Jinwoo Shin
2025
Debiasing Online Preference Learning via Preference Feature Preservation
Dongyoung Kim
|
Jinsung Yoon
|
Jinwoo Shin
|
Jaehyung Kim
Findings of the Association for Computational Linguistics: ACL 2025
Recent preference learning frameworks for large language models (LLMs) simplify human preferences with binary pairwise comparisons and scalar rewards. This simplification could make LLMs’ responses biased to mostly preferred features, and would be exacerbated during the iterations of online preference learning steps. To address these challenges, we propose a novel framework coined PFP (Preference Feature Preservation). The key idea of PFP is maintaining the distribution of human preference features and utilizing such rich signals throughout the online preference learning process. Specifically, PFP first extract preference features from offline pairwise human preference data and trains a feature classifier. Then, using trained classifier and the distribution preserving optimization, PFP maps appropriate preference features for a new input instruction during online learning. Lastly, PFP trains LLM using the existing preference learning method, by incorporating the preference feature into system prompts and enabling LLM to explicitly handle various human preferences. Our experiments demonstrate that PFP successfully mitigates the bias in preference features during online learning, and hence achieves superior performance compared to previous preference learning methods on standard benchmarks to evaluate LLM alignment.
2024
Margin Matching Preference Optimization: Enhanced Model Alignment with Granular Feedback
Kyuyoung Kim
|
Ah Jeong Seo
|
Hao Liu
|
Jinwoo Shin
|
Kimin Lee
Findings of the Association for Computational Linguistics: EMNLP 2024
Large language models (LLMs) fine-tuned with alignment techniques, such as reinforcement learning from human feedback, have been instrumental in developing some of the most capable AI systems to date. Despite their success, existing methods typically rely on simple binary labels, such as those indicating preferred outputs in pairwise preferences, which fail to capture the subtle differences in relative quality between pairs. To address this limitation, we introduce an approach called Margin Matching Preference Optimization (MMPO), which incorporates relative quality margins into optimization, leading to improved LLM policies and reward models. Specifically, given quality margins in pairwise preferences, we design soft target probabilities based on the Bradley-Terry model, which are then used to train models with the standard cross-entropy objective. Experiments with both human and AI feedback data demonstrate that MMPO consistently outperforms baseline methods, often by a substantial margin, on popular benchmarks including MT-bench and RewardBench. Notably, the 7B model trained with MMPO achieves state-of-the-art performance on RewardBench as of June 2024, outperforming other models of the same scale. Our analysis also shows that MMPO is more robust to overfitting, leading to better-calibrated models.
2023
infoVerse: A Universal Framework for Dataset Characterization with Multidimensional Meta-information
Jaehyung Kim
|
Yekyung Kim
|
Karin de Langis
|
Jinwoo Shin
|
Dongyeop Kang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
The success of NLP systems often relies on the availability of large, high-quality datasets. However, not all samples in these datasets are equally valuable for learning, as some may be redundant or noisy. Several methods for characterizing datasets based on model-driven meta-information (e.g., model’s confidence) have been developed, but the relationship and complementary effects of these methods have received less attention. In this paper, we introduce infoVerse, a universal framework for dataset characterization, which provides a new feature space that effectively captures multidimensional characteristics of datasets by incorporating various model-driven meta-information. infoVerse reveals distinctive regions of the dataset that are not apparent in the original semantic space, hence guiding users (or models) in identifying which samples to focus on for exploration, assessment, or annotation. Additionally, we propose a novel sampling method on infoVerse to select a set of data points that maximizes informativeness. In three real-world applications (data pruning, active learning, and data annotation), the samples chosen on infoVerse space consistently outperform strong baselines in all applications. Our code and demo are publicly available.
Search
Fix author
Co-authors
- Jaehyung Kim 2
- Karin De Langis 1
- Dongyeop Kang 1
- Yekyung Kim 1
- Kyuyoung Kim 1
- show all...