rules that
result from Seed Generation are “flat” in that they
specify a sequence of parts of speech, and do not
contain any non-terminal or phrasal nodes.  The
second phase, Compositionality Learning, adds
structure using previously learned rules.  For
instance, it learns that sequences such as “Det N
PostP” and “Det Adj N PostP” can be re-written
more generally as “NP PostP”, as an expansion of
PP in Hindi.  This generalization process can be
done automatically based on the flat version of the
rule, and a set of previously learned transfer rules
for NPs.

The first two stages of rule learning result in a
collection of structural transfer rules that are
context-free – they do not contain any unification
constraints that limit their applicability.  Each of the
rules is associated with a collection of elicited
examples from which the rule was created.  The
rules can thus be augmented with a collection of
unification constraints, based on specific features
that are extracted from the elicited examples.  The
constraints can then limit the applicability of the
rules, so that a rule may succeed only for inputs that
satisfy the same unification constraints as the
phrases from which the rule was learned.  A
constraint relaxation technique known as “Seeded
Version Space Learning” attempts to increase the
generality of the rules by identifying unification
constraints that can be relaxed without introducing
translation errors.  While the first two steps of rule
learning are currently well developed, the learning
of appropriately generalized unification constraints
is still in a preliminary stage of investigation.
Detailed descriptions of the rule learning process
can be found in (Probst et al, 2003).

5. The Runtime Transfer System
At run time, the translation module translates a
source language sentence into a target language
sentence.  The output of the run-time system is a
lattice of translation alternatives.  The alternatives
arise from syntactic ambiguity, lexical ambiguity,
multiple synonymous choices for lexical items in
the dictionary, and multiple competing hypotheses
from the rule learner.

The runtime translation system incorporates
the three main processes involved in transfer-based
MT: parsing of the SL input, transfer of the parsed
constituents of the SL to their corresponding
structured constituents on the
TL side, and generation of the TL output.  All three
of these processes are performed based on the

transfer grammar – the comprehensive set of
transfer rules that are loaded into the runtime
system.  In the first stage, parsing is performed
based solely on the “x” side of the transfer rules.
The implemented parsing algorithm is for the most
part a standard bottom-up Chart Parser, such as
described in (Allen, 1995).  A chart is populated
with all constituent structures that were created in
the course of parsing the SL input with the source-
side portion of the transfer grammar.  Transfer and
generation are performed in an integrated second
stage.  A dual TL chart is constructed by applying
transfer and generation operations on each and
every constituent entry in the SL parse chart.  The
transfer rules associated with each entry in the SL
chart are used in order to determine the
corresponding constituent structure on the TL side.
At the word level, lexical transfer rules are accessed
in order to seed the individual lexical choices for the
TL word-level entries in the TL chart.  Finally, the
set of generated TL output strings that corresponds
to the collection of all TL chart entries is collected
into a TL lattice, which is then passed on for
decoding.  A more detailed description of the
runtime transfer-based translation sub-system can be
found in (Peterson, 2002).

6. Target Language Decoding
In the final stage, a statistical decoder is used in
order to select a single target language translation
output from a lattice that represents the complete set
of translation units that were created for all
substrings of the input sentence.  The translation
units in the lattice are organized according the
positional start and end indices of the input fragment
to which they correspond.  The lattice typically
contains translation units of various sizes for
different contiguous fragments of input. These
translation units often overlap.  The lattice also
includes multiple word-to-word (or word-to-phrase)
translations, reflecting the ambiguity in selection of
individual word translations.

The task of the statistical decoder is to
select a linear sequence of adjoining but non-
overlapping translation units that maximizes the
probability of the target language string given the
source language string.  The probability model that
is used calculates this probability as a product of
two factors: a translation model for the translation
units and a language model for the target language.
The probability assigned to translation units is based
on a trained word-to-word probability model.  A
standard trigram model is used for the target
language model.
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The decoding search algorithm considers all
possible sequences in the lattice and calculates the
product of the language model probability and the
translation model probability for the resulting
sequence of target words. It then selects the
sequence which has the highest overall probability.
As part of the decoding search, the decoder can also
perform a limited amount of re-ordering of
translation units in the lattice, when such reordering
results in a better fit to the target language model.

7. Construction of the Hindi-to-English
System

As part of a DARPA “Surprise Language Exercise”,
we quickly developed a Hindi-to-English MT
system based on our XFER approach over a two-
month period. The training and development data
for the system consisted entirely of phrases and
sentences that were translated and aligned by Hindi
speakers using our elicitation tool.  Two very
different corpora were used for elicitation: our
“controlled” typological elicitation corpus and a set
of NP and PP phrases that we extracted from the
Brown Corpus section of the Penn Treebank.  We
estimated the total amount of human effort required
in collecting, translating and aligning the elicited
phrases based on a sample.  The estimated time
spent on translating and aligning a file (of 200
phrases) was about 8 hours. Translation took about
75% of the time, and alignment about 25%.  We
estimate the total time spent to be about 700 hours
of human labor.

We acquired a transfer grammar for Hindi-
to-English transfer by applying our automatic
learning module to the corpus of word-aligned data.
The learned grammar consists of a total of 327 rules.
In a second round of experiments, we assigned
probabilities to the rules based on the frequency of
the rule (i.e. how many training examples produce a
certain rule).  We then pruned rules with low
probability, resulting in a grammar of a mere 16
rules.  As a point of comparison, we also developed
a small manual transfer grammar.  The manual
grammar was developed by two non-Hindi-speaking
members of our project, assisted by a Hindi
language expert.  Our grammar of manually written
rules has 70 transfer rules.  The grammar includes a
rather large verb paradigm, with 58 verb sequence
rules, ten recursive noun phrase rules and two
prepositional phrase rules.  Figure 4 shows an
example of recursive NP and PP transfer rules.

Figure 4. Recursive NP and PP Transfer Rules for
Hindi to English Translation

In addition to the transfer grammar, the
XFER system requires a word-level translation
lexicon.  The Hindi-to-English lexicon we
constructed contains entries from a variety of
sources.  One source for lexical translation pairs is
the elicited corpus itself.  The translations pairs can
simply be read off from the alignments that were
manually provided by Hindi speakers. Because the
alignments did not need to be 1-to-1, the resulting
lexical translation pairs can have strings of more
than one word one either the Hindi or English side
or both.  Another source for lexical entries was an
English-Hindi dictionary provided by the Linguistic
Data Consortium (LDC).  Two local Hindi experts
“cleaned up” a portion of this lexicon, by editing the
list of English translations provided for the Hindi
words, and leaving only those that were “best bets”
for being reliable, all-purpose translations of the
Hindi word.  The full LDC lexicon was first sorted
by Hindi word frequency (estimated from Hindi
monolingual text) and the cleanup was performed
on the most frequent 12% of the Hindi words in the
lexicon.  The “clean” portion of the LDC lexicon
was then used for the limited-data experiment.  This
consisted of 2725 Hindi words, which corresponded
to about 10,000 translation pairs.  This effort took
about 3 days of manual labor.  To create an
additional resource for high-quality translation pairs,
we used monolingual Hindi text to extract the 500
most frequent bigrams.  These bigrams were then
translated into English by an expert in about 2 days.
Some judgment was applied in selecting bigrams
that could be translated reliably out of context.
Finally, our lexicon contains a number of manually
written phrase-level rules.

The system we put together also included a
morphological analysis module for Hindi input.  The
morphology module used is the IIIT Morpher (IIIT
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Morphology Module).  Given a fully inflected word
in Hindi, Morpher outputs the root and other
features such as gender, number, and tense.  To
integrate the IIIT Morpher with our system, we
installed it as a server.

8. Hindi-to-English Translation Evaluation
The evaluation of our XFER-based Hindi-to-English
MT system compares the performance of this
system with an SMT system and EBMT system that
were trained on the exact same training data as our
XFER system.  The limited training data consists of:
• 17,589 word-aligned phrases and sentences

from the elicited data collection.  This includes
both our translated and aligned controlled
elicitation corpus, and also the translated and
aligned uncontrolled corpus of noun phrases and
prepositional phrases extracted from the Penn
Treebank.

• A Small Hindi-to-English Lexicon: 23,612
“clean” translation pairs from the LDC
dictionary.

• A small amount of manually acquired lexical
resources (as described above).

The limited data setup includes no additional
parallel Hindi-English text.  The total amount of
bilingual training data was estimated to amount to
about 50,000 words.

A small, previously unseen, Hindi text was
selected as a test-set for this experiment.  The test-
set chosen was a section of the data collected at
Johns Hopkins University during the later stages of
the DARPA Hindi exercise, using a web-based
interface.  The section chosen consists of 258
sentences, for which four English reference
translations are available.

The following systems were evaluated in
the experiment:
1. Three versions of the Hindi-to-English XFER

system:
1a. XFER with No Grammar: the XFER
system with no syntactic transfer rules (i.e. only
lexical phrase-to-phrase matches and word-to-
word lexical transfer rules, with and without
morphology).
1b. XFER with Learned Grammar: The
XFER system with automatically learned
syntactic transfer rules.
1c. XFER with Manual Grammar: The XFER
system with the manually developed syntactic
transfer rules.

2. SMT: The CMU Statistical MT (SMT) system
(Vogel et al, 2003), trained on the limited-data
parallel text resources.

3. EBMT: The CMU Example-based MT (EBMT)
system (Brown, 1997), trained on the limited-
data parallel text resources.

4. MEMT: A “multi-engine” version that
combines the lattices produced by the SMT
system, and the XFER system with manual
grammar.  The decoder then selects an output
from the joint lattice.
Performance of the systems was measured using

the NIST scoring metric (Doddington, 2002), as
well as the BLEU score (Papineni et al, 2002).  In
order to validate the statistical significance of the
differences in NIST and BLEU scores, we applied a
commonly used sampling technique over the test
set: we randomly draw 258 sentences independently
from the set of 258 test sentences (thus sentences
can appear zero, once, or more in the newly drawn
set).  We then calculate scores for all systems on the
randomly drawn set (rather than the original set).
This process was repeated 10,000 times. Median
scores and 95% confidence intervals were calculated
based on the set of scores.  The results for the
various systems tested can be seen in Table 1 below.
Figure 5 shows the NIST score results with different
reordering windows within the decoder.

Table 1.  System Performance Results for the Various
Translation Approaches

System BLEU NIST
EBMT 0.058 4.22
SMT 0.102 (+/- 0.016) 4.70 (+/- 0.20)
XFER no gra 0.109 (+/- 0.015) 5.29 (+/- 0.19)
XFER learn gra 0.112 (+/- 0.016) 5.32 (+/- 0.19)
XFER man gra 0.135 (+/- 0.018) 5.59 (+/- 0.20)
MEMT 0.136 (+/- 0.018) 5.65 (+/- 0.21)

NIST scores
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Figure 5.  Results by NIST Score with Various
Reordering Windows.

The results of the experiment clearly show that
under the very limited data training scenario that we



122

constructed, the XFER system, with all its variants,
significantly outperformed the SMT system.  While
the scenario of this experiment was clearly and
intentionally more favorable towards our XFER
approach, we see these results as a clear validation
of the utility and effectiveness of our transfer
approach in other scenarios where only very limited
amounts of parallel text and other online resources
are available.

The results of the comparison between the
various versions of the XFER system also show
interesting trends, although the statistical
significance of some of the differences is not very
high.  XFER with the manually developed transfer
rule grammar clearly outperformed (with high
statistical significance) XFER with no grammar and
XFER with automatically learned grammar.  XFER
with automatically learned grammar is slightly
better than XFER with no grammar, but the
difference is statistically not very significant.  We
take these results to be highly encouraging, since
both the manually written and automatically learned
grammars were very limited in this experiment.  The
automatically learned rules only covered NPs and
PPs, whereas the manually developed grammar
mostly covers verb constructions.  While our main
objective is to infer rules that perform comparably
to hand-written rules, it is encouraging that the
hand-written grammar rules result in a big
performance boost over the no-grammar system,
indicating that there is much room for improvement.
If the learning algorithms are improved, the
performance of the overall system can also be
improved significantly.

The significant effects of decoder reordering are
also quite interesting.  On one hand, we believe this
indicates that various more sophisticated rules could
be learned, and that such rules could better order the
English output, thus reducing the need for re-
ordering by the decoder.  On the other hand, the
results indicate that some of the “burden” of
reordering can remain within the decoder, thus
possibly compensating for weaknesses in rule
learning.

Finally, we were pleased to see that the
consistently best performing system was our multi-
engine configuration, where we combined the
translation hypotheses of the SMT and XFER
systems together into a common lattice and applied
the decoder to select a final translation.  The MEMT
configuration outperformed the best pure XFER
system with reasonable statistical confidence.
Obtaining a multi-engine combination scheme that
consistently outperforms all the individual MT
engines has been notoriously difficult in past

research.  While the results we obtained here are for
a unique data scenario, we hope that the framework
applied here for multi-engine integration will prove
to be effective for a variety of other scenarios as
well.  The inherent differences between the XFER
and SMT approaches should hopefully make them
complementary in a broad range of data scenarios.

9. Conclusions
In summary, we feel that we have made significant
steps towards the development of a statistically
grounded transfer-based MT system with: (1) rules
that are scored based on a well-founded probability
model; and (2) strong and effective decoding that
incorporates the most advanced techniques used in
SMT decoding.  Our work complements recent
work by other groups on improving translation
performance by incorporating models of syntax into
traditional corpus-driven MT methods.  The focus of
our approach, however, is from the “opposite end of
the spectrum”: we enhance the performance of a
syntactically motivated rule-based approach to MT,
using strong statistical methods.  We find our
approach particularly suitable for languages with
very limited data resources.
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