Ryan Aponte


2025

pdf bib
From Selection to Generation: A Survey of LLM-based Active Learning
Yu Xia | Subhojyoti Mukherjee | Zhouhang Xie | Junda Wu | Xintong Li | Ryan Aponte | Hanjia Lyu | Joe Barrow | Hongjie Chen | Franck Dernoncourt | Branislav Kveton | Tong Yu | Ruiyi Zhang | Jiuxiang Gu | Nesreen K. Ahmed | Yu Wang | Xiang Chen | Hanieh Deilamsalehy | Sungchul Kim | Zhengmian Hu | Yue Zhao | Nedim Lipka | Seunghyun Yoon | Ting-Hao Kenneth Huang | Zichao Wang | Puneet Mathur | Soumyabrata Pal | Koyel Mukherjee | Zhehao Zhang | Namyong Park | Thien Huu Nguyen | Jiebo Luo | Ryan A. Rossi | Julian McAuley
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Active Learning (AL) has been a powerful paradigm for improving model efficiency and performance by selecting the most informative data points for labeling and training. In recent active learning frameworks, Large Language Models (LLMs) have been employed not only for selection but also for generating entirely new data instances and providing more cost-effective annotations. Motivated by the increasing importance of high-quality data and efficient model training in the era of LLMs, we present a comprehensive survey on LLM-based Active Learning. We introduce an intuitive taxonomy that categorizes these techniques and discuss the transformative roles LLMs can play in the active learning loop. We further examine the impact of AL on LLM learning paradigms and its applications across various domains. Finally, we identify open challenges and propose future research directions. This survey aims to serve as an up-to-date resource for researchers and practitioners seeking to gain an intuitive understanding of LLM-based AL techniques and deploy them to new applications.

pdf bib
GUI Agents: A Survey
Dang Nguyen | Jian Chen | Yu Wang | Gang Wu | Namyong Park | Zhengmian Hu | Hanjia Lyu | Junda Wu | Ryan Aponte | Yu Xia | Xintong Li | Jing Shi | Hongjie Chen | Viet Dac Lai | Zhouhang Xie | Sungchul Kim | Ruiyi Zhang | Tong Yu | Mehrab Tanjim | Nesreen K. Ahmed | Puneet Mathur | Seunghyun Yoon | Lina Yao | Branislav Kveton | Jihyung Kil | Thien Huu Nguyen | Trung Bui | Tianyi Zhou | Ryan A. Rossi | Franck Dernoncourt
Findings of the Association for Computational Linguistics: ACL 2025

Graphical User Interface (GUI) agents, powered by Large Foundation Models, have emerged as a transformative approach to automating human-computer interaction. These agents autonomously interact with digital systems via GUIs, emulating human actions such as clicking, typing, and navigating visual elements across diverse platforms. Motivated by the growing interest and fundamental importance of GUI agents, we provide a comprehensive survey that categorizes their benchmarks, evaluation metrics, architectures, and training methods. We propose a unified framework that delineates their perception, reasoning, planning, and acting capabilities. Furthermore, we identify important open challenges and discuss key future directions. Finally, this work serves as a basis for practitioners and researchers to gain an intuitive understanding of current progress, techniques, benchmarks, and critical open problems that remain to be addressed.

pdf bib
Self-Debiasing Large Language Models: Zero-Shot Recognition and Reduction of Stereotypes
Isabel O. Gallegos | Ryan Aponte | Ryan A. Rossi | Joe Barrow | Mehrab Tanjim | Tong Yu | Hanieh Deilamsalehy | Ruiyi Zhang | Sungchul Kim | Franck Dernoncourt | Nedim Lipka | Deonna Owens | Jiuxiang Gu
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers)

Large language models (LLMs) have shown remarkable advances in language generation and understanding but are also prone to exhibiting harmful social biases. While recognition of these behaviors has generated an abundance of bias mitigation techniques, most require modifications to the training data, model parameters, or decoding strategy, which may be infeasible without access to a trainable model. In this work, we leverage the zero-shot capabilities of LLMs to reduce stereotyping in a technique we introduce as zero-shot self-debiasing. With two approaches, self-debiasing via explanation and self-debiasing via reprompting, we show that self-debiasing can significantly reduce the degree of stereotyping across nine different social groups while relying only on the LLM itself and a simple prompt, with explanations correctly identifying invalid assumptions and reprompting delivering the greatest reductions in bias. We hope this work opens inquiry into other zero-shot techniques for bias mitigation.