2025
pdf
bib
abs
The Task Shield: Enforcing Task Alignment to Defend Against Indirect Prompt Injection in LLM Agents
Feiran Jia
|
Tong Wu
|
Xin Qin
|
Anna Squicciarini
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Large Language Model (LLM) agents are increasingly being deployed as conversational assistants capable of performing complex real-world tasks through tool integration. This enhanced ability to interact with external systems and process various data sources, while powerful, introduces significant security vulnerabilities. In particular, indirect prompt injection attacks pose a critical threat, where malicious instructions embedded within external data sources can manipulate agents to deviate from user intentions. While existing defenses show promise, they struggle to maintain robust security while preserving task functionality. We propose a novel and orthogonal perspective that reframes agent security from preventing harmful actions to ensuring task alignment, requiring every agent action to serve user objectives. Based on this insight, we develop Task Shield, a test-time defense mechanism that systematically verifies whether each instruction and tool call contributes to user-specified goals. Through experiments on the AgentDojo benchmark, we demonstrate that Task Shield reduces attack success rates (2.07%) while maintaining high task utility (69.79%) on GPT-4o, significantly outperforming existing defenses in various real-world scenarios.
pdf
bib
abs
Automated Progressive Red Teaming
Bojian Jiang
|
Yi Jing
|
Tong Wu
|
Tianhao Shen
|
Deyi Xiong
|
Qing Yang
Proceedings of the 31st International Conference on Computational Linguistics
Ensuring the safety of large language models (LLMs) is paramount, yet identifying potential vulnerabilities is challenging. While manual red teaming is effective, it is time-consuming, costly and lacks scalability. Automated red teaming (ART) offers a more cost-effective alternative, automatically generating adversarial prompts to expose LLM vulnerabilities. However, in current ART efforts, a robust framework is absent, which explicitly frames red teaming as an effectively learnable task. To address this gap, we propose Automated Progressive Red Teaming (APRT) as an effectively learnable framework. APRT leverages three core modules: an Intention Expanding LLM that generates diverse initial attack samples, an Intention Hiding LLM that crafts deceptive prompts, and an Evil Maker to manage prompt diversity and filter ineffective samples. The three modules collectively and progressively explore and exploit LLM vulnerabilities through multi-round interactions. In addition to the framework, we further propose a novel indicator, Attack Effectiveness Rate (AER) to mitigate the limitations of existing evaluation metrics. By measuring the likelihood of eliciting unsafe but seemingly helpful responses, AER aligns closely with human evaluations. Extensive experiments with both automatic and human evaluations, demonstrate the effectiveness of ARPT across both open- and closed-source LLMs. Specifically, APRT effectively elicits 54% unsafe yet useful responses from Meta’s Llama-3-8B-Instruct, 50% from GPT-4o (API access), and 39% from Claude-3.5 (API access), showcasing its robust attack capability and transferability across LLMs (especially from open-source LLMs to closed-source LLMs).
pdf
bib
abs
NCL-UoR at SemEval-2025 Task 3: Detecting Multilingual Hallucination and Related Observable Overgeneration Text Spans with Modified RefChecker and Modified SeflCheckGPT
Jiaying Hong
|
Thanet Markchom
|
Jianfei Xu
|
Tong Wu
|
Huizhi Liang
Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
SemEval-2025 Task 3 (Mu-SHROOM) focuses on detecting hallucinations in content generated by various large language models (LLMs) across multiple languages. This task involves not only identifying the presence of hallucinations but also pinpointing their specific occurrences. To tackle this challenge, this study introduces two methods: modified RefChecker and modified SelfCheckGPT. The modified RefChecker integrates prompt-based factual verification into References, structuring them as claim-based tests rather than single external knowledge sources. The modified SelfCheckGPT ~incorporates external knowledge to overcome its reliance on internal knowledge. In addition, both methods’ original prompt designs are enhanced to identify hallucinated words within LLM-generated texts. Experimental results demonstrate the effectiveness of the approach, achieving a high ranking on the test dataset in detecting hallucinations across various languages, with an average IoU of 0.5310 and an average COR of 0.5669.
pdf
bib
abs
UoR-NCL at SemEval-2025 Task 1: Using Generative LLMs and CLIP Models for Multilingual Multimodal Idiomaticity Representation
Thanet Markchom
|
Tong Wu
|
Liting Huang
|
Huizhi Liang
Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)
SemEval-2025 Task 1 focuses on ranking images based on their alignment with a given nominal compound that may carry idiomatic meaning in both English and Brazilian Portuguese. To address this challenge, this work uses generative large language models (LLMs) and multilingual CLIP models to enhance idiomatic compound representations. LLMs generate idiomatic meanings for potentially idiomatic compounds, enriching their semantic interpretation. These meanings are then encoded using multilingual CLIP models, serving as representations for image ranking. Contrastive learning and data augmentation techniques are applied to fine-tune these embeddings for improved performance.Experimental results show that multimodal representations extracted through this method outperformed those based solely on the original nominal compounds. The fine-tuning approach shows promising outcomes but is less effective than using embeddings without fine-tuning.
2024
pdf
bib
abs
Sinkhorn Distance Minimization for Knowledge Distillation
Xiao Cui
|
Yulei Qin
|
Yuting Gao
|
Enwei Zhang
|
Zihan Xu
|
Tong Wu
|
Ke Li
|
Xing Sun
|
Wengang Zhou
|
Houqiang Li
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Knowledge distillation (KD) has been widely adopted to compress large language models (LLMs). Existing KD methods investigate various divergence measures including the Kullback-Leibler (KL), reverse Kullback-Leibler (RKL), and Jensen-Shannon (JS) divergences. However, due to limitations inherent in their assumptions and definitions, these measures fail to deliver effective supervision when few distribution overlap exists between the teacher and the student. In this paper, we show that the aforementioned KL, RKL, and JS divergences respectively suffer from issues of mode-averaging, mode-collapsing, and mode-underestimation, which deteriorates logits-based KD for diverse NLP tasks. We propose the Sinkhorn Knowledge Distillation (SinKD) that exploits the Sinkhorn distance to ensure a nuanced and precise assessment of the disparity between teacher and student distributions. Besides, profit by properties of the Sinkhorn metric, we can get rid of sample-wise KD that restricts the perception of divergence in each teacher-student sample pair. Instead, we propose a batch-wise reformulation to capture geometric intricacies of distributions across samples in the high-dimensional space. Comprehensive evaluation on GLUE and SuperGLUE, in terms of comparability, validity, and generalizability, highlights our superiority over state-of-the-art methods on all kinds of LLMs with encoder-only, encoder-decoder, and decoder-only architectures.
pdf
bib
Decomposing Directional Serial Verb Constructions in Mandarin:A Preliminary Study
Tong Wu
Proceedings of the 38th Pacific Asia Conference on Language, Information and Computation
2023
pdf
bib
abs
Intersectional Stereotypes in Large Language Models: Dataset and Analysis
Weicheng Ma
|
Brian Chiang
|
Tong Wu
|
Lili Wang
|
Soroush Vosoughi
Findings of the Association for Computational Linguistics: EMNLP 2023
Despite many stereotypes targeting intersectional demographic groups, prior studies on stereotypes within Large Language Models (LLMs) primarily focus on broader, individual categories. This research bridges this gap by introducing a novel dataset of intersectional stereotypes, curated with the assistance of the ChatGPT model and manually validated. Moreover, this paper offers a comprehensive analysis of intersectional stereotype propagation in three contemporary LLMs by leveraging this dataset. The findings underscore the urgency of focusing on intersectional biases in ongoing efforts to reduce stereotype prevalence in LLMs.