Niloofar Ranjbar


2025

pdf bib
Lotus at SemEval-2025 Task 11: RoBERTa with Llama-3 Generated Explanations for Multi-Label Emotion Classification
Niloofar Ranjbar | Hamed Baghbani
Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)

This paper presents a novel approach for multi-label emotion detection, where Llama-3 is used to generate explanatory content that clarifies ambiguous emotional expressions, thereby enhancing RoBERTa’s emotion classification performance. By incorporating explanatory context, our method improves F1-scores, particularly for emotions like fear, joy, and sadness, and outperforms text-only models. The addition of explanatory content helps resolve ambiguity, addresses challenges like overlapping emotional cues, and enhances multi-label classification, marking a significant advancement in emotion detection tasks.

2021

pdf bib
Lotus at SemEval-2021 Task 2: Combination of BERT and Paraphrasing for English Word Sense Disambiguation
Niloofar Ranjbar | Hossein Zeinali
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)

In this paper, we describe our proposed methods for the multilingual word-in-Context disambiguation task in SemEval-2021. In this task, systems should determine whether a word that occurs in two different sentences is used with the same meaning or not. We proposed several methods using a pre-trained BERT model. In two of them, we paraphrased sentences and add them as input to the BERT, and in one of them, we used WordNet to add some extra lexical information. We evaluated our proposed methods on test data in SemEval- 2021 task 2.

2017

pdf bib
Mahtab at SemEval-2017 Task 2: Combination of Corpus-based and Knowledge-based Methods to Measure Semantic Word Similarity
Niloofar Ranjbar | Fatemeh Mashhadirajab | Mehrnoush Shamsfard | Rayeheh Hosseini pour | Aryan Vahid pour
Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)

In this paper, we describe our proposed method for measuring semantic similarity for a given pair of words at SemEval-2017 monolingual semantic word similarity task. We use a combination of knowledge-based and corpus-based techniques. We use FarsNet, the Persian Word Net, besides deep learning techniques to extract the similarity of words. We evaluated our proposed approach on Persian (Farsi) test data at SemEval-2017. It outperformed the other participants and ranked the first in the challenge.