Large language models (LLMs) are trained on extensive historical corpora, but their ability to understand time and maintain temporal awareness of time-evolving factual knowledge remains limited. Previous studies often neglect the critical aspect of utilizing knowledge from various sources. To address this gap, we introduce EvolveBench, a comprehensive benchmark that evaluates temporal competence along five key dimensions: Cognition, which examines the ability to recall and contextualize historical facts. Awareness, which tests LLMs’ awareness of temporal misalignment between external inputs and the temporal context of a query. Trustworthiness, which assesses whether models can identify and appropriately refuse queries based on invalid timestamps. Understanding, which focuses on interpreting both explicit dates and implicit historical markers. Finally, reasoning evaluates the capacity to analyze temporal relationships and draw accurate inferences. Evaluating 15 widely used LLMs on EvolveBench shows that GPT-4o achieves the highest average EM score of 79.36, while the open-source Llama3.1-70B demonstrates notable strength in handling temporally misaligned contexts with an average score of 72.47. Despite these advances, all models still struggle with handling temporal misaligned context. Our code and dataset are available at https://github.com/zzysjtuiwct/EvolveBench.
Generating faithful and fast responses is crucial in the knowledge-grounded dialogue. Retrieval Augmented Generation (RAG) strategies are effective but are inference inefficient, while previous Retrieval Free Generations (RFG) are more efficient but sacrifice faithfulness. To solve this faithfulness-efficiency trade-off dilemma, we propose a novel retrieval-free model training scheme named Retrieval Augmented to Retrieval Free Distillation (RA2FD) to build a retrieval-free model that achieves higher faithfulness than the previous RFG method while maintaining inference efficiency. The core idea of RA2FD is to use a teacher-student framework to distill the faithfulness capacity of a teacher, which is an oracle RAG model that generates multiple knowledge-infused responses. The student retrieval-free model learns how to generate faithful responses from these teacher labels through sequence-level distillation and contrastive learning. Experiment results show that RA2FD let the faithfulness performance of an RFG model surpass the previous SOTA RFG baseline on three knowledge-grounded dialogue datasets by an average of 33% and even matching an RAG model’s performance while significantly improving inference efficiency. Our code is available at https://github.com/zzysjtuiwct/RA2FD.
Task-oriented dialogue systems that employ external knowledge to generate informative responses have become an important field of research. This paper outlines our contribution to Track 5 of the Eleventh Dialog System Technology Challenge (DSTC11), which focuses on constructing high-performing, subjective knowledge-enriched task-oriented dialogue systems. Specifically, we investigate the complementarity of various language models to tackle the diverse knowledge selection task that involves multiple external sources. Based on this investigation, we propose pre- and post-generation model ensemble approaches to mitigate potential biases inherent in using a single model for the knowledge selection task. Finally, we utilize the consensus decoding approach to combine fine-tuned ensemble models and improve the performance of the generation system. Our system ranked 1st in human evaluation, even outperforming human annotation.