Tianyun Liu


2025

pdf bib
SOTOPIA-Ω: Dynamic Strategy Injection Learning and Social Instruction Following Evaluation for Social Agents
Wenyuan Zhang | Tianyun Liu | Mengxiao Song | Xiaodong Li | Tingwen Liu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Despite the abundance of prior social strategies possessed by humans, there remains a paucity of research dedicated to their transfer and integration into social agents. Our proposed SOTOPIA-Ω framework aims to address and bridge this gap, with a particular focus on enhancing the social capabilities of language agents. This framework dynamically injects a variety of social strategies into expert agents, thereby automating the construction of high-quality social dialogue training corpus. Additionally, we introduce the concept of Social Instruction Following (S-IF) and propose two new S-IF evaluation metrics that are complementary to social capability. We demonstrate that several 7B models trained on high-quality corpus not only significantly surpasses the expert agent (GPT-4) in achieving social goals but also enhances S-IF performance. Analysis and variant experiments validate the advantages of dynamic construction, which can especially break the agent’s prolonged deadlock.

2023

pdf bib
CCL23-Eval 任务1系统报告:基于信息论约束及篇章信息的古籍命名实体识别(System Report for CCL23-Eval Task 1: Information Theory Constraint and Paragraph based Paragraph Classical Named Entity Recognition)
Xinghua Zhang | Tianyun Liu | Wenyuan Zhang | Tingwen Liu
Proceedings of the 22nd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations)

“命名实体识别旨在自动识别出文本中具有特定意义的实体(例如,人名、地名),古籍文献中的命名实体识别通过识别人名、书籍、官职等实体,为深度挖掘、组织古汉语人文知识提供重要支撑。现有的中文命名实体识别方法主要聚焦在现代文,但古籍中的实体识别具有更大的挑战,表现在实体的歧义性和边界模糊性两方面。由于古籍行文简练,单字表达加剧了实体的歧义性问题,句读及分词断句难度的提升使实体边界的识别更具挑战性。为有效处理上述问题,本文提出一种基于信息论及篇章信息的古籍命名实体识别方法。通过检索古籍文本的来源信息融入篇章先验知识,并在同一篇章的古籍文本上采取滑动窗口采样增强,以引入篇章背景信息,有效缓解实体歧义性问题。此外,在信息论视角下,约束实体的上下文信息及实体本身特征的编码,最大程度保留泛化特征,去除冗余信息,缓解实体边界模糊的问题,在词义复杂多样、句读困难的古文典籍中提升命名实体识别性能。最终,在token-wise和span-level感知的命名实体识别基础框架下,本文的方法取得了最优的评测性能。”

pdf bib
CCL23-Eval 任务6系统报告:基于CLS动态加权平均和数据增强的电信网络诈骗案件分类(System Report for CCL23-Eval Task 6:::Classification of Telecom Internet Fraud Cases Based on CLS Dynamic Weighted Average and Data Augement)
Tianyun Liu | Xinghua Zhang | Mengxiao Song | Tingwen Liu
Proceedings of the 22nd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations)

“电信网络诈骗领域的案件分类作为文本分类的一项落地应用,其目的是为相关案件进行智能化的分析,有助于公安部门掌握诈骗案件的特点,针对性的预防、制止、侦查。本文以此问题为基础,从模型设计、训练过程、数据增强三个方面进行了研究,通过CLS动态加权平均、Multi-Sample Dropout、对抗训练FGM、回译等方法显著提升了模型对诈骗案件描述的分类性能。”