Elena Tommasone


2024

pdf bib
On Leakage of Code Generation Evaluation Datasets
Alexandre Matton | Tom Sherborne | Dennis Aumiller | Elena Tommasone | Milad Alizadeh | Jingyi He | Raymond Ma | Maxime Voisin | Ellen Gilsenan-McMahon | Matthias Gallé
Findings of the Association for Computational Linguistics: EMNLP 2024

In this paper, we consider contamination by code generation test sets, in particular in their use in modern large language models.We discuss three possible sources of such contamination and show findings supporting each of them: (i) direct data leakage, (ii) indirect data leakage through the use of synthetic data and (iii) overfitting to evaluation sets during model selection.To address this, we release Less Basic Python Problems (LBPP): an uncontaminated new benchmark of 161 prompts with their associated Python solutions. LBPP is released at https://huggingface.co/datasets/CohereForAI/lbpp

2022

pdf bib
PAGnol: An Extra-Large French Generative Model
Julien Launay | Elena Tommasone | Baptiste Pannier | François Boniface | Amélie Chatelain | Alessandro Cappelli | Iacopo Poli | Djamé Seddah
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Access to large pre-trained models of varied architectures, in many different languages, is central to the democratization of NLP. We introduce PAGnol, a collection of French GPT models. Using scaling laws, we efficiently train PAGnol-XL (1.5B parameters) with the same computational budget as CamemBERT, a model 13 times smaller. PAGnol-XL is the largest model trained from scratch for the French language. We plan to train increasingly large and performing versions of PAGnol, exploring the capabilities of French extreme-scale models. For this first release, we focus on the pre-training and scaling calculations underlining PAGnol. We fit a scaling law for compute for the French language, and compare it with its English counterpart. We find the pre-training dataset significantly conditions the quality of the outputs, with common datasets such as OSCAR leading to low-quality offensive text. We evaluate our models on discriminative and generative tasks in French, comparing to other state-of-the-art French and multilingual models, and reaching the state of the art in the abstract summarization task. Our research was conducted on the public GENCI Jean Zay supercomputer, and our models up to the Large are made publicly available.