Nadine El-Naggar


2025

pdf bib
GCG-Based Artificial Languages for Evaluating Inductive Biases of Neural Language Models
Nadine El-Naggar | Tatsuki Kuribayashi | Ted Briscoe
Proceedings of the 29th Conference on Computational Natural Language Learning

Recent work has investigated whether extant neural language models (LMs) have an inbuilt inductive bias towards the acquisition of attested typologically-frequent grammatical patterns as opposed to infrequent, unattested, or impossible patterns using artificial languages (White and Cotterell, 2021; Kuribayashi et al., 2024). The use of artificial languages facilitates isolation of specific grammatical properties from other factors such as lexical or real-world knowledge, but also risks oversimplification of the problem.In this paper, we examine the use of Generalized Categorial Grammars (GCGs) (Wood, 2014) as a general framework to create artificial languages with a wider range of attested word order patterns, including those where the subject intervenes between verb and object (VSO, OSV) and unbounded dependencies in object relative clauses. In our experiments, we exemplify our approach by extending White and Cotterell (2021) and report some significant differences from existing results.

2023

pdf bib
Theoretical Conditions and Empirical Failure of Bracket Counting on Long Sequences with Linear Recurrent Networks
Nadine El-Naggar | Pranava Madhyastha | Tillman Weyde
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics: Student Research Workshop

Previous work has established that RNNs with an unbounded activation function have the capacity to count exactly. However, it has also been shown that RNNs are challenging to train effectively and generally do not learn exact counting behaviour. In this paper, we focus on this problem by studying the simplest possible RNN, a linear single-cell network. We conduct a theoretical analysis of linear RNNs and identify conditions for the models to exhibit exact counting behaviour. We provide a formal proof that these conditions are necessary and sufficient. We also conduct an empirical analysis using tasks involving a Dyck-1-like Balanced Bracket language under two different settings. We observe that linear RNNs generally do not meet the necessary and sufficient conditions for counting behaviour when trained with the standard approach. We investigate how varying the length of training sequences and utilising different target classes impacts model behaviour during training and the ability of linear RNN models to effectively approximate the indicator conditions.