Jiayu Liu


2025

pdf bib
Revisiting Epistemic Markers in Confidence Estimation: Can Markers Accurately Reflect Large Language Models’ Uncertainty?
Jiayu Liu | Qing Zong | Weiqi Wang | Yangqiu Song
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

As large language models (LLMs) are increasingly used in high-stakes domains, accurately assessing their confidence is crucial. Humans typically express confidence through epistemic markers (e.g., “fairly confident”) instead of numerical values. However, it remains unclear whether LLMs consistently use these markers to reflect their intrinsic confidence due to the difficulty of quantifying uncertainty associated with various markers. To address this gap, we first define ***marker confidence*** as the observed accuracy when a model employs an epistemic marker. We evaluate its stability across multiple question-answering datasets in both in-distribution and out-of-distribution settings for open-source and proprietary LLMs. Our results show that while markers generalize well within the same distribution, their confidence is inconsistent in out-of-distribution scenarios. These findings raise significant concerns about the reliability of epistemic markers for confidence estimation, underscoring the need for improved alignment between marker based confidence and actual model uncertainty. Our code is available at https://github.com/HKUST-KnowComp/MarCon.

2024

pdf bib
GProofT: A Multi-dimension Multi-round Fact Checking Framework Based on Claim Fact Extraction
Jiayu Liu | Junhao Tang | Hanwen Wang | Baixuan Xu | Haochen Shi | Weiqi Wang | Yangqiu Song
Proceedings of the Seventh Fact Extraction and VERification Workshop (FEVER)

In the information era, the vast proliferation of online content poses significant challenges, particularly concerning the trustworthiness of these digital statements, which can have profound societal implications. Although it is possible to manually annotate and verify the authenticity of such content, the sheer volume and rapid pace of information generation render this approach impractical, both in terms of time and cost. Therefore, it is imperative to develop automated systems capable of validating online claims, ensuring that users can use the wealth of information available on the Internet effectively and reliably. Using primarily ChatGPT and the Google search API, GProofT fact checking framework generates question-answer pairs to systematically extract and verify the facts within claims. Based on the outcomes of these QA pairs, claims are subsequently labeled as Supported, Conflicted Evidence/Cherry-Picking, or Refuted. Shown by extensive experiments, GProofT Retrieval generally performs effectively in fact-checking and makes a substantial contribution to the task. Our code is released on https://github.com/HKUST-KnowComp/GProofT.