2025
pdf
bib
abs
RolePlot: A Systematic Framework for Evaluating and Enhancing the Plot-Progression Capabilities of Role-Playing Agents
Pinyi Zhang
|
Siyu An
|
Lingfeng Qiao
|
Yifei Yu
|
Jingyang Chen
|
Jie Wang
|
Di Yin
|
Xing Sun
|
Kai Zhang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Role-playing agents (RPAs) are garnering increasing interests as a novel form of conversational AI. While previous research has predominantly concentrated on their ability to portray specified characters, we argue from a user-centered perspective that RPAs’ capability to advance the plot requires substantial improvements to deliver more engaging interaction. To bridge this gap, we propose RolePlot, a role-playing framework specifically designed to evaluate and enhance the plot-progression capabilities of RPAs. RolePlot begins by constructing a plot-progression dataset extended from human-written literary scripts and specially designed synthetic data, followed by narrative theory-driven manual annotation and automated labeling validated through human verification. We then exploit the over-parameterized embedding space of LLMs to detect a “trigger subspace” that identifies dialogue segments catalyzing plot transitions. When user’s inputs align with this subspace, we explicitly prompt RPAs to advance the plot. For evaluation, we simulate User-RPA interactions and track both the conversation longevity (measured in dialogue turns before disengagement) and users’ arousal levels across different stages. Empirically, our method improves RPAs’ capability to time plot developments, and more importantly, yielding a significant increase in conversation turns and sustained higher arousal levels, thereby confirming that users experience more immersive engagements.
pdf
bib
abs
MAC-SQL: A Multi-Agent Collaborative Framework for Text-to-SQL
Bing Wang
|
Changyu Ren
|
Jian Yang
|
Xinnian Liang
|
Jiaqi Bai
|
LinZheng Chai
|
Zhao Yan
|
Qian-Wen Zhang
|
Di Yin
|
Xing Sun
|
Zhoujun Li
Proceedings of the 31st International Conference on Computational Linguistics
Recent LLM-based Text-to-SQL methods usually suffer from significant performance degradation on “huge” databases and complex user questions that require multi-step reasoning. Moreover, most existing methods neglect the crucial significance of LLMs utilizing external tools and model collaboration. To address these challenges, we introduce MAC-SQL, a novel LLM-based multi-agent collaborative framework. Our framework comprises a core decomposer agent for Text-to-SQL generation with few-shot chain-of-thought reasoning, accompanied by two auxiliary agents that utilize external tools or models to acquire smaller sub-databases and refine erroneous SQL queries. The decomposer agent collaborates with auxiliary agents, which are activated as needed and can be expanded to accommodate new features or tools for effective Text-to-SQL parsing. In our framework, We initially leverage GPT-4 as the strong backbone LLM for all agent tasks to determine the upper bound of our framework. We then fine-tune an open-sourced instruction-followed model, SQL-Llama, by leveraging Code Llama 7B, to accomplish all tasks as GPT-4 does. Experiments show that SQL-Llama achieves a comparable execution accuracy of 43.94, compared to the baseline accuracy of 46.35 for vanilla GPT-4. At the time of writing, MAC-SQL+GPT-4 achieves an execution accuracy of 59.59 when evaluated on the BIRD benchmark, establishing a new state-of-the-art (SOTA) on its holdout test set.
pdf
bib
abs
FIPO: Free-form Instruction-oriented Prompt Optimization with Preference Dataset and Modular Fine-tuning Schema
Junru Lu
|
Siyu An
|
Min Zhang
|
Yulan He
|
Di Yin
|
Xing Sun
Proceedings of the 31st International Conference on Computational Linguistics
When carefully optimized by human experts, naive prompts can significantly enhance the task performance of large language models (LLMs). However, such expert-driven prompt optimizations are resource-intensive. To address this, some studies have proposed Automatic Prompt Optimization (APO), which refines naive prompts according to task outputs from in-box testing models, utilizing advanced LLMs (e.g., GPT-4) in an ad-hoc way. Although effective, current approaches face challenges in generalization and privacy risks. To overcome these limitations, we have developed the first large-scale Prompt Optimization Preference (POP) dataset, fine-tuned offline local LLM-based optimizers, and conducted fairly evaluations across various downstream models. Our method, named Free-from Instruction-oriented Prompt Optimization (FIPO), allows precise optimization of the core task instructions in naive prompts in a model-agnostic manner. FIPO uses a modular APO template that dynamically incorporates the naive task instructions, optional instruction responses, and optional ground truth to produce refined prompts. The POP dataset is meticulously constructed using advanced LLMs, undergoing rigorous cross-validation by human experts and analytical models. By leveraging insights from this dataset, along with Tulu2 models and diverse fine-tuning strategies, we validate the efficacy of the FIPO framework across five public benchmarks and six testing models. Our dataset and codes are available at: https://github.com/LuJunru/FIPO_Project.
pdf
bib
abs
Tell Me What You Don’t Know: Enhancing Refusal Capabilities of Role-Playing Agents via Representation Space Analysis and Editing
Wenhao Liu
|
Siyu An
|
Junru Lu
|
Muling Wu
|
Tianlong Li
|
Xiaohua Wang
|
Changze Lv
|
Xiaoqing Zheng
|
Di Yin
|
Xing Sun
|
Xuanjing Huang
Findings of the Association for Computational Linguistics: ACL 2025
Role-Playing Agents (RPAs) have shown remarkable performance in various applications, yet they often struggle to recognize and appropriately respond to hard queries that conflict with their role-play knowledge. To investigate RPAs’ performance when faced with different types of conflicting requests, we develop an evaluation benchmark that includes contextual knowledge conflicting requests, parametric knowledge conflicting requests, and non-conflicting requests to assess RPAs’ ability to identify conflicts and refuse to answer appropriately without over-refusing. Through extensive evaluation, we find that most RPAs behave significant performance gaps toward different conflict requests. To elucidate the reasons, we conduct an in-depth representation-level analysis of RPAs under various conflict scenarios. Our findings reveal the existence of rejection regions and direct response regions within the model’s forwarding representation, and thus influence the RPA’s final response behavior. Therefore, we introduce a lightweight representation editing approach that conveniently shifts conflicting requests to the rejection region, thereby enhancing the model’s refusal accuracy. The extensive experiments validate the effectiveness of our editing method, improving RPAs’ refusal ability of conflicting requests while maintaining their general role-playing capabilities.
pdf
bib
abs
Let’s Be Self-generated via Step by Step: A Curriculum Learning Approach to Automated Reasoning with Large Language Models
Kangyang Luo
|
Zichen Ding
|
Zhenmin Weng
|
Lingfeng Qiao
|
Meng Zhao
|
Xiang Li
|
Di Yin
|
Jinlong Shu
Findings of the Association for Computational Linguistics: ACL 2025
While Chain of Thought (CoT) prompting approaches have significantly consolidated the reasoning capabilities of large language models (LLMs), they still face limitations that require extensive human effort or have performance needs to be improved. Existing endeavors have focused on bridging these gaps; however, these approaches either hinge on external data and cannot completely eliminate manual effort, or they fall short in effectively directing LLMs to generate high-quality exemplary prompts. To address the said pitfalls, we propose a novel prompt approach for automatic reasoning named LBS3, inspired by curriculum learning which better reflects human learning habits. Specifically, LBS3 initially steers LLMs to recall easy-to-hard proxy queries that are pertinent to the target query. Following this, it invokes a progressive strategy that utilizes exemplary prompts stemmed from easy-proxy queries to direct LLMs in solving hard-proxy queries, enabling the high-quality of the proxy solutions. Finally, our extensive experiments in various reasoning-intensive tasks with varying open- and closed-source LLMs show that LBS3 achieves strongly competitive performance compared to the SOTA baselines.
pdf
bib
abs
RoleMRC: A Fine-Grained Composite Benchmark for Role-Playing and Instruction-Following
Junru Lu
|
Jiazheng Li
|
Guodong Shen
|
Lin Gui
|
Siyu An
|
Yulan He
|
Di Yin
|
Xing Sun
Findings of the Association for Computational Linguistics: ACL 2025
Role-playing is important for Large Language Models (LLMs) to follow diverse instructions while maintaining role identity and the role’s pre-defined ability limits. Existing role-playing datasets mostly contribute to controlling role style and knowledge boundaries, but overlook role-playing in instruction-following scenarios. We introduce a fine-grained role-playing and instruction-following composite benchmark, named RoleMRC, including: (1) Multi-turn dialogues between ideal roles and humans, including free chats or discussions upon given passages; (2) Role-playing machine reading comprehension, involving response, refusal, and attempts according to passage answerability and role ability; (3) More complex scenarios with nested, multi-turn and prioritized instructions. The final RoleMRC features a 10.2k role profile meta-pool, 37.9k well-synthesized role-playing instructions, and 1.4k testing samples. We develop a pipeline to quantitatively evaluate the fine-grained role-playing and instruction-following capabilities of several mainstream LLMs, as well as models that are fine-tuned on our data. Moreover, cross-evaluation on external role-playing datasets confirms that models fine-tuned on RoleMRC enhances instruction-following without compromising general role-playing and reasoning capabilities. We also probe the neural-level activation maps of different capabilities over post-tuned LLMs. Access to our RoleMRC, RoleMRC-mix and Codes: https://github.com/LuJunru/RoleMRC.
2024
pdf
bib
abs
Eliminating Biased Length Reliance of Direct Preference Optimization via Down-Sampled KL Divergence
Junru Lu
|
Jiazheng Li
|
Siyu An
|
Meng Zhao
|
Yulan He
|
Di Yin
|
Xing Sun
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Direct Preference Optimization (DPO) has emerged as a prominent algorithm for the direct and robust alignment of Large Language Models (LLMs) with human preferences, offering a more straightforward alternative to the complex Reinforcement Learning from Human Feedback (RLHF). Despite its promising efficacy, DPO faces a notable drawback: “verbosity”, a common over-optimization phenomenon also observed in RLHF. While previous studies mainly attributed verbosity to biased labels within the data, we propose that the issue also stems from an inherent algorithmic length reliance in DPO. Specifically, we suggest that the discrepancy between sequence-level Kullback–Leibler (KL) divergences between chosen and rejected sequences, used in DPO, results in overestimated or underestimated rewards due to varying token lengths. Empirically, we utilize datasets with different label lengths to demonstrate the presence of biased rewards. We then introduce an effective downsampling approach, named SamPO, to eliminate potential length reliance. Our experimental evaluations, conducted across three LLMs of varying scales and a diverse array of conditional and open-ended benchmarks, highlight the efficacy of SamPO in mitigating verbosity, achieving improvements of 5% to 12% over DPO through debaised rewards. Our code can be accessed at: https://github.com/LuJunru/SamPO/.
2023
pdf
bib
abs
VKIE: The Application of Key Information Extraction on Video Text
Siyu An
|
Ye Liu
|
Haoyuan Peng
|
Di Yin
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track
Extracting structured information from videos is critical for numerous downstream applications in the industry. In this paper, we define a significant task of extracting hierarchical key information from visual texts on videos. To fulfill this task, we decouple it into four subtasks and introduce two implementation solutions called PipVKIE and UniVKIE. PipVKIE sequentially completes the four subtasks in continuous stages, while UniVKIE is improved by unifying all the subtasks into one backbone. Both PipVKIE and UniVKIE leverage multimodal information from vision, text, and coordinates for feature representation. Extensive experiments on one well-defined dataset demonstrate that our solutions can achieve remarkable performance and efficient inference speed.
2022
pdf
bib
abs
Leveraging Key Information Modeling to Improve Less-Data Constrained News Headline Generation via Duality Fine-Tuning
Zhuoxuan Jiang
|
Lingfeng Qiao
|
Di Yin
|
Shanshan Feng
|
Bo Ren
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
Recent language generative models are mostly trained on large-scale datasets, while in some real scenarios, the training datasets are often expensive to obtain and would be small-scale. In this paper we investigate the challenging task of less-data constrained generation, especially when the generated news headlines are short yet expected by readers to keep readable and informative simultaneously. We highlight the key information modeling task and propose a novel duality fine-tuning method by formally defining the probabilistic duality constraints between key information prediction and headline generation tasks. The proposed method can capture more information from limited data, build connections between separate tasks, and is suitable for less-data constrained generation tasks. Furthermore, the method can leverage various pre-trained generative regimes, e.g., autoregressive and encoder-decoder models. We conduct extensive experiments to demonstrate that our method is effective and efficient to achieve improved performance in terms of language modeling metric and informativeness correctness metric on two public datasets.
pdf
bib
abs
Grafting Pre-trained Models for Multimodal Headline Generation
Lingfeng Qiao
|
Chen Wu
|
Ye Liu
|
Haoyuan Peng
|
Di Yin
|
Bo Ren
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: Industry Track
Multimodal headline utilizes both video frames and transcripts to generate the natural language title of the videos. Due to a lack of large-scale, manually annotated data, the task of annotating grounded headlines for video is labor intensive and impractical. Previous researches on pre-trained language models and video-language models have achieved significant progress in related downstream tasks. However, none of them can be directly applied to multimodal headline architecture where we need both multimodal encoder and sentence decoder. A major challenge in simply gluing language model and video-language model is the modality balance, which is aimed at combining visual-language complementary abilities. In this paper, we propose a novel approach to graft the video encoder from the pre-trained video-language model on the generative pre-trained language model. We also present a consensus fusion mechanism for the integration of different components, via inter/intra modality relation. Empirically, experiments show that the grafted model achieves strong results on a brand-new dataset collected from real-world applications.
pdf
bib
abs
RAAT: Relation-Augmented Attention Transformer for Relation Modeling in Document-Level Event Extraction
Yuan Liang
|
Zhuoxuan Jiang
|
Di Yin
|
Bo Ren
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
In document-level event extraction (DEE) task, event arguments always scatter across sentences (across-sentence issue) and multipleevents may lie in one document (multi-event issue). In this paper, we argue that the relation information of event arguments is of greatsignificance for addressing the above two issues, and propose a new DEE framework which can model the relation dependencies, calledRelation-augmented Document-level Event Extraction (ReDEE). More specifically, this framework features a novel and tailored transformer,named as Relation-augmented Attention Transformer (RAAT). RAAT is scalable to capture multi-scale and multi-amount argument relations. To further leverage relation information, we introduce a separate event relation prediction task and adopt multi-task learning method to explicitly enhance event extraction performance. Extensive experiments demonstrate the effectiveness of the proposed method, which can achieve state-of-the-art performance on two public datasets. Our code is available at
https://github.com/TencentYoutuResearch/RAAT.