uppdf
bib
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)
Bonnie Webber
|
Trevor Cohn
|
Yulan He
|
Yang Liu
pdf
bib
abs
Detecting Attackable Sentences in Arguments
Yohan Jo
|
Seojin Bang
|
Emaad Manzoor
|
Eduard Hovy
|
Chris Reed
Finding attackable sentences in an argument is the first step toward successful refutation in argumentation. We present a first large-scale analysis of sentence attackability in online arguments. We analyze driving reasons for attacks in argumentation and identify relevant characteristics of sentences. We demonstrate that a sentence’s attackability is associated with many of these characteristics regarding the sentence’s content, proposition types, and tone, and that an external knowledge source can provide useful information about attackability. Building on these findings, we demonstrate that machine learning models can automatically detect attackable sentences in arguments, significantly better than several baselines and comparably well to laypeople.
pdf
bib
abs
Extracting Implicitly Asserted Propositions in Argumentation
Yohan Jo
|
Jacky Visser
|
Chris Reed
|
Eduard Hovy
Argumentation accommodates various rhetorical devices, such as questions, reported speech, and imperatives. These rhetorical tools usually assert argumentatively relevant propositions rather implicitly, so understanding their true meaning is key to understanding certain arguments properly. However, most argument mining systems and computational linguistics research have paid little attention to implicitly asserted propositions in argumentation. In this paper, we examine a wide range of computational methods for extracting propositions that are implicitly asserted in questions, reported speech, and imperatives in argumentation. By evaluating the models on a corpus of 2016 U.S. presidential debates and online commentary, we demonstrate the effectiveness and limitations of the computational models. Our study may inform future research on argument mining and the semantics of these rhetorical devices in argumentation.
pdf
bib
abs
Quantitative argument summarization and beyond: Cross-domain key point analysis
Roy Bar-Haim
|
Yoav Kantor
|
Lilach Eden
|
Roni Friedman
|
Dan Lahav
|
Noam Slonim
When summarizing a collection of views, arguments or opinions on some topic, it is often desirable not only to extract the most salient points, but also to quantify their prevalence. Work on multi-document summarization has traditionally focused on creating textual summaries, which lack this quantitative aspect. Recent work has proposed to summarize arguments by mapping them to a small set of expert-generated key points, where the salience of each key point corresponds to the number of its matching arguments. The current work advances key point analysis in two important respects: first, we develop a method for automatic extraction of key points, which enables fully automatic analysis, and is shown to achieve performance comparable to a human expert. Second, we demonstrate that the applicability of key point analysis goes well beyond argumentation data. Using models trained on publicly available argumentation datasets, we achieve promising results in two additional domains: municipal surveys and user reviews. An additional contribution is an in-depth evaluation of argument-to-key point matching models, where we substantially outperform previous results.
pdf
bib
abs
Unsupervised stance detection for arguments from consequences
Jonathan Kobbe
|
Ioana Hulpuș
|
Heiner Stuckenschmidt
Social media platforms have become an essential venue for online deliberation where users discuss arguments, debate, and form opinions. In this paper, we propose an unsupervised method to detect the stance of argumentative claims with respect to a topic. Most related work focuses on topic-specific supervised models that need to be trained for every emergent debate topic. To address this limitation, we propose a topic independent approach that focuses on a frequently encountered class of arguments, specifically, on arguments from consequences. We do this by extracting the effects that claims refer to, and proposing a means for inferring if the effect is a good or bad consequence. Our experiments provide promising results that are comparable to, and in particular regards even outperform BERT. Furthermore, we publish a novel dataset of arguments relating to consequences, annotated with Amazon Mechanical Turk.
pdf
bib
abs
BLEU might be Guilty but References are not Innocent
Markus Freitag
|
David Grangier
|
Isaac Caswell
The quality of automatic metrics for machine translation has been increasingly called into question, especially for high-quality systems. This paper demonstrates that, while choice of metric is important, the nature of the references is also critical. We study different methods to collect references and compare their value in automated evaluation by reporting correlation with human evaluation for a variety of systems and metrics. Motivated by the finding that typical references exhibit poor diversity, concentrating around translationese language, we develop a paraphrasing task for linguists to perform on existing reference translations, which counteracts this bias. Our method yields higher correlation with human judgment not only for the submissions of WMT 2019 English to German, but also for Back-translation and APE augmented MT output, which have been shown to have low correlation with automatic metrics using standard references. We demonstrate that our methodology improves correlation with all modern evaluation metrics we look at, including embedding-based methods. To complete this picture, we reveal that multi-reference BLEU does not improve the correlation for high quality output, and present an alternative multi-reference formulation that is more effective.
pdf
bib
abs
Statistical Power and Translationese in Machine Translation Evaluation
Yvette Graham
|
Barry Haddow
|
Philipp Koehn
The term translationese has been used to describe features of translated text, and in this paper, we provide detailed analysis of potential adverse effects of translationese on machine translation evaluation. Our analysis shows differences in conclusions drawn from evaluations that include translationese in test data compared to experiments that tested only with text originally composed in that language. For this reason we recommend that reverse-created test data be omitted from future machine translation test sets. In addition, we provide a re-evaluation of a past machine translation evaluation claiming human-parity of MT. One important issue not previously considered is statistical power of significance tests applied to comparison of human and machine translation. Since the very aim of past evaluations was investigation of ties between human and MT systems, power analysis is of particular importance, to avoid, for example, claims of human parity simply corresponding to Type II error resulting from the application of a low powered test. We provide detailed analysis of tests used in such evaluations to provide an indication of a suitable minimum sample size for future studies.
pdf
bib
abs
Simulated multiple reference training improves low-resource machine translation
Huda Khayrallah
|
Brian Thompson
|
Matt Post
|
Philipp Koehn
Many valid translations exist for a given sentence, yet machine translation (MT) is trained with a single reference translation, exacerbating data sparsity in low-resource settings. We introduce Simulated Multiple Reference Training (SMRT), a novel MT training method that approximates the full space of possible translations by sampling a paraphrase of the reference sentence from a paraphraser and training the MT model to predict the paraphraser’s distribution over possible tokens. We demonstrate the effectiveness of SMRT in low-resource settings when translating to English, with improvements of 1.2 to 7.0 BLEU. We also find SMRT is complementary to back-translation.
pdf
bib
abs
Automatic Machine Translation Evaluation in Many Languages via Zero-Shot Paraphrasing
Brian Thompson
|
Matt Post
We frame the task of machine translation evaluation as one of scoring machine translation output with a sequence-to-sequence paraphraser, conditioned on a human reference. We propose training the paraphraser as a multilingual NMT system, treating paraphrasing as a zero-shot translation task (e.g., Czech to Czech). This results in the paraphraser’s output mode being centered around a copy of the input sequence, which represents the best case scenario where the MT system output matches a human reference. Our method is simple and intuitive, and does not require human judgements for training. Our single model (trained in 39 languages) outperforms or statistically ties with all prior metrics on the WMT 2019 segment-level shared metrics task in all languages (excluding Gujarati where the model had no training data). We also explore using our model for the task of quality estimation as a metric—conditioning on the source instead of the reference—and find that it significantly outperforms every submission to the WMT 2019 shared task on quality estimation in every language pair.
pdf
bib
abs
PRover: Proof Generation for Interpretable Reasoning over Rules
Swarnadeep Saha
|
Sayan Ghosh
|
Shashank Srivastava
|
Mohit Bansal
Recent work by Clark et al. (2020) shows that transformers can act as “soft theorem provers” by answering questions over explicitly provided knowledge in natural language. In our work, we take a step closer to emulating formal theorem provers, by proposing PRover, an interpretable transformer-based model that jointly answers binary questions over rule-bases and generates the corresponding proofs. Our model learns to predict nodes and edges corresponding to proof graphs in an efficient constrained training paradigm. During inference, a valid proof, satisfying a set of global constraints is generated. We conduct experiments on synthetic, hand-authored, and human-paraphrased rule-bases to show promising results for QA and proof generation, with strong generalization performance. First, PRover generates proofs with an accuracy of 87%, while retaining or improving performance on the QA task, compared to RuleTakers (up to 6% improvement on zero-shot evaluation). Second, when trained on questions requiring lower depths of reasoning, it generalizes significantly better to higher depths (up to 15% improvement). Third, PRover obtains near perfect QA accuracy of 98% using only 40% of the training data. However, generating proofs for questions requiring higher depths of reasoning becomes challenging, and the accuracy drops to 65% for “depth 5”, indicating significant scope for future work.
pdf
bib
abs
Learning to Explain: Datasets and Models for Identifying Valid Reasoning Chains in Multihop Question-Answering
Harsh Jhamtani
|
Peter Clark
Despite the rapid progress in multihop question-answering (QA), models still have trouble explaining why an answer is correct, with limited explanation training data available to learn from. To address this, we introduce three explanation datasets in which explanations formed from corpus facts are annotated. Our first dataset, eQASC contains over 98K explanation annotations for the multihop question answering dataset QASC, and is the first that annotates multiple candidate explanations for each answer. The second dataset eQASC-perturbed is constructed by crowd-sourcing perturbations (while preserving their validity) of a subset of explanations in QASC, to test consistency and generalization of explanation prediction models. The third dataset eOBQA is constructed by adding explanation annotations to the OBQA dataset to test generalization of models trained on eQASC. We show that this data can be used to significantly improve explanation quality (+14% absolute F1 over a strong retrieval baseline) using a BERT-based classifier, but still behind the upper bound, offering a new challenge for future research. We also explore a delexicalized chain representation in which repeated noun phrases are replaced by variables, thus turning them into generalized reasoning chains (for example: “X is a Y” AND “Y has Z” IMPLIES “X has Z”). We find that generalized chains maintain performance while also being more robust to certain perturbations.
pdf
bib
abs
Self-Supervised Knowledge Triplet Learning for Zero-Shot Question Answering
Pratyay Banerjee
|
Chitta Baral
The aim of all Question Answering (QA) systems is to generalize to unseen questions. Current supervised methods are reliant on expensive data annotation. Moreover, such annotations can introduce unintended annotator bias, making systems focus more on the bias than the actual task. This work proposes Knowledge Triplet Learning (KTL), a self-supervised task over knowledge graphs. We propose heuristics to create synthetic graphs for commonsense and scientific knowledge. We propose using KTL to perform zero-shot question answering, and our experiments show considerable improvements over large pre-trained transformer language models.
pdf
bib
abs
More Bang for Your Buck: Natural Perturbation for Robust Question Answering
Daniel Khashabi
|
Tushar Khot
|
Ashish Sabharwal
Deep learning models for linguistic tasks require large training datasets, which are expensive to create. As an alternative to the traditional approach of creating new instances by repeating the process of creating one instance, we propose doing so by first collecting a set of seed examples and then applying human-driven natural perturbations (as opposed to rule-based machine perturbations), which often change the gold label as well. Such perturbations have the advantage of being relatively easier (and hence cheaper) to create than writing out completely new examples. Further, they help address the issue that even models achieving human-level scores on NLP datasets are known to be considerably sensitive to small changes in input. To evaluate the idea, we consider a recent question-answering dataset (BOOLQ) and study our approach as a function of the perturbation cost ratio, the relative cost of perturbing an existing question vs. creating a new one from scratch. We find that when natural perturbations are moderately cheaper to create (cost ratio under 60%), it is more effective to use them for training BOOLQ models: such models exhibit 9% higher robustness and 4.5% stronger generalization, while retaining performance on the original BOOLQ dataset.
pdf
bib
abs
A matter of framing: The impact of linguistic formalism on probing results
Ilia Kuznetsov
|
Iryna Gurevych
Deep pre-trained contextualized encoders like BERT demonstrate remarkable performance on a range of downstream tasks. A recent line of research in probing investigates the linguistic knowledge implicitly learned by these models during pre-training. While most work in probing operates on the task level, linguistic tasks are rarely uniform and can be represented in a variety of formalisms. Any linguistics-based probing study thereby inevitably commits to the formalism used to annotate the underlying data. Can the choice of formalism affect probing results? To investigate, we conduct an in-depth cross-formalism layer probing study in role semantics. We find linguistically meaningful differences in the encoding of semantic role- and proto-role information by BERT depending on the formalism and demonstrate that layer probing can detect subtle differences between the implementations of the same linguistic formalism. Our results suggest that linguistic formalism is an important dimension in probing studies, along with the commonly used cross-task and cross-lingual experimental settings.
pdf
bib
abs
Information-Theoretic Probing with Minimum Description Length
Elena Voita
|
Ivan Titov
To measure how well pretrained representations encode some linguistic property, it is common to use accuracy of a probe, i.e. a classifier trained to predict the property from the representations. Despite widespread adoption of probes, differences in their accuracy fail to adequately reflect differences in representations. For example, they do not substantially favour pretrained representations over randomly initialized ones. Analogously, their accuracy can be similar when probing for genuine linguistic labels and probing for random synthetic tasks. To see reasonable differences in accuracy with respect to these random baselines, previous work had to constrain either the amount of probe training data or its model size. Instead, we propose an alternative to the standard probes, information-theoretic probing with minimum description length (MDL). With MDL probing, training a probe to predict labels is recast as teaching it to effectively transmit the data. Therefore, the measure of interest changes from probe accuracy to the description length of labels given representations. In addition to probe quality, the description length evaluates “the amount of effort” needed to achieve the quality. This amount of effort characterizes either (i) size of a probing model, or (ii) the amount of data needed to achieve the high quality. We consider two methods for estimating MDL which can be easily implemented on top of the standard probing pipelines: variational coding and online coding. We show that these methods agree in results and are more informative and stable than the standard probes.
pdf
bib
abs
Intrinsic Probing through Dimension Selection
Lucas Torroba Hennigen
|
Adina Williams
|
Ryan Cotterell
Most modern NLP systems make use of pre-trained contextual representations that attain astonishingly high performance on a variety of tasks. Such high performance should not be possible unless some form of linguistic structure inheres in these representations, and a wealth of research has sprung up on probing for it. In this paper, we draw a distinction between intrinsic probing, which examines how linguistic information is structured within a representation, and the extrinsic probing popular in prior work, which only argues for the presence of such information by showing that it can be successfully extracted. To enable intrinsic probing, we propose a novel framework based on a decomposable multivariate Gaussian probe that allows us to determine whether the linguistic information in word embeddings is dispersed or focal. We then probe fastText and BERT for various morphosyntactic attributes across 36 languages. We find that most attributes are reliably encoded by only a few neurons, with fastText concentrating its linguistic structure more than BERT.
pdf
bib
abs
Learning Which Features Matter: RoBERTa Acquires a Preference for Linguistic Generalizations (Eventually)
Alex Warstadt
|
Yian Zhang
|
Xiaocheng Li
|
Haokun Liu
|
Samuel R. Bowman
One reason pretraining on self-supervised linguistic tasks is effective is that it teaches models features that are helpful for language understanding. However, we want pretrained models to learn not only to represent linguistic features, but also to use those features preferentially during fine-turning. With this goal in mind, we introduce a new English-language diagnostic set called MSGS (the Mixed Signals Generalization Set), which consists of 20 ambiguous binary classification tasks that we use to test whether a pretrained model prefers linguistic or surface generalizations during finetuning. We pretrain RoBERTa from scratch on quantities of data ranging from 1M to 1B words and compare their performance on MSGS to the publicly available RoBERTa_BASE. We find that models can learn to represent linguistic features with little pretraining data, but require far more data to learn to prefer linguistic generalizations over surface ones. Eventually, with about 30B words of pretraining data, RoBERTa_BASE does consistently demonstrate a linguistic bias with some regularity. We conclude that while self-supervised pretraining is an effective way to learn helpful inductive biases, there is likely room to improve the rate at which models learn which features matter.
pdf
bib
abs
Repulsive Attention: Rethinking Multi-head Attention as Bayesian Inference
Bang An
|
Jie Lyu
|
Zhenyi Wang
|
Chunyuan Li
|
Changwei Hu
|
Fei Tan
|
Ruiyi Zhang
|
Yifan Hu
|
Changyou Chen
The neural attention mechanism plays an important role in many natural language processing applications. In particular, multi-head attention extends single-head attention by allowing a model to jointly attend information from different perspectives. However, without explicit constraining, multi-head attention may suffer from attention collapse, an issue that makes different heads extract similar attentive features, thus limiting the model’s representation power. In this paper, for the first time, we provide a novel understanding of multi-head attention from a Bayesian perspective. Based on the recently developed particle-optimization sampling techniques, we propose a non-parametric approach that explicitly improves the repulsiveness in multi-head attention and consequently strengthens model’s expressiveness. Remarkably, our Bayesian interpretation provides theoretical inspirations on the not-well-understood questions: why and how one uses multi-head attention. Extensive experiments on various attention models and applications demonstrate that the proposed repulsive attention can improve the learned feature diversity, leading to more informative representations with consistent performance improvement on multiple tasks.
pdf
bib
abs
KERMIT: Complementing Transformer Architectures with Encoders of Explicit Syntactic Interpretations
Fabio Massimo Zanzotto
|
Andrea Santilli
|
Leonardo Ranaldi
|
Dario Onorati
|
Pierfrancesco Tommasino
|
Francesca Fallucchi
Syntactic parsers have dominated natural language understanding for decades. Yet, their syntactic interpretations are losing centrality in downstream tasks due to the success of large-scale textual representation learners. In this paper, we propose KERMIT (Kernel-inspired Encoder with Recursive Mechanism for Interpretable Trees) to embed symbolic syntactic parse trees into artificial neural networks and to visualize how syntax is used in inference. We experimented with KERMIT paired with two state-of-the-art transformer-based universal sentence encoders (BERT and XLNet) and we showed that KERMIT can indeed boost their performance by effectively embedding human-coded universal syntactic representations in neural networks
pdf
bib
abs
ETC: Encoding Long and Structured Inputs in Transformers
Joshua Ainslie
|
Santiago Ontanon
|
Chris Alberti
|
Vaclav Cvicek
|
Zachary Fisher
|
Philip Pham
|
Anirudh Ravula
|
Sumit Sanghai
|
Qifan Wang
|
Li Yang
Transformer models have advanced the state of the art in many Natural Language Processing (NLP) tasks. In this paper, we present a new Transformer architecture, “Extended Transformer Construction” (ETC), that addresses two key challenges of standard Transformer architectures, namely scaling input length and encoding structured inputs. To scale attention to longer inputs, we introduce a novel global-local attention mechanism between global tokens and regular input tokens. We also show that combining global-local attention with relative position encodings and a “Contrastive Predictive Coding” (CPC) pre-training objective allows ETC to encode structured inputs. We achieve state-of-the-art results on four natural language datasets requiring long and/or structured inputs.
pdf
bib
abs
Pre-Training Transformers as Energy-Based Cloze Models
Kevin Clark
|
Minh-Thang Luong
|
Quoc Le
|
Christopher D. Manning
We introduce Electric, an energy-based cloze model for representation learning over text. Like BERT, it is a conditional generative model of tokens given their contexts. However, Electric does not use masking or output a full distribution over tokens that could occur in a context. Instead, it assigns a scalar energy score to each input token indicating how likely it is given its context. We train Electric using an algorithm based on noise-contrastive estimation and elucidate how this learning objective is closely related to the recently proposed ELECTRA pre-training method. Electric performs well when transferred to downstream tasks and is particularly effective at producing likelihood scores for text: it re-ranks speech recognition n-best lists better than language models and much faster than masked language models. Furthermore, it offers a clearer and more principled view of what ELECTRA learns during pre-training.
pdf
bib
abs
Calibration of Pre-trained Transformers
Shrey Desai
|
Greg Durrett
Pre-trained Transformers are now ubiquitous in natural language processing, but despite their high end-task performance, little is known empirically about whether they are calibrated. Specifically, do these models’ posterior probabilities provide an accurate empirical measure of how likely the model is to be correct on a given example? We focus on BERT and RoBERTa in this work, and analyze their calibration across three tasks: natural language inference, paraphrase detection, and commonsense reasoning. For each task, we consider in-domain as well as challenging out-of-domain settings, where models face more examples they should be uncertain about. We show that: (1) when used out-of-the-box, pre-trained models are calibrated in-domain, and compared to baselines, their calibration error out-of-domain can be as much as 3.5x lower; (2) temperature scaling is effective at further reducing calibration error in-domain, and using label smoothing to deliberately increase empirical uncertainty helps calibrate posteriors out-of-domain.
pdf
bib
abs
Near-imperceptible Neural Linguistic Steganography via Self-Adjusting Arithmetic Coding
Jiaming Shen
|
Heng Ji
|
Jiawei Han
Linguistic steganography studies how to hide secret messages in natural language cover texts. Traditional methods aim to transform a secret message into an innocent text via lexical substitution or syntactical modification. Recently, advances in neural language models (LMs) enable us to directly generate cover text conditioned on the secret message. In this study, we present a new linguistic steganography method which encodes secret messages using self-adjusting arithmetic coding based on a neural language model. We formally analyze the statistical imperceptibility of this method and empirically show it outperforms the previous state-of-the-art methods on four datasets by 15.3% and 38.9% in terms of bits/word and KL metrics, respectively. Finally, human evaluations show that 51% of generated cover texts can indeed fool eavesdroppers.
pdf
bib
abs
Multi-Dimensional Gender Bias Classification
Emily Dinan
|
Angela Fan
|
Ledell Wu
|
Jason Weston
|
Douwe Kiela
|
Adina Williams
Machine learning models are trained to find patterns in data. NLP models can inadvertently learn socially undesirable patterns when training on gender biased text. In this work, we propose a novel, general framework that decomposes gender bias in text along several pragmatic and semantic dimensions: bias from the gender of the person being spoken about, bias from the gender of the person being spoken to, and bias from the gender of the speaker. Using this fine-grained framework, we automatically annotate eight large scale datasets with gender information. In addition, we collect a new, crowdsourced evaluation benchmark. Distinguishing between gender bias along multiple dimensions enables us to train better and more fine-grained gender bias classifiers. We show our classifiers are valuable for a variety of applications, like controlling for gender bias in generative models, detecting gender bias in arbitrary text, and classifying text as offensive based on its genderedness.
pdf
bib
abs
FIND: Human-in-the-Loop Debugging Deep Text Classifiers
Piyawat Lertvittayakumjorn
|
Lucia Specia
|
Francesca Toni
Since obtaining a perfect training dataset (i.e., a dataset which is considerably large, unbiased, and well-representative of unseen cases) is hardly possible, many real-world text classifiers are trained on the available, yet imperfect, datasets. These classifiers are thus likely to have undesirable properties. For instance, they may have biases against some sub-populations or may not work effectively in the wild due to overfitting. In this paper, we propose FIND – a framework which enables humans to debug deep learning text classifiers by disabling irrelevant hidden features. Experiments show that by using FIND, humans can improve CNN text classifiers which were trained under different types of imperfect datasets (including datasets with biases and datasets with dissimilar train-test distributions).
pdf
bib
abs
Conversational Document Prediction to Assist Customer Care Agents
Jatin Ganhotra
|
Haggai Roitman
|
Doron Cohen
|
Nathaniel Mills
|
Chulaka Gunasekara
|
Yosi Mass
|
Sachindra Joshi
|
Luis Lastras
|
David Konopnicki
A frequent pattern in customer care conversations is the agents responding with appropriate webpage URLs that address users’ needs. We study the task of predicting the documents that customer care agents can use to facilitate users’ needs. We also introduce a new public dataset which supports the aforementioned problem. Using this dataset and two others, we investigate state-of-the art deep learning (DL) and information retrieval (IR) models for the task. Additionally, we analyze the practicality of such systems in terms of inference time complexity. Our show that an hybrid IR+DL approach provides the best of both worlds.
pdf
bib
abs
Incremental Processing in the Age of Non-Incremental Encoders: An Empirical Assessment of Bidirectional Models for Incremental NLU
Brielen Madureira
|
David Schlangen
While humans process language incrementally, the best language encoders currently used in NLP do not. Both bidirectional LSTMs and Transformers assume that the sequence that is to be encoded is available in full, to be processed either forwards and backwards (BiLSTMs) or as a whole (Transformers). We investigate how they behave under incremental interfaces, when partial output must be provided based on partial input seen up to a certain time step, which may happen in interactive systems. We test five models on various NLU datasets and compare their performance using three incremental evaluation metrics. The results support the possibility of using bidirectional encoders in incremental mode while retaining most of their non-incremental quality. The “omni-directional” BERT model, which achieves better non-incremental performance, is impacted more by the incremental access. This can be alleviated by adapting the training regime (truncated training), or the testing procedure, by delaying the output until some right context is available or by incorporating hypothetical right contexts generated by a language model like GPT-2.
pdf
bib
abs
Augmented Natural Language for Generative Sequence Labeling
Ben Athiwaratkun
|
Cicero Nogueira dos Santos
|
Jason Krone
|
Bing Xiang
We propose a generative framework for joint sequence labeling and sentence-level classification. Our model performs multiple sequence labeling tasks at once using a single, shared natural language output space. Unlike prior discriminative methods, our model naturally incorporates label semantics and shares knowledge across tasks. Our framework general purpose, performing well on few-shot learning, low resource, and high resource tasks. We demonstrate these advantages on popular named entity recognition, slot labeling, and intent classification benchmarks. We set a new state-of-the-art for few-shot slot labeling, improving substantially upon the previous 5-shot (75.0% to 90.9%) and 1-shot (70.4% to 81.0%) state-of-the-art results. Furthermore, our model generates large improvements (46.27% to 63.83%) in low resource slot labeling over a BERT baseline by incorporating label semantics. We also maintain competitive results on high resource tasks, performing within two points of the state-of-the-art on all tasks and setting a new state-of-the-art on the SNIPS dataset.
pdf
bib
abs
Dialogue Response Ranking Training with Large-Scale Human Feedback Data
Xiang Gao
|
Yizhe Zhang
|
Michel Galley
|
Chris Brockett
|
Bill Dolan
Existing open-domain dialog models are generally trained to minimize the perplexity of target human responses. However, some human replies are more engaging than others, spawning more followup interactions. Current conversational models are increasingly capable of producing turns that are context-relevant, but in order to produce compelling agents, these models need to be able to predict and optimize for turns that are genuinely engaging. We leverage social media feedback data (number of replies and upvotes) to build a large-scale training dataset for feedback prediction. To alleviate possible distortion between the feedback and engagingness, we convert the ranking problem to a comparison of response pairs which involve few confounding factors. We trained DialogRPT, a set of GPT-2 based models on 133M pairs of human feedback data and the resulting ranker outperformed several baselines. Particularly, our ranker outperforms the conventional dialog perplexity baseline with a large margin on predicting Reddit feedback. We finally combine the feedback prediction models and a human-like scoring model to rank the machine-generated dialog responses. Crowd-sourced human evaluation shows that our ranking method correlates better with real human preferences than baseline models.
pdf
bib
abs
Semantic Evaluation for Text-to-SQL with Distilled Test Suites
Ruiqi Zhong
|
Tao Yu
|
Dan Klein
We propose test suite accuracy to approximate semantic accuracy for Text-to-SQL models. Our method distills a small test suite of databases that achieves high code coverage for the gold query from a large number of randomly generated databases. At evaluation time, it computes the denotation accuracy of the predicted queries on the distilled test suite, hence calculating a tight upper-bound for semantic accuracy efficiently. We use our proposed method to evaluate 21 models submitted to the Spider leader board and manually verify that our method is always correct on 100 examples. In contrast, the current Spider metric leads to a 2.5% false negative rate on average and 8.1% in the worst case, indicating that test suite accuracy is needed. Our implementation, along with distilled test suites for eleven Text-to-SQL datasets, is publicly available.
pdf
bib
abs
Cross-Thought for Sentence Encoder Pre-training
Shuohang Wang
|
Yuwei Fang
|
Siqi Sun
|
Zhe Gan
|
Yu Cheng
|
Jingjing Liu
|
Jing Jiang
In this paper, we propose Cross-Thought, a novel approach to pre-training sequence encoder, which is instrumental in building reusable sequence embeddings for large-scale NLP tasks such as question answering. Instead of using the original signals of full sentences, we train a Transformer-based sequence encoder over a large set of short sequences, which allows the model to automatically select the most useful information for predicting masked words. Experiments on question answering and textual entailment tasks demonstrate that our pre-trained encoder can outperform state-of-the-art encoders trained with continuous sentence signals as well as traditional masked language modeling baselines. Our proposed approach also achieves new state of the art on HotpotQA (full-wiki setting) by improving intermediate information retrieval performance.
pdf
bib
abs
AutoQA: From Databases To QA Semantic Parsers With Only Synthetic Training Data
Silei Xu
|
Sina Semnani
|
Giovanni Campagna
|
Monica Lam
We propose AutoQA, a methodology and toolkit to generate semantic parsers that answer questions on databases, with no manual effort. Given a database schema and its data, AutoQA automatically generates a large set of high-quality questions for training that covers different database operations. It uses automatic paraphrasing combined with template-based parsing to find alternative expressions of an attribute in different parts of speech. It also uses a novel filtered auto-paraphraser to generate correct paraphrases of entire sentences. We apply AutoQA to the Schema2QA dataset and obtain an average logical form accuracy of 62.9% when tested on natural questions, which is only 6.4% lower than a model trained with expert natural language annotations and paraphrase data collected from crowdworkers. To demonstrate the generality of AutoQA, we also apply it to the Overnight dataset. AutoQA achieves 69.8% answer accuracy, 16.4% higher than the state-of-the-art zero-shot models and only 5.2% lower than the same model trained with human data.
pdf
bib
abs
A Spectral Method for Unsupervised Multi-Document Summarization
Kexiang Wang
|
Baobao Chang
|
Zhifang Sui
Multi-document summarization (MDS) aims at producing a good-quality summary for several related documents. In this paper, we propose a spectral-based hypothesis, which states that the goodness of summary candidate is closely linked to its so-called spectral impact. Here spectral impact considers the perturbation to the dominant eigenvalue of affinity matrix when dropping the summary candidate from the document cluster. The hypothesis is validated by three theoretical perspectives: semantic scaling, propagation dynamics and matrix perturbation. According to the hypothesis, we formulate the MDS task as the combinatorial optimization of spectral impact and propose an accelerated greedy solution based on a surrogate of spectral impact. The evaluation results on various datasets demonstrate: (1) The performance of the summary candidate is positively correlated with its spectral impact, which accords with our hypothesis; (2) Our spectral-based method has a competitive result as compared to state-of-the-art MDS systems.
pdf
bib
abs
What Have We Achieved on Text Summarization?
Dandan Huang
|
Leyang Cui
|
Sen Yang
|
Guangsheng Bao
|
Kun Wang
|
Jun Xie
|
Yue Zhang
Deep learning has led to significant improvement in text summarization with various methods investigated and improved ROUGE scores reported over the years. However, gaps still exist between summaries produced by automatic summarizers and human professionals. Aiming to gain more understanding of summarization systems with respect to their strengths and limits on a fine-grained syntactic and semantic level, we consult the Multidimensional Quality Metric (MQM) and quantify 8 major sources of errors on 10 representative summarization models manually. Primarily, we find that 1) under similar settings, extractive summarizers are in general better than their abstractive counterparts thanks to strength in faithfulness and factual-consistency; 2) milestone techniques such as copy, coverage and hybrid extractive/abstractive methods do bring specific improvements but also demonstrate limitations; 3) pre-training techniques, and in particular sequence-to-sequence pre-training, are highly effective for improving text summarization, with BART giving the best results.
pdf
bib
abs
Q-learning with Language Model for Edit-based Unsupervised Summarization
Ryosuke Kohita
|
Akifumi Wachi
|
Yang Zhao
|
Ryuki Tachibana
Unsupervised methods are promising for abstractive textsummarization in that the parallel corpora is not required. However, their performance is still far from being satisfied, therefore research on promising solutions is on-going. In this paper, we propose a new approach based on Q-learning with an edit-based summarization. The method combines two key modules to form an Editorial Agent and Language Model converter (EALM). The agent predicts edit actions (e.t., delete, keep, and replace), and then the LM converter deterministically generates a summary on the basis of the action signals. Q-learning is leveraged to train the agent to produce proper edit actions. Experimental results show that EALM delivered competitive performance compared with the previous encoder-decoder-based methods, even with truly zero paired data (i.e., no validation set). Defining the task as Q-learning enables us not only to develop a competitive method but also to make the latest techniques in reinforcement learning available for unsupervised summarization. We also conduct qualitative analysis, providing insights into future study on unsupervised summarizers.
pdf
bib
abs
Friendly Topic Assistant for Transformer Based Abstractive Summarization
Zhengjue Wang
|
Zhibin Duan
|
Hao Zhang
|
Chaojie Wang
|
Long Tian
|
Bo Chen
|
Mingyuan Zhou
Abstractive document summarization is a comprehensive task including document understanding and summary generation, in which area Transformer-based models have achieved the state-of-the-art performance. Compared with Transformers, topic models are better at learning explicit document semantics, and hence could be integrated into Transformers to further boost their performance. To this end, we rearrange and explore the semantics learned by a topic model, and then propose a topic assistant (TA) including three modules. TA is compatible with various Transformer-based models and user-friendly since i) TA is a plug-and-play model that does not break any structure of the original Transformer network, making users easily fine-tune Transformer+TA based on a well pre-trained model; ii) TA only introduces a small number of extra parameters. Experimental results on three datasets demonstrate that TA is able to improve the performance of several Transformer-based models.
pdf
bib
abs
Contrastive Distillation on Intermediate Representations for Language Model Compression
Siqi Sun
|
Zhe Gan
|
Yuwei Fang
|
Yu Cheng
|
Shuohang Wang
|
Jingjing Liu
Existing language model compression methods mostly use a simple L_2 loss to distill knowledge in the intermediate representations of a large BERT model to a smaller one. Although widely used, this objective by design assumes that all the dimensions of hidden representations are independent, failing to capture important structural knowledge in the intermediate layers of the teacher network. To achieve better distillation efficacy, we propose Contrastive Distillation on Intermediate Representations (CoDIR), a principled knowledge distillation framework where the student is trained to distill knowledge through intermediate layers of the teacher via a contrastive objective. By learning to distinguish positive sample from a large set of negative samples, CoDIR facilitates the student’s exploitation of rich information in teacher’s hidden layers. CoDIR can be readily applied to compress large-scale language models in both pre-training and finetuning stages, and achieves superb performance on the GLUE benchmark, outperforming state-of-the-art compression methods.
pdf
bib
abs
TernaryBERT: Distillation-aware Ultra-low Bit BERT
Wei Zhang
|
Lu Hou
|
Yichun Yin
|
Lifeng Shang
|
Xiao Chen
|
Xin Jiang
|
Qun Liu
Transformer-based pre-training models like BERT have achieved remarkable performance in many natural language processing tasks. However, these models are both computation and memory expensive, hindering their deployment to resource-constrained devices. In this work, we propose TernaryBERT, which ternarizes the weights in a fine-tuned BERT model. Specifically, we use both approximation-based and loss-aware ternarization methods and empirically investigate the ternarization granularity of different parts of BERT. Moreover, to reduce the accuracy degradation caused by lower capacity of low bits, we leverage the knowledge distillation technique in the training process. Experiments on the GLUE benchmark and SQuAD show that our proposed TernaryBERT outperforms the other BERT quantization methods, and even achieves comparable performance as the full-precision model while being 14.9x smaller.
pdf
bib
abs
Self-Supervised Meta-Learning for Few-Shot Natural Language Classification Tasks
Trapit Bansal
|
Rishikesh Jha
|
Tsendsuren Munkhdalai
|
Andrew McCallum
Self-supervised pre-training of transformer models has revolutionized NLP applications. Such pre-training with language modeling objectives provides a useful initial point for parameters that generalize well to new tasks with fine-tuning. However, fine-tuning is still data inefficient — when there are few labeled examples, accuracy can be low. Data efficiency can be improved by optimizing pre-training directly for future fine-tuning with few examples; this can be treated as a meta-learning problem. However, standard meta-learning techniques require many training tasks in order to generalize; unfortunately, finding a diverse set of such supervised tasks is usually difficult. This paper proposes a self-supervised approach to generate a large, rich, meta-learning task distribution from unlabeled text. This is achieved using a cloze-style objective, but creating separate multi-class classification tasks by gathering tokens-to-be blanked from among only a handful of vocabulary terms. This yields as many unique meta-training tasks as the number of subsets of vocabulary terms. We meta-train a transformer model on this distribution of tasks using a recent meta-learning framework. On 17 NLP tasks, we show that this meta-training leads to better few-shot generalization than language-model pre-training followed by finetuning. Furthermore, we show how the self-supervised tasks can be combined with supervised tasks for meta-learning, providing substantial accuracy gains over previous supervised meta-learning.
pdf
bib
abs
Efficient Meta Lifelong-Learning with Limited Memory
Zirui Wang
|
Sanket Vaibhav Mehta
|
Barnabas Poczos
|
Jaime Carbonell
Current natural language processing models work well on a single task, yet they often fail to continuously learn new tasks without forgetting previous ones as they are re-trained throughout their lifetime, a challenge known as lifelong learning. State-of-the-art lifelong language learning methods store past examples in episodic memory and replay them at both training and inference time. However, as we show later in our experiments, there are three significant impediments: (1) needing unrealistically large memory module to achieve good performance, (2) suffering from negative transfer, (3) requiring multiple local adaptation steps for each test example that significantly slows down the inference speed. In this paper, we identify three common principles of lifelong learning methods and propose an efficient meta-lifelong framework that combines them in a synergistic fashion. To achieve sample efficiency, our method trains the model in a manner that it learns a better initialization for local adaptation. Extensive experiments on text classification and question answering benchmarks demonstrate the effectiveness of our framework by achieving state-of-the-art performance using merely 1% memory size and narrowing the gap with multi-task learning. We further show that our method alleviates both catastrophic forgetting and negative transfer at the same time.
pdf
bib
abs
Don’t Use English Dev: On the Zero-Shot Cross-Lingual Evaluation of Contextual Embeddings
Phillip Keung
|
Yichao Lu
|
Julian Salazar
|
Vikas Bhardwaj
Multilingual contextual embeddings have demonstrated state-of-the-art performance in zero-shot cross-lingual transfer learning, where multilingual BERT is fine-tuned on one source language and evaluated on a different target language. However, published results for mBERT zero-shot accuracy vary as much as 17 points on the MLDoc classification task across four papers. We show that the standard practice of using English dev accuracy for model selection in the zero-shot setting makes it difficult to obtain reproducible results on the MLDoc and XNLI tasks. English dev accuracy is often uncorrelated (or even anti-correlated) with target language accuracy, and zero-shot performance varies greatly at different points in the same fine-tuning run and between different fine-tuning runs. These reproducibility issues are also present for other tasks with different pre-trained embeddings (e.g., MLQA with XLM-R). We recommend providing oracle scores alongside zero-shot results: still fine-tune using English data, but choose a checkpoint with the target dev set. Reporting this upper bound makes results more consistent by avoiding arbitrarily bad checkpoints.
pdf
bib
abs
A Supervised Word Alignment Method based on Cross-Language Span Prediction using Multilingual BERT
Masaaki Nagata
|
Katsuki Chousa
|
Masaaki Nishino
We present a novel supervised word alignment method based on cross-language span prediction. We first formalize a word alignment problem as a collection of independent predictions from a token in the source sentence to a span in the target sentence. Since this step is equivalent to a SQuAD v2.0 style question answering task, we solve it using the multilingual BERT, which is fine-tuned on manually created gold word alignment data. It is nontrivial to obtain accurate alignment from a set of independently predicted spans. We greatly improved the word alignment accuracy by adding to the question the source token’s context and symmetrizing two directional predictions. In experiments using five word alignment datasets from among Chinese, Japanese, German, Romanian, French, and English, we show that our proposed method significantly outperformed previous supervised and unsupervised word alignment methods without any bitexts for pretraining. For example, we achieved 86.7 F1 score for the Chinese-English data, which is 13.3 points higher than the previous state-of-the-art supervised method.
pdf
bib
abs
Accurate Word Alignment Induction from Neural Machine Translation
Yun Chen
|
Yang Liu
|
Guanhua Chen
|
Xin Jiang
|
Qun Liu
Despite its original goal to jointly learn to align and translate, prior researches suggest that Transformer captures poor word alignments through its attention mechanism. In this paper, we show that attention weights do capture accurate word alignments and propose two novel word alignment induction methods Shift-Att and Shift-AET. The main idea is to induce alignments at the step when the to-be-aligned target token is the decoder input rather than the decoder output as in previous work. Shift-Att is an interpretation method that induces alignments from the attention weights of Transformer and does not require parameter update or architecture change. Shift-AET extracts alignments from an additional alignment module which is tightly integrated into Transformer and trained in isolation with supervision from symmetrized Shift-Att alignments. Experiments on three publicly available datasets demonstrate that both methods perform better than their corresponding neural baselines and Shift-AET significantly outperforms GIZA++ by 1.4-4.8 AER points.
pdf
bib
abs
ChrEn: Cherokee-English Machine Translation for Endangered Language Revitalization
Shiyue Zhang
|
Benjamin Frey
|
Mohit Bansal
Cherokee is a highly endangered Native American language spoken by the Cherokee people. The Cherokee culture is deeply embedded in its language. However, there are approximately only 2,000 fluent first language Cherokee speakers remaining in the world and the number is declining every year. To help save this endangered language, we introduce ChrEn, a Cherokee-English parallel dataset, to facilitate machine translation research between Cherokee and English. Compared to some popular machine translation language pairs, ChrEn is extremely low-resource, only containing 14k sentence pairs in total. We split our parallel data in ways that facilitate both in-domain and out-of-domain evaluation. We also collect 5k Cherokee monolingual data to enable semi-supervised learning. Besides these datasets, we propose several Cherokee-English and English-Cherokee machine translation systems. We compare SMT (phrase-based) versus NMT (RNN-based and Transformer-based) systems; supervised versus semi-supervised (via language model, back-translation, and BERT/Multilingual-BERT) methods; as well as transfer learning versus multilingual joint training with 4 other languages. Our best results are 15.8/12.7 BLEU for in-domain and 6.5/5.0 BLEU for out-of-domain Chr-En/EnChr translations, respectively; and we hope that our dataset and systems will encourage future work by the community for Cherokee language revitalization.
pdf
bib
abs
Unsupervised Discovery of Implicit Gender Bias
Anjalie Field
|
Yulia Tsvetkov
Despite their prevalence in society, social biases are difficult to identify, primarily because human judgements in this domain can be unreliable. We take an unsupervised approach to identifying gender bias against women at a comment level and present a model that can surface text likely to contain bias. Our main challenge is forcing the model to focus on signs of implicit bias, rather than other artifacts in the data. Thus, our methodology involves reducing the influence of confounds through propensity matching and adversarial learning. Our analysis shows how biased comments directed towards female politicians contain mixed criticisms, while comments directed towards other female public figures focus on appearance and sexualization. Ultimately, our work offers a way to capture subtle biases in various domains without relying on subjective human judgements.
pdf
bib
abs
Condolence and Empathy in Online Communities
Naitian Zhou
|
David Jurgens
Offering condolence is a natural reaction to hearing someone’s distress. Individuals frequently express distress in social media, where some communities can provide support. However, not all condolence is equal—trite responses offer little actual support despite their good intentions. Here, we develop computational tools to create a massive dataset of 11.4M expressions of distress and 2.8M corresponding offerings of condolence in order to examine the dynamics of condolence online. Our study reveals widespread disparity in what types of distress receive supportive condolence rather than just engagement. Building on studies from social psychology, we analyze the language of condolence and develop a new dataset for quantifying the empathy in a condolence using appraisal theory. Finally, we demonstrate that the features of condolence individuals find most helpful online differ substantially in their features from those seen in interpersonal settings.
pdf
bib
abs
An Embedding Model for Estimating Legislative Preferences from the Frequency and Sentiment of Tweets
Gregory Spell
|
Brian Guay
|
Sunshine Hillygus
|
Lawrence Carin
Legislator preferences are typically represented as measures of general ideology estimated from roll call votes on legislation, potentially masking important nuances in legislators’ political attitudes. In this paper we introduce a method of measuring more specific legislator attitudes using an alternative expression of preferences: tweeting. Specifically, we present an embedding-based model for predicting the frequency and sentiment of legislator tweets. To illustrate our method, we model legislators’ attitudes towards President Donald Trump as vector embeddings that interact with embeddings for Trump himself constructed using a neural network from the text of his daily tweets. We demonstrate the predictive performance of our model on tweets authored by members of the U.S. House and Senate related to the president from November 2016 to February 2018. We further assess the quality of our learned representations for legislators by comparing to traditional measures of legislator preferences.
pdf
bib
abs
Measuring Information Propagation in Literary Social Networks
Matthew Sims
|
David Bamman
We present the task of modeling information propagation in literature, in which we seek to identify pieces of information passing from character A to character B to character C, only given a description of their activity in text. We describe a new pipeline for measuring information propagation in this domain and publish a new dataset for speaker attribution, enabling the evaluation of an important component of this pipeline on a wider range of literary texts than previously studied. Using this pipeline, we analyze the dynamics of information propagation in over 5,000 works of fiction, finding that information flows through characters that fill structural holes connecting different communities, and that characters who are women are depicted as filling this role much more frequently than characters who are men.
pdf
bib
abs
Social Chemistry 101: Learning to Reason about Social and Moral Norms
Maxwell Forbes
|
Jena D. Hwang
|
Vered Shwartz
|
Maarten Sap
|
Yejin Choi
Social norms—the unspoken commonsense rules about acceptable social behavior—are crucial in understanding the underlying causes and intents of people’s actions in narratives. For example, underlying an action such as “wanting to call cops on my neighbor” are social norms that inform our conduct, such as “It is expected that you report crimes.” We present SOCIAL CHEMISTRY, a new conceptual formalism to study people’s everyday social norms and moral judgments over a rich spectrum of real life situations described in natural language. We introduce SOCIAL-CHEM-101, a large-scale corpus that catalogs 292k rules-of-thumb such as “It is rude to run a blender at 5am” as the basic conceptual units. Each rule-of-thumb is further broken down with 12 different dimensions of people’s judgments, including social judgments of good and bad, moral foundations, expected cultural pressure, and assumed legality, which together amount to over 4.5 million annotations of categorical labels and free-text descriptions. Comprehensive empirical results based on state-of-the-art neural models demonstrate that computational modeling of social norms is a promising research direction. Our model framework, Neural Norm Transformer, learns and generalizes SOCIAL-CHEM-101 to successfully reason about previously unseen situations, generating relevant (and potentially novel) attribute-aware social rules-of-thumb.
pdf
bib
abs
Event Extraction by Answering (Almost) Natural Questions
Xinya Du
|
Claire Cardie
The problem of event extraction requires detecting the event trigger and extracting its corresponding arguments. Existing work in event argument extraction typically relies heavily on entity recognition as a preprocessing/concurrent step, causing the well-known problem of error propagation. To avoid this issue, we introduce a new paradigm for event extraction by formulating it as a question answering (QA) task that extracts the event arguments in an end-to-end manner. Empirical results demonstrate that our framework outperforms prior methods substantially; in addition, it is capable of extracting event arguments for roles not seen at training time (i.e., in a zero-shot learning setting).
pdf
bib
abs
Connecting the Dots: Event Graph Schema Induction with Path Language Modeling
Manling Li
|
Qi Zeng
|
Ying Lin
|
Kyunghyun Cho
|
Heng Ji
|
Jonathan May
|
Nathanael Chambers
|
Clare Voss
Event schemas can guide our understanding and ability to make predictions with respect to what might happen next. We propose a new Event Graph Schema, where two event types are connected through multiple paths involving entities that fill important roles in a coherent story. We then introduce Path Language Model, an auto-regressive language model trained on event-event paths, and select salient and coherent paths to probabilistically construct these graph schemas. We design two evaluation metrics, instance coverage and instance coherence, to evaluate the quality of graph schema induction, by checking when coherent event instances are covered by the schema graph. Intrinsic evaluations show that our approach is highly effective at inducing salient and coherent schemas. Extrinsic evaluations show the induced schema repository provides significant improvement to downstream end-to-end Information Extraction over a state-of-the-art joint neural extraction model, when used as additional global features to unfold instance graphs.
pdf
bib
abs
Joint Constrained Learning for Event-Event Relation Extraction
Haoyu Wang
|
Muhao Chen
|
Hongming Zhang
|
Dan Roth
Understanding natural language involves recognizing how multiple event mentions structurally and temporally interact with each other. In this process, one can induce event complexes that organize multi-granular events with temporal order and membership relations interweaving among them. Due to the lack of jointly labeled data for these relational phenomena and the restriction on the structures they articulate, we propose a joint constrained learning framework for modeling event-event relations. Specifically, the framework enforces logical constraints within and across multiple temporal and subevent relations of events by converting these constraints into differentiable learning objectives. We show that our joint constrained learning approach effectively compensates for the lack of jointly labeled data, and outperforms SOTA methods on benchmarks for both temporal relation extraction and event hierarchy construction, replacing a commonly used but more expensive global inference process. We also present a promising case study to show the effectiveness of our approach to inducing event complexes on an external corpus.
pdf
bib
abs
Incremental Event Detection via Knowledge Consolidation Networks
Pengfei Cao
|
Yubo Chen
|
Jun Zhao
|
Taifeng Wang
Conventional approaches to event detection usually require a fixed set of pre-defined event types. Such a requirement is often challenged in real-world applications, as new events continually occur. Due to huge computation cost and storage budge, it is infeasible to store all previous data and re-train the model with all previous data and new data, every time new events arrive. We formulate such challenging scenarios as incremental event detection, which requires a model to learn new classes incrementally without performance degradation on previous classes. However, existing incremental learning methods cannot handle semantic ambiguity and training data imbalance problems between old and new classes in the task of incremental event detection. In this paper, we propose a Knowledge Consolidation Network (KCN) to address the above issues. Specifically, we devise two components, prototype enhanced retrospection and hierarchical distillation, to mitigate the adverse effects of semantic ambiguity and class imbalance, respectively. Experimental results demonstrate the effectiveness of the proposed method, outperforming the state-of-the-art model by 19% and 13.4% of whole F1 score on ACE benchmark and TAC KBP benchmark, respectively.
pdf
bib
abs
Semi-supervised New Event Type Induction and Event Detection
Lifu Huang
|
Heng Ji
Most previous event extraction studies assume a set of target event types and corresponding event annotations are given, which could be very expensive. In this paper, we work on a new task of semi-supervised event type induction, aiming to automatically discover a set of unseen types from a given corpus by leveraging annotations available for a few seen types. We design a Semi-Supervised Vector Quantized Variational Autoencoder framework to automatically learn a discrete latent type representation for each seen and unseen type and optimize them using seen type event annotations. A variational autoencoder is further introduced to enforce the reconstruction of each event mention conditioned on its latent type distribution. Experiments show that our approach can not only achieve state-of-the-art performance on supervised event detection but also discover high-quality new event types.
pdf
bib
abs
Language Generation with Multi-Hop Reasoning on Commonsense Knowledge Graph
Haozhe Ji
|
Pei Ke
|
Shaohan Huang
|
Furu Wei
|
Xiaoyan Zhu
|
Minlie Huang
Despite the success of generative pre-trained language models on a series of text generation tasks, they still suffer in cases where reasoning over underlying commonsense knowledge is required during generation. Existing approaches that integrate commonsense knowledge into generative pre-trained language models simply transfer relational knowledge by post-training on individual knowledge triples while ignoring rich connections within the knowledge graph. We argue that exploiting both the structural and semantic information of the knowledge graph facilitates commonsense-aware text generation. In this paper, we propose Generation with Multi-Hop Reasoning Flow (GRF) that enables pre-trained models with dynamic multi-hop reasoning on multi-relational paths extracted from the external commonsense knowledge graph. We empirically show that our model outperforms existing baselines on three text generation tasks that require reasoning over commonsense knowledge. We also demonstrate the effectiveness of the dynamic multi-hop reasoning module with reasoning paths inferred by the model that provide rationale to the generation.
pdf
bib
abs
Reformulating Unsupervised Style Transfer as Paraphrase Generation
Kalpesh Krishna
|
John Wieting
|
Mohit Iyyer
Modern NLP defines the task of style transfer as modifying the style of a given sentence without appreciably changing its semantics, which implies that the outputs of style transfer systems should be paraphrases of their inputs. However, many existing systems purportedly designed for style transfer inherently warp the input’s meaning through attribute transfer, which changes semantic properties such as sentiment. In this paper, we reformulate unsupervised style transfer as a paraphrase generation problem, and present a simple methodology based on fine-tuning pretrained language models on automatically generated paraphrase data. Despite its simplicity, our method significantly outperforms state-of-the-art style transfer systems on both human and automatic evaluations. We also survey 23 style transfer papers and discover that existing automatic metrics can be easily gamed and propose fixed variants. Finally, we pivot to a more real-world style transfer setting by collecting a large dataset of 15M sentences in 11 diverse styles, which we use for an in-depth analysis of our system.
pdf
bib
abs
De-Biased Court’s View Generation with Causality
Yiquan Wu
|
Kun Kuang
|
Yating Zhang
|
Xiaozhong Liu
|
Changlong Sun
|
Jun Xiao
|
Yueting Zhuang
|
Luo Si
|
Fei Wu
Court’s view generation is a novel but essential task for legal AI, aiming at improving the interpretability of judgment prediction results and enabling automatic legal document generation. While prior text-to-text natural language generation (NLG) approaches can be used to address this problem, neglecting the confounding bias from the data generation mechanism can limit the model performance, and the bias may pollute the learning outcomes. In this paper, we propose a novel Attentional and Counterfactual based Natural Language Generation (AC-NLG) method, consisting of an attentional encoder and a pair of innovative counterfactual decoders. The attentional encoder leverages the plaintiff’s claim and fact description as input to learn a claim-aware encoder from which the claim-related information in fact description can be emphasized. The counterfactual decoders are employed to eliminate the confounding bias in data and generate judgment-discriminative court’s views (both supportive and non-supportive views) by incorporating with a synergistic judgment predictive model. Comprehensive experiments show the effectiveness of our method under both quantitative and qualitative evaluation metrics.
pdf
bib
abs
PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long Text Generation
Xinyu Hua
|
Lu Wang
Pre-trained Transformers have enabled impressive breakthroughs in generating long and fluent text, yet their outputs are often “rambling” without coherently arranged content. In this work, we present a novel content-controlled text generation framework, PAIR, with planning and iterative refinement, which is built upon a large model, BART. We first adapt the BERT model to automatically construct the content plans, consisting of keyphrase assignments and their corresponding sentence-level positions. The BART model is employed for generation without modifying its structure. We then propose a refinement algorithm to gradually enhance the generation quality within the sequence-to-sequence framework. Evaluation with automatic metrics shows that adding planning consistently improves the generation quality on three distinct domains, with an average of 20 BLEU points and 12 METEOR points improvements. In addition, human judges rate our system outputs to be more relevant and coherent than comparisons without planning.
pdf
bib
abs
Back to the Future: Unsupervised Backprop-based Decoding for Counterfactual and Abductive Commonsense Reasoning
Lianhui Qin
|
Vered Shwartz
|
Peter West
|
Chandra Bhagavatula
|
Jena D. Hwang
|
Ronan Le Bras
|
Antoine Bosselut
|
Yejin Choi
Abductive and counterfactual reasoning, core abilities of everyday human cognition, require reasoning about what might have happened at time t, while conditioning on multiple contexts from the relative past and future. However, simultaneous incorporation of past and future contexts using generative language models (LMs) can be challenging, as they are trained either to condition only on the past context or to perform narrowly scoped text-infilling. In this paper, we propose DeLorean, a new unsupervised decoding algorithm that can flexibly incorporate both the past and future contexts using only off-the-shelf, left-to-right language models and no supervision. The key intuition of our algorithm is incorporating the future through back-propagation, during which, we only update the internal representation of the output while fixing the model parameters. By alternating between forward and backward propagation, DeLorean can decode the output representation that reflects both the left and right contexts. We demonstrate that our approach is general and applicable to two nonmonotonic reasoning tasks: abductive text generation and counterfactual story revision, where DeLorean outperforms a range of unsupervised and some supervised methods, based on automatic and human evaluation.
pdf
bib
abs
Where Are You? Localization from Embodied Dialog
Meera Hahn
|
Jacob Krantz
|
Dhruv Batra
|
Devi Parikh
|
James Rehg
|
Stefan Lee
|
Peter Anderson
We present WHERE ARE YOU? (WAY), a dataset of ~6k dialogs in which two humans – an Observer and a Locator – complete a cooperative localization task. The Observer is spawned at random in a 3D environment and can navigate from first-person views while answering questions from the Locator. The Locator must localize the Observer in a detailed top-down map by asking questions and giving instructions. Based on this dataset, we define three challenging tasks: Localization from Embodied Dialog or LED (localizing the Observer from dialog history), Embodied Visual Dialog (modeling the Observer), and Cooperative Localization (modeling both agents). In this paper, we focus on the LED task – providing a strong baseline model with detailed ablations characterizing both dataset biases and the importance of various modeling choices. Our best model achieves 32.7% success at identifying the Observer’s location within 3m in unseen buildings, vs. 70.4% for human Locators.
pdf
bib
abs
Learning to Represent Image and Text with Denotation Graph
Bowen Zhang
|
Hexiang Hu
|
Vihan Jain
|
Eugene Ie
|
Fei Sha
Learning to fuse vision and language information and representing them is an important research problem with many applications. Recent progresses have leveraged the ideas of pre-training (from language modeling) and attention layers in Transformers to learn representation from datasets containing images aligned with linguistic expressions that describe the images. In this paper, we propose learning representations from a set of implied, visually grounded expressions between image and text, automatically mined from those datasets. In particular, we use denotation graphs to represent how specific concepts (such as sentences describing images) can be linked to abstract and generic concepts (such as short phrases) that are also visually grounded. This type of generic-to-specific relations can be discovered using linguistic analysis tools. We propose methods to incorporate such relations into learning representation. We show that state-of-the-art multimodal learning models can be further improved by leveraging automatically harvested structural relations. The representations lead to stronger empirical results on downstream tasks of cross-modal image retrieval, referring expression, and compositional attribute-object recognition. Both our codes and the extracted denotation graphs on the Flickr30K and the COCO datasets are publically available on
https://sha-lab.github.io/DG.
pdf
bib
abs
Video2Commonsense: Generating Commonsense Descriptions to Enrich Video Captioning
Zhiyuan Fang
|
Tejas Gokhale
|
Pratyay Banerjee
|
Chitta Baral
|
Yezhou Yang
Captioning is a crucial and challenging task for video understanding. In videos that involve active agents such as humans, the agent’s actions can bring about myriad changes in the scene. Observable changes such as movements, manipulations, and transformations of the objects in the scene, are reflected in conventional video captioning. Unlike images, actions in videos are also inherently linked to social aspects such as intentions (why the action is taking place), effects (what changes due to the action), and attributes that describe the agent. Thus for video understanding, such as when captioning videos or when answering questions about videos, one must have an understanding of these commonsense aspects. We present the first work on generating commonsense captions directly from videos, to describe latent aspects such as intentions, effects, and attributes. We present a new dataset “Video-to-Commonsense (V2C)” that contains ~9k videos of human agents performing various actions, annotated with 3 types of commonsense descriptions. Additionally we explore the use of open-ended video-based commonsense question answering (V2C-QA) as a way to enrich our captions. Both the generation task and the QA task can be used to enrich video captions.
pdf
bib
abs
Does my multimodal model learn cross-modal interactions? It’s harder to tell than you might think!
Jack Hessel
|
Lillian Lee
Modeling expressive cross-modal interactions seems crucial in multimodal tasks, such as visual question answering. However, sometimes high-performing black-box algorithms turn out to be mostly exploiting unimodal signals in the data. We propose a new diagnostic tool, empirical multimodally-additive function projection (EMAP), for isolating whether or not cross-modal interactions improve performance for a given model on a given task. This function projection modifies model predictions so that cross-modal interactions are eliminated, isolating the additive, unimodal structure. For seven image+text classification tasks (on each of which we set new state-of-the-art benchmarks), we find that, in many cases, removing cross-modal interactions results in little to no performance degradation. Surprisingly, this holds even when expressive models, with capacity to consider interactions, otherwise outperform less expressive models; thus, performance improvements, even when present, often cannot be attributed to consideration of cross-modal feature interactions. We hence recommend that researchers in multimodal machine learning report the performance not only of unimodal baselines, but also the EMAP of their best-performing model.
pdf
bib
abs
MUTANT: A Training Paradigm for Out-of-Distribution Generalization in Visual Question Answering
Tejas Gokhale
|
Pratyay Banerjee
|
Chitta Baral
|
Yezhou Yang
While progress has been made on the visual question answering leaderboards, models often utilize spurious correlations and priors in datasets under the i.i.d. setting. As such, evaluation on out-of-distribution (OOD) test samples has emerged as a proxy for generalization. In this paper, we present MUTANT, a training paradigm that exposes the model to perceptually similar, yet semantically distinct mutations of the input, to improve OOD generalization, such as the VQA-CP challenge. Under this paradigm, models utilize a consistency-constrained training objective to understand the effect of semantic changes in input (question-image pair) on the output (answer). Unlike existing methods on VQA-CP, MUTANT does not rely on the knowledge about the nature of train and test answer distributions. MUTANT establishes a new state-of-the-art accuracy on VQA-CP with a 10.57% improvement. Our work opens up avenues for the use of semantic input mutations for OOD generalization in question answering.
pdf
bib
abs
Mitigating Gender Bias for Neural Dialogue Generation with Adversarial Learning
Haochen Liu
|
Wentao Wang
|
Yiqi Wang
|
Hui Liu
|
Zitao Liu
|
Jiliang Tang
Dialogue systems play an increasingly important role in various aspects of our daily life. It is evident from recent research that dialogue systems trained on human conversation data are biased. In particular, they can produce responses that reflect people’s gender prejudice. Many debiasing methods have been developed for various NLP tasks, such as word embedding. However, they are not directly applicable to dialogue systems because they are likely to force dialogue models to generate similar responses for different genders. This greatly degrades the diversity of the generated responses and immensely hurts the performance of the dialogue models. In this paper, we propose a novel adversarial learning framework Debiased-Chat to train dialogue models free from gender bias while keeping their performance. Extensive experiments on two real-world conversation datasets show that our framework significantly reduces gender bias in dialogue models while maintaining the response quality.
pdf
bib
abs
Will I Sound Like Me? Improving Persona Consistency in Dialogues through Pragmatic Self-Consciousness
Hyunwoo Kim
|
Byeongchang Kim
|
Gunhee Kim
We explore the task of improving persona consistency of dialogue agents. Recent models tackling consistency often train with additional Natural Language Inference (NLI) labels or attach trained extra modules to the generative agent for maintaining consistency. However, such additional labels and training can be demanding. Also, we find even the best-performing persona-based agents are insensitive to contradictory words. Inspired by social cognition and pragmatics, we endow existing dialogue agents with public self-consciousness on the fly through an imaginary listener. Our approach, based on the Rational Speech Acts framework (Frank and Goodman, 2012), can enforce dialogue agents to refrain from uttering contradiction. We further extend the framework by learning the distractor selection, which has been usually done manually or randomly. Results on Dialogue NLI (Welleck et al., 2019) and PersonaChat (Zhang et al., 2018) dataset show that our approach reduces contradiction and improves consistency of existing dialogue models. Moreover, we show that it can be generalized to improve context-consistency beyond persona in dialogues.
pdf
bib
abs
TOD-BERT: Pre-trained Natural Language Understanding for Task-Oriented Dialogue
Chien-Sheng Wu
|
Steven C.H. Hoi
|
Richard Socher
|
Caiming Xiong
The underlying difference of linguistic patterns between general text and task-oriented dialogue makes existing pre-trained language models less useful in practice. In this work, we unify nine human-human and multi-turn task-oriented dialogue datasets for language modeling. To better model dialogue behavior during pre-training, we incorporate user and system tokens into the masked language modeling. We propose a contrastive objective function to simulate the response selection task. Our pre-trained task-oriented dialogue BERT (TOD-BERT) outperforms strong baselines like BERT on four downstream task-oriented dialogue applications, including intention recognition, dialogue state tracking, dialogue act prediction, and response selection. We also show that TOD-BERT has a stronger few-shot ability that can mitigate the data scarcity problem for task-oriented dialogue.
pdf
bib
abs
RiSAWOZ: A Large-Scale Multi-Domain Wizard-of-Oz Dataset with Rich Semantic Annotations for Task-Oriented Dialogue Modeling
Jun Quan
|
Shian Zhang
|
Qian Cao
|
Zizhong Li
|
Deyi Xiong
In order to alleviate the shortage of multi-domain data and to capture discourse phenomena for task-oriented dialogue modeling, we propose RiSAWOZ, a large-scale multi-domain Chinese Wizard-of-Oz dataset with Rich Semantic Annotations. RiSAWOZ contains 11.2K human-to-human (H2H) multi-turn semantically annotated dialogues, with more than 150K utterances spanning over 12 domains, which is larger than all previous annotated H2H conversational datasets. Both single- and multi-domain dialogues are constructed, accounting for 65% and 35%, respectively. Each dialogue is labeled with comprehensive dialogue annotations, including dialogue goal in the form of natural language description, domain, dialogue states and acts at both the user and system side. In addition to traditional dialogue annotations, we especially provide linguistic annotations on discourse phenomena, e.g., ellipsis and coreference, in dialogues, which are useful for dialogue coreference and ellipsis resolution tasks. Apart from the fully annotated dataset, we also present a detailed description of the data collection procedure, statistics and analysis of the dataset. A series of benchmark models and results are reported, including natural language understanding (intent detection & slot filling), dialogue state tracking and dialogue context-to-text generation, as well as coreference and ellipsis resolution, which facilitate the baseline comparison for future research on this corpus.
pdf
bib
abs
Filtering Noisy Dialogue Corpora by Connectivity and Content Relatedness
Reina Akama
|
Sho Yokoi
|
Jun Suzuki
|
Kentaro Inui
Large-scale dialogue datasets have recently become available for training neural dialogue agents. However, these datasets have been reported to contain a non-negligible number of unacceptable utterance pairs. In this paper, we propose a method for scoring the quality of utterance pairs in terms of their connectivity and relatedness. The proposed scoring method is designed based on findings widely shared in the dialogue and linguistics research communities. We demonstrate that it has a relatively good correlation with the human judgment of dialogue quality. Furthermore, the method is applied to filter out potentially unacceptable utterance pairs from a large-scale noisy dialogue corpus to ensure its quality. We experimentally confirm that training data filtered by the proposed method improves the quality of neural dialogue agents in response generation.
pdf
bib
abs
Latent Geographical Factors for Analyzing the Evolution of Dialects in Contact
Yugo Murawaki
Analyzing the evolution of dialects remains a challenging problem because contact phenomena hinder the application of the standard tree model. Previous statistical approaches to this problem resort to admixture analysis, where each dialect is seen as a mixture of latent ancestral populations. However, such ancestral populations are hardly interpretable in the context of the tree model. In this paper, we propose a probabilistic generative model that represents latent factors as geographical distributions. We argue that the proposed model has higher affinity with the tree model because a tree can alternatively be represented as a set of geographical distributions. Experiments involving synthetic and real data suggest that the proposed method is both quantitatively and qualitatively superior to the admixture model.
pdf
bib
abs
Predicting Reference: What do Language Models Learn about Discourse Models?
Shiva Upadhye
|
Leon Bergen
|
Andrew Kehler
Whereas there is a growing literature that probes neural language models to assess the degree to which they have latently acquired grammatical knowledge, little if any research has investigated their acquisition of discourse modeling ability. We address this question by drawing on a rich psycholinguistic literature that has established how different contexts affect referential biases concerning who is likely to be referred to next. The results reveal that, for the most part, the prediction behavior of neural language models does not resemble that of human language users.
pdf
bib
abs
Word class flexibility: A deep contextualized approach
Bai Li
|
Guillaume Thomas
|
Yang Xu
|
Frank Rudzicz
Word class flexibility refers to the phenomenon whereby a single word form is used across different grammatical categories. Extensive work in linguistic typology has sought to characterize word class flexibility across languages, but quantifying this phenomenon accurately and at scale has been fraught with difficulties. We propose a principled methodology to explore regularity in word class flexibility. Our method builds on recent work in contextualized word embeddings to quantify semantic shift between word classes (e.g., noun-to-verb, verb-to-noun), and we apply this method to 37 languages. We find that contextualized embeddings not only capture human judgment of class variation within words in English, but also uncover shared tendencies in class flexibility across languages. Specifically, we find greater semantic variation when flexible lemmas are used in their dominant word class, supporting the view that word class flexibility is a directional process. Our work highlights the utility of deep contextualized models in linguistic typology.
pdf
bib
abs
Shallow-to-Deep Training for Neural Machine Translation
Bei Li
|
Ziyang Wang
|
Hui Liu
|
Yufan Jiang
|
Quan Du
|
Tong Xiao
|
Huizhen Wang
|
Jingbo Zhu
Deep encoders have been proven to be effective in improving neural machine translation (NMT) systems, but training an extremely deep encoder is time consuming. Moreover, why deep models help NMT is an open question. In this paper, we investigate the behavior of a well-tuned deep Transformer system. We find that stacking layers is helpful in improving the representation ability of NMT models and adjacent layers perform similarly. This inspires us to develop a shallow-to-deep training method that learns deep models by stacking shallow models. In this way, we successfully train a Transformer system with a 54-layer encoder. Experimental results on WMT’16 English-German and WMT’14 English-French translation tasks show that it is 1:4 faster than training from scratch, and achieves a BLEU score of 30:33 and 43:29 on two tasks. The code is publicly available at
https://github.com/libeineu/SDT-Training.
pdf
bib
abs
Iterative Refinement in the Continuous Space for Non-Autoregressive Neural Machine Translation
Jason Lee
|
Raphael Shu
|
Kyunghyun Cho
We propose an efficient inference procedure for non-autoregressive machine translation that iteratively refines translation purely in the continuous space. Given a continuous latent variable model for machine translation (Shu et al., 2020), we train an inference network to approximate the gradient of the marginal log probability of the target sentence, using the latent variable instead. This allows us to use gradient-based optimization to find the target sentence at inference time that approximately maximizes its marginal probability. As each refinement step only involves computation in the latent space of low dimensionality (we use 8 in our experiments), we avoid computational overhead incurred by existing non-autoregressive inference procedures that often refine in token space. We compare our approach to a recently proposed EM-like inference procedure (Shu et al., 2020) that optimizes in a hybrid space, consisting of both discrete and continuous variables. We evaluate our approach on WMT’14 En→De, WMT’16 Ro→En and IWSLT’16 De→En, and observe two advantages over the EM-like inference: (1) it is computationally efficient, i.e. each refinement step is twice as fast, and (2) it is more effective, resulting in higher marginal probabilities and BLEU scores with the same number of refinement steps. On WMT’14 En→De, for instance, our approach is able to decode 6.2 times faster than the autoregressive model with minimal degradation to translation quality (0.9 BLEU).
pdf
bib
abs
Why Skip If You Can Combine: A Simple Knowledge Distillation Technique for Intermediate Layers
Yimeng Wu
|
Peyman Passban
|
Mehdi Rezagholizadeh
|
Qun Liu
With the growth of computing power neural machine translation (NMT) models also grow accordingly and become better. However, they also become harder to deploy on edge devices due to memory constraints. To cope with this problem, a common practice is to distill knowledge from a large and accurately-trained teacher network (T) into a compact student network (S). Although knowledge distillation (KD) is useful in most cases, our study shows that existing KD techniques might not be suitable enough for deep NMT engines, so we propose a novel alternative. In our model, besides matching T and S predictions we have a combinatorial mechanism to inject layer-level supervision from T to S. In this paper, we target low-resource settings and evaluate our translation engines for Portuguese→English, Turkish→English, and English→German directions. Students trained using our technique have 50% fewer parameters and can still deliver comparable results to those of 12-layer teachers.
pdf
bib
abs
Multi-task Learning for Multilingual Neural Machine Translation
Yiren Wang
|
ChengXiang Zhai
|
Hany Hassan
While monolingual data has been shown to be useful in improving bilingual neural machine translation (NMT), effectively and efficiently leveraging monolingual data for Multilingual NMT (MNMT) systems is a less explored area. In this work, we propose a multi-task learning (MTL) framework that jointly trains the model with the translation task on bitext data and two denoising tasks on the monolingual data. We conduct extensive empirical studies on MNMT systems with 10 language pairs from WMT datasets. We show that the proposed approach can effectively improve the translation quality for both high-resource and low-resource languages with large margin, achieving significantly better results than the individual bilingual models. We also demonstrate the efficacy of the proposed approach in the zero-shot setup for language pairs without bitext training data. Furthermore, we show the effectiveness of MTL over pre-training approaches for both NMT and cross-lingual transfer learning NLU tasks; the proposed approach outperforms massive scale models trained on single task.
pdf
bib
abs
Token-level Adaptive Training for Neural Machine Translation
Shuhao Gu
|
Jinchao Zhang
|
Fandong Meng
|
Yang Feng
|
Wanying Xie
|
Jie Zhou
|
Dong Yu
There exists a token imbalance phenomenon in natural language as different tokens appear with different frequencies, which leads to different learning difficulties for tokens in Neural Machine Translation (NMT). The vanilla NMT model usually adopts trivial equal-weighted objectives for target tokens with different frequencies and tends to generate more high-frequency tokens and less low-frequency tokens compared with the golden token distribution. However, low-frequency tokens may carry critical semantic information that will affect the translation quality once they are neglected. In this paper, we explored target token-level adaptive objectives based on token frequencies to assign appropriate weights for each target token during training. We aimed that those meaningful but relatively low-frequency words could be assigned with larger weights in objectives to encourage the model to pay more attention to these tokens. Our method yields consistent improvements in translation quality on ZH-EN, EN-RO, and EN-DE translation tasks, especially on sentences that contain more low-frequency tokens where we can get 1.68, 1.02, and 0.52 BLEU increases compared with baseline, respectively. Further analyses show that our method can also improve the lexical diversity of translation.
pdf
bib
abs
Multi-Unit Transformers for Neural Machine Translation
Jianhao Yan
|
Fandong Meng
|
Jie Zhou
Transformer models achieve remarkable success in Neural Machine Translation. Many efforts have been devoted to deepening the Transformer by stacking several units (i.e., a combination of Multihead Attentions and FFN) in a cascade, while the investigation over multiple parallel units draws little attention. In this paper, we propose the Multi-Unit Transformer (MUTE) , which aim to promote the expressiveness of the Transformer by introducing diverse and complementary units. Specifically, we use several parallel units and show that modeling with multiple units improves model performance and introduces diversity. Further, to better leverage the advantage of the multi-unit setting, we design biased module and sequential dependency that guide and encourage complementariness among different units. Experimental results on three machine translation tasks, the NIST Chinese-to-English, WMT’14 English-to-German and WMT’18 Chinese-to-English, show that the MUTE models significantly outperform the Transformer-Base, by up to +1.52, +1.90 and +1.10 BLEU points, with only a mild drop in inference speed (about 3.1%). In addition, our methods also surpass the Transformer-Big model, with only 54% of its parameters. These results demonstrate the effectiveness of the MUTE, as well as its efficiency in both the inference process and parameter usage.
pdf
bib
abs
On the Sparsity of Neural Machine Translation Models
Yong Wang
|
Longyue Wang
|
Victor Li
|
Zhaopeng Tu
Modern neural machine translation (NMT) models employ a large number of parameters, which leads to serious over-parameterization and typically causes the underutilization of computational resources. In response to this problem, we empirically investigate whether the redundant parameters can be reused to achieve better performance. Experiments and analyses are systematically conducted on different datasets and NMT architectures. We show that: 1) the pruned parameters can be rejuvenated to improve the baseline model by up to +0.8 BLEU points; 2) the rejuvenated parameters are reallocated to enhance the ability of modeling low-level lexical information.
pdf
bib
abs
Incorporating a Local Translation Mechanism into Non-autoregressive Translation
Xiang Kong
|
Zhisong Zhang
|
Eduard Hovy
In this work, we introduce a novel local autoregressive translation (LAT) mechanism into non-autoregressive translation (NAT) models so as to capture local dependencies among target outputs. Specifically, for each target decoding position, instead of only one token, we predict a short sequence of tokens in an autoregressive way. We further design an efficient merging algorithm to align and merge the output pieces into one final output sequence. We integrate LAT into the conditional masked language model (CMLM) (Ghazvininejad et al.,2019) and similarly adopt iterative decoding. Empirical results on five translation tasks show that compared with CMLM, our method achieves comparable or better performance with fewer decoding iterations, bringing a 2.5x speedup. Further analysis indicates that our method reduces repeated translations and performs better at longer sentences. Our code will be released to the public.
pdf
bib
abs
Self-Paced Learning for Neural Machine Translation
Yu Wan
|
Baosong Yang
|
Derek F. Wong
|
Yikai Zhou
|
Lidia S. Chao
|
Haibo Zhang
|
Boxing Chen
Recent studies have proven that the training of neural machine translation (NMT) can be facilitated by mimicking the learning process of humans. Nevertheless, achievements of such kind of curriculum learning rely on the quality of artificial schedule drawn up with the handcrafted features, e.g. sentence length or word rarity. We ameliorate this procedure with a more flexible manner by proposing self-paced learning, where NMT model is allowed to 1) automatically quantify the learning confidence over training examples; and 2) flexibly govern its learning via regulating the loss in each iteration step. Experimental results over multiple translation tasks demonstrate that the proposed model yields better performance than strong baselines and those models trained with human-designed curricula on both translation quality and convergence speed.
pdf
bib
abs
Long-Short Term Masking Transformer: A Simple but Effective Baseline for Document-level Neural Machine Translation
Pei Zhang
|
Boxing Chen
|
Niyu Ge
|
Kai Fan
Many document-level neural machine translation (NMT) systems have explored the utility of context-aware architecture, usually requiring an increasing number of parameters and computational complexity. However, few attention is paid to the baseline model. In this paper, we research extensively the pros and cons of the standard transformer in document-level translation, and find that the auto-regressive property can simultaneously bring both the advantage of the consistency and the disadvantage of error accumulation. Therefore, we propose a surprisingly simple long-short term masking self-attention on top of the standard transformer to both effectively capture the long-range dependence and reduce the propagation of errors. We examine our approach on the two publicly available document-level datasets. We can achieve a strong result in BLEU and capture discourse phenomena.
pdf
bib
abs
Generating Diverse Translation from Model Distribution with Dropout
Xuanfu Wu
|
Yang Feng
|
Chenze Shao
Despite the improvement of translation quality, neural machine translation (NMT) often suffers from the lack of diversity in its generation. In this paper, we propose to generate diverse translations by deriving a large number of possible models with Bayesian modelling and sampling models from them for inference. The possible models are obtained by applying concrete dropout to the NMT model and each of them has specific confidence for its prediction, which corresponds to a posterior model distribution under specific training data in the principle of Bayesian modeling. With variational inference, the posterior model distribution can be approximated with a variational distribution, from which the final models for inference are sampled. We conducted experiments on Chinese-English and English-German translation tasks and the results shows that our method makes a better trade-off between diversity and accuracy.
pdf
bib
abs
Non-Autoregressive Machine Translation with Latent Alignments
Chitwan Saharia
|
William Chan
|
Saurabh Saxena
|
Mohammad Norouzi
This paper presents two strong methods, CTC and Imputer, for non-autoregressive machine translation that model latent alignments with dynamic programming. We revisit CTC for machine translation and demonstrate that a simple CTC model can achieve state-of-the-art for single-step non-autoregressive machine translation, contrary to what prior work indicates. In addition, we adapt the Imputer model for non-autoregressive machine translation and demonstrate that Imputer with just 4 generation steps can match the performance of an autoregressive Transformer baseline. Our latent alignment models are simpler than many existing non-autoregressive translation baselines; for example, we do not require target length prediction or re-scoring with an autoregressive model. On the competitive WMT’14 En→De task, our CTC model achieves 25.7 BLEU with a single generation step, while Imputer achieves 27.5 BLEU with 2 generation steps, and 28.0 BLEU with 4 generation steps. This compares favourably to the autoregressive Transformer baseline at 27.8 BLEU.
pdf
bib
abs
Look at the First Sentence: Position Bias in Question Answering
Miyoung Ko
|
Jinhyuk Lee
|
Hyunjae Kim
|
Gangwoo Kim
|
Jaewoo Kang
Many extractive question answering models are trained to predict start and end positions of answers. The choice of predicting answers as positions is mainly due to its simplicity and effectiveness. In this study, we hypothesize that when the distribution of the answer positions is highly skewed in the training set (e.g., answers lie only in the k-th sentence of each passage), QA models predicting answers as positions can learn spurious positional cues and fail to give answers in different positions. We first illustrate this position bias in popular extractive QA models such as BiDAF and BERT and thoroughly examine how position bias propagates through each layer of BERT. To safely deliver position information without position bias, we train models with various de-biasing methods including entropy regularization and bias ensembling. Among them, we found that using the prior distribution of answer positions as a bias model is very effective at reducing position bias, recovering the performance of BERT from 37.48% to 81.64% when trained on a biased SQuAD dataset.
pdf
bib
abs
ProtoQA: A Question Answering Dataset for Prototypical Common-Sense Reasoning
Michael Boratko
|
Xiang Li
|
Tim O’Gorman
|
Rajarshi Das
|
Dan Le
|
Andrew McCallum
Given questions regarding some prototypical situation — such as Name something that people usually do before they leave the house for work? — a human can easily answer them via acquired experiences. There can be multiple right answers for such questions, with some more common for a situation than others. This paper introduces a new question answering dataset for training and evaluating common sense reasoning capabilities of artificial intelligence systems in such prototypical situations. The training set is gathered from an existing set of questions played in a long-running international trivia game show – Family Feud. The hidden evaluation set is created by gathering answers for each question from 100 crowd-workers. We also propose a generative evaluation task where a model has to output a ranked list of answers, ideally covering all prototypical answers for a question. After presenting multiple competitive baseline models, we find that human performance still exceeds model scores on all evaluation metrics with a meaningful gap, supporting the challenging nature of the task.
pdf
bib
abs
IIRC: A Dataset of Incomplete Information Reading Comprehension Questions
James Ferguson
|
Matt Gardner
|
Hannaneh Hajishirzi
|
Tushar Khot
|
Pradeep Dasigi
Humans often have to read multiple documents to address their information needs. However, most existing reading comprehension (RC) tasks only focus on questions for which the contexts provide all the information required to answer them, thus not evaluating a system’s performance at identifying a potential lack of sufficient information and locating sources for that information. To fill this gap, we present a dataset, IIRC, with more than 13K questions over paragraphs from English Wikipedia that provide only partial information to answer them, with the missing information occurring in one or more linked documents. The questions were written by crowd workers who did not have access to any of the linked documents, leading to questions that have little lexical overlap with the contexts where the answers appear. This process also gave many questions without answers, and those that require discrete reasoning, increasing the difficulty of the task. We follow recent modeling work on various reading comprehension datasets to construct a baseline model for this dataset, finding that it achieves 31.1% F1 on this task, while estimated human performance is 88.4%. The dataset, code for the baseline system, and a leaderboard can be found at
https://allennlp.org/iirc.
pdf
bib
abs
Unsupervised Adaptation of Question Answering Systems via Generative Self-training
Steven Rennie
|
Etienne Marcheret
|
Neil Mallinar
|
David Nahamoo
|
Vaibhava Goel
BERT-era question answering systems have recently achieved impressive performance on several question-answering (QA) tasks. These systems are based on representations that have been pre-trained on self-supervised tasks such as word masking and sentence entailment, using massive amounts of data. Nevertheless, additional pre-training closer to the end-task, such as training on synthetic QA pairs, has been shown to improve performance. While recent work has considered augmenting labelled data and leveraging large unlabelled datasets to generate synthetic QA data, directly adapting to target data has received little attention. In this paper we investigate the iterative generation of synthetic QA pairs as a way to realize unsupervised self adaptation. Motivated by the success of the roundtrip consistency method for filtering generated QA pairs, we present iterative generalizations of the approach, which maximize an approximation of a lower bound on the probability of the adaptation data. By adapting on synthetic QA pairs generated on the target data, our method is able to improve QA systems significantly, using an order of magnitude less synthetic data and training computation than existing augmentation approaches.
pdf
bib
abs
TORQUE: A Reading Comprehension Dataset of Temporal Ordering Questions
Qiang Ning
|
Hao Wu
|
Rujun Han
|
Nanyun Peng
|
Matt Gardner
|
Dan Roth
A critical part of reading is being able to understand the temporal relationships between events described in a passage of text, even when those relationships are not explicitly stated. However, current machine reading comprehension benchmarks have practically no questions that test temporal phenomena, so systems trained on these benchmarks have no capacity to answer questions such as “what happened before/after [some event]?” We introduce TORQUE, a new English reading comprehension benchmark built on 3.2k news snippets with 21k human-generated questions querying temporal relationships. Results show that RoBERTa-large achieves an exact-match score of 51% on the test set of TORQUE, about 30% behind human performance.
pdf
bib
abs
ToTTo: A Controlled Table-To-Text Generation Dataset
Ankur Parikh
|
Xuezhi Wang
|
Sebastian Gehrmann
|
Manaal Faruqui
|
Bhuwan Dhingra
|
Diyi Yang
|
Dipanjan Das
We present ToTTo, an open-domain English table-to-text dataset with over 120,000 training examples that proposes a controlled generation task: given a Wikipedia table and a set of highlighted table cells, produce a one-sentence description. To obtain generated targets that are natural but also faithful to the source table, we introduce a dataset construction process where annotators directly revise existing candidate sentences from Wikipedia. We present systematic analyses of our dataset and annotation process as well as results achieved by several state-of-the-art baselines. While usually fluent, existing methods often hallucinate phrases that are not supported by the table, suggesting that this dataset can serve as a useful research benchmark for high-precision conditional text generation.
pdf
bib
abs
ENT-DESC: Entity Description Generation by Exploring Knowledge Graph
Liying Cheng
|
Dekun Wu
|
Lidong Bing
|
Yan Zhang
|
Zhanming Jie
|
Wei Lu
|
Luo Si
Previous works on knowledge-to-text generation take as input a few RDF triples or key-value pairs conveying the knowledge of some entities to generate a natural language description. Existing datasets, such as WIKIBIO, WebNLG, and E2E, basically have a good alignment between an input triple/pair set and its output text. However, in practice, the input knowledge could be more than enough, since the output description may only cover the most significant knowledge. In this paper, we introduce a large-scale and challenging dataset to facilitate the study of such a practical scenario in KG-to-text. Our dataset involves retrieving abundant knowledge of various types of main entities from a large knowledge graph (KG), which makes the current graph-to-sequence models severely suffer from the problems of information loss and parameter explosion while generating the descriptions. We address these challenges by proposing a multi-graph structure that is able to represent the original graph information more comprehensively. Furthermore, we also incorporate aggregation methods that learn to extract the rich graph information. Extensive experiments demonstrate the effectiveness of our model architecture.
pdf
bib
abs
Small but Mighty: New Benchmarks for Split and Rephrase
Li Zhang
|
Huaiyu Zhu
|
Siddhartha Brahma
|
Yunyao Li
Split and Rephrase is a text simplification task of rewriting a complex sentence into simpler ones. As a relatively new task, it is paramount to ensure the soundness of its evaluation benchmark and metric. We find that the widely used benchmark dataset universally contains easily exploitable syntactic cues caused by its automatic generation process. Taking advantage of such cues, we show that even a simple rule-based model can perform on par with the state-of-the-art model. To remedy such limitations, we collect and release two crowdsourced benchmark datasets. We not only make sure that they contain significantly more diverse syntax, but also carefully control for their quality according to a well-defined set of criteria. While no satisfactory automatic metric exists, we apply fine-grained manual evaluation based on these criteria using crowdsourcing, showing that our datasets better represent the task and are significantly more challenging for the models.
pdf
bib
abs
Online Back-Parsing for AMR-to-Text Generation
Xuefeng Bai
|
Linfeng Song
|
Yue Zhang
AMR-to-text generation aims to recover a text containing the same meaning as an input AMR graph. Current research develops increasingly powerful graph encoders to better represent AMR graphs, with decoders based on standard language modeling being used to generate outputs. We propose a decoder that back predicts projected AMR graphs on the target sentence during text generation. As the result, our outputs can better preserve the input meaning than standard decoders. Experiments on two AMR benchmarks show the superiority of our model over the previous state-of-the-art system based on graph Transformer.
pdf
bib
abs
Reading Between the Lines: Exploring Infilling in Visual Narratives
Khyathi Raghavi Chandu
|
Ruo-Ping Dong
|
Alan W Black
Generating long form narratives such as stories and procedures from multiple modalities has been a long standing dream for artificial intelligence. In this regard, there is often crucial subtext that is derived from the surrounding contexts. The general seq2seq training methods render the models shorthanded while attempting to bridge the gap between these neighbouring contexts. In this paper, we tackle this problem by using infilling techniques involving prediction of missing steps in a narrative while generating textual descriptions from a sequence of images. We also present a new large scale visual procedure telling (ViPT) dataset with a total of 46,200 procedures and around 340k pairwise images and textual descriptions that is rich in such contextual dependencies. Generating steps using infilling technique demonstrates the effectiveness in visual procedures with more coherent texts. We conclusively show a METEOR score of 27.51 on procedures which is higher than the state-of-the-art on visual storytelling. We also demonstrate the effects of interposing new text with missing images during inference. The code and the dataset will be publicly available at
https://visual-narratives.github.io/Visual-Narratives/.
pdf
bib
abs
Acrostic Poem Generation
Rajat Agarwal
|
Katharina Kann
We propose a new task in the area of computational creativity: acrostic poem generation in English. Acrostic poems are poems that contain a hidden message; typically, the first letter of each line spells out a word or short phrase. We define the task as a generation task with multiple constraints: given an input word, 1) the initial letters of each line should spell out the provided word, 2) the poem’s semantics should also relate to it, and 3) the poem should conform to a rhyming scheme. We further provide a baseline model for the task, which consists of a conditional neural language model in combination with a neural rhyming model. Since no dedicated datasets for acrostic poem generation exist, we create training data for our task by first training a separate topic prediction model on a small set of topic-annotated poems and then predicting topics for additional poems. Our experiments show that the acrostic poems generated by our baseline are received well by humans and do not lose much quality due to the additional constraints. Last, we confirm that poems generated by our model are indeed closely related to the provided prompts, and that pretraining on Wikipedia can boost performance.
pdf
bib
abs
Local Additivity Based Data Augmentation for Semi-supervised NER
Jiaao Chen
|
Zhenghui Wang
|
Ran Tian
|
Zichao Yang
|
Diyi Yang
Named Entity Recognition (NER) is one of the first stages in deep language understanding yet current NER models heavily rely on human-annotated data. In this work, to alleviate the dependence on labeled data, we propose a Local Additivity based Data Augmentation (LADA) method for semi-supervised NER, in which we create virtual samples by interpolating sequences close to each other. Our approach has two variations: Intra-LADA and Inter-LADA, where Intra-LADA performs interpolations among tokens within one sentence, and Inter-LADA samples different sentences to interpolate. Through linear additions between sampled training data, LADA creates an infinite amount of labeled data and improves both entity and context learning. We further extend LADA to the semi-supervised setting by designing a novel consistency loss for unlabeled data. Experiments conducted on two NER benchmarks demonstrate the effectiveness of our methods over several strong baselines. We have publicly released our code at
https://github.com/GT-SALT/LADApdf
bib
abs
Grounded Compositional Outputs for Adaptive Language Modeling
Nikolaos Pappas
|
Phoebe Mulcaire
|
Noah A. Smith
Language models have emerged as a central component across NLP, and a great deal of progress depends on the ability to cheaply adapt them (e.g., through finetuning) to new domains and tasks. A language model’s vocabulary—typically selected before training and permanently fixed later—affects its size and is part of what makes it resistant to such adaptation. Prior work has used compositional input embeddings based on surface forms to ameliorate this issue. In this work, we go one step beyond and propose a fully compositional output embedding layer for language models, which is further grounded in information from a structured lexicon (WordNet), namely semantically related words and free-text definitions. To our knowledge, the result is the first word-level language model with a size that does not depend on the training vocabulary. We evaluate the model on conventional language modeling as well as challenging cross-domain settings with an open vocabulary, finding that it matches or outperforms previous state-of-the-art output embedding methods and adaptation approaches. Our analysis attributes the improvements to sample efficiency: our model is more accurate for low-frequency words.
pdf
bib
abs
SSMBA: Self-Supervised Manifold Based Data Augmentation for Improving Out-of-Domain Robustness
Nathan Ng
|
Kyunghyun Cho
|
Marzyeh Ghassemi
Models that perform well on a training domain often fail to generalize to out-of-domain (OOD) examples. Data augmentation is a common method used to prevent overfitting and improve OOD generalization. However, in natural language, it is difficult to generate new examples that stay on the underlying data manifold. We introduce SSMBA, a data augmentation method for generating synthetic training examples by using a pair of corruption and reconstruction functions to move randomly on a data manifold. We investigate the use of SSMBA in the natural language domain, leveraging the manifold assumption to reconstruct corrupted text with masked language models. In experiments on robustness benchmarks across 3 tasks and 9 datasets, SSMBA consistently outperforms existing data augmentation methods and baseline models on both in-domain and OOD data, achieving gains of 0.8% on OOD Amazon reviews, 1.8% accuracy on OOD MNLI, and 1.4 BLEU on in-domain IWSLT14 German-English.
pdf
bib
abs
SetConv: A New Approach for Learning from Imbalanced Data
Yang Gao
|
Yi-Fan Li
|
Yu Lin
|
Charu Aggarwal
|
Latifur Khan
For many real-world classification problems, e.g., sentiment classification, most existing machine learning methods are biased towards the majority class when the Imbalance Ratio (IR) is high. To address this problem, we propose a set convolution (SetConv) operation and an episodic training strategy to extract a single representative for each class, so that classifiers can later be trained on a balanced class distribution. We prove that our proposed algorithm is permutation-invariant despite the order of inputs, and experiments on multiple large-scale benchmark text datasets show the superiority of our proposed framework when compared to other SOTA methods.
pdf
bib
abs
Scalable Multi-Hop Relational Reasoning for Knowledge-Aware Question Answering
Yanlin Feng
|
Xinyue Chen
|
Bill Yuchen Lin
|
Peifeng Wang
|
Jun Yan
|
Xiang Ren
Existing work on augmenting question answering (QA) models with external knowledge (e.g., knowledge graphs) either struggle to model multi-hop relations efficiently, or lack transparency into the model’s prediction rationale. In this paper, we propose a novel knowledge-aware approach that equips pre-trained language models (PTLMs) has with a multi-hop relational reasoning module, named multi-hop graph relation network (MHGRN). It performs multi-hop, multi-relational reasoning over subgraphs extracted from external knowledge graphs. The proposed reasoning module unifies path-based reasoning methods and graph neural networks to achieve better interpretability and scalability. We also empirically show its effectiveness and scalability on CommonsenseQA and OpenbookQA datasets, and interpret its behaviors with case studies, with the code for experiments released.
pdf
bib
abs
Improving Bilingual Lexicon Induction for Low Frequency Words
Jiaji Huang
|
Xingyu Cai
|
Kenneth Church
This paper designs a Monolingual Lexicon Induction task and observes that two factors accompany the degraded accuracy of bilingual lexicon induction for rare words. First, a diminishing margin between similarities in low frequency regime, and secondly, exacerbated hubness at low frequency. Based on the observation, we further propose two methods to address these two factors, respectively. The larger issue is hubness. Addressing that improves induction accuracy significantly, especially for low-frequency words.
pdf
bib
abs
Learning VAE-LDA Models with Rounded Reparameterization Trick
Runzhi Tian
|
Yongyi Mao
|
Richong Zhang
The introduction of VAE provides an efficient framework for the learning of generative models, including generative topic models. However, when the topic model is a Latent Dirichlet Allocation (LDA) model, a central technique of VAE, the reparameterization trick, fails to be applicable. This is because no reparameterization form of Dirichlet distributions is known to date that allows the use of the reparameterization trick. In this work, we propose a new method, which we call Rounded Reparameterization Trick (RRT), to reparameterize Dirichlet distributions for the learning of VAE-LDA models. This method, when applied to a VAE-LDA model, is shown experimentally to outperform the existing neural topic models on several benchmark datasets and on a synthetic dataset.
pdf
bib
abs
Calibrated Language Model Fine-Tuning for In- and Out-of-Distribution Data
Lingkai Kong
|
Haoming Jiang
|
Yuchen Zhuang
|
Jie Lyu
|
Tuo Zhao
|
Chao Zhang
Fine-tuned pre-trained language models can suffer from severe miscalibration for both in-distribution and out-of-distribution (OOD) data due to over-parameterization. To mitigate this issue, we propose a regularized fine-tuning method. Our method introduces two types of regularization for better calibration: (1) On-manifold regularization, which generates pseudo on-manifold samples through interpolation within the data manifold. Augmented training with these pseudo samples imposes a smoothness regularization to improve in-distribution calibration. (2) Off-manifold regularization, which encourages the model to output uniform distributions for pseudo off-manifold samples to address the over-confidence issue for OOD data. Our experiments demonstrate that the proposed method outperforms existing calibration methods for text classification in terms of expectation calibration error, misclassification detection, and OOD detection on six datasets. Our code can be found at
https://github.com/Lingkai-Kong/Calibrated-BERT-Fine-Tuning.
pdf
bib
abs
Scaling Hidden Markov Language Models
Justin Chiu
|
Alexander Rush
The hidden Markov model (HMM) is a fundamental tool for sequence modeling that cleanly separates the hidden state from the emission structure. However, this separation makes it difficult to fit HMMs to large datasets in modern NLP, and they have fallen out of use due to very poor performance compared to fully observed models. This work revisits the challenge of scaling HMMs to language modeling datasets, taking ideas from recent approaches to neural modeling. We propose methods for scaling HMMs to massive state spaces while maintaining efficient exact inference, a compact parameterization, and effective regularization. Experiments show that this approach leads to models that are much more accurate than previous HMMs and n-gram-based methods, making progress towards the performance of state-of-the-art NN models.
pdf
bib
abs
Coding Textual Inputs Boosts the Accuracy of Neural Networks
Abdul Rafae Khan
|
Jia Xu
|
Weiwei Sun
Natural Language Processing (NLP) tasks are usually performed word by word on textual inputs. We can use arbitrary symbols to represent the linguistic meaning of a word and use these symbols as inputs. As “alternatives” to a text representation, we introduce Soundex, MetaPhone, NYSIIS, logogram to NLP, and develop fixed-output-length coding and its extension using Huffman coding. Each of those codings combines different character/digital sequences and constructs a new vocabulary based on codewords. We find that the integration of those codewords with text provides more reliable inputs to Neural-Network-based NLP systems through redundancy than text-alone inputs. Experiments demonstrate that our approach outperforms the state-of-the-art models on the application of machine translation, language modeling, and part-of-speech tagging. The source code is available at
https://github.com/abdulrafae/coding_nmt.
pdf
bib
abs
Learning from Task Descriptions
Orion Weller
|
Nicholas Lourie
|
Matt Gardner
|
Matthew E. Peters
Typically, machine learning systems solve new tasks by training on thousands of examples. In contrast, humans can solve new tasks by reading some instructions, with perhaps an example or two. To take a step toward closing this gap, we introduce a framework for developing NLP systems that solve new tasks after reading their descriptions, synthesizing prior work in this area. We instantiate this frame- work with a new English language dataset, ZEST, structured for task-oriented evaluation on unseen tasks. Formulating task descriptions as questions, we ensure each is general enough to apply to many possible inputs, thus comprehensively evaluating a model’s ability to solve each task. Moreover, the dataset’s structure tests specific types of systematic generalization. We find that the state-of-the-art T5 model achieves a score of 12% on ZEST, leaving a significant challenge for NLP researchers.
pdf
bib
abs
Hashtags, Emotions, and Comments: A Large-Scale Dataset to Understand Fine-Grained Social Emotions to Online Topics
Keyang Ding
|
Jing Li
|
Yuji Zhang
This paper studies social emotions to online discussion topics. While most prior work focus on emotions from writers, we investigate readers’ responses and explore the public feelings to an online topic. A large-scale dataset is collected from Chinese microblog Sina Weibo with over 13 thousand trending topics, emotion votes in 24 fine-grained types from massive participants, and user comments to allow context understanding. In experiments, we examine baseline performance to predict a topic’s possible social emotions in a multilabel classification setting. The results show that a seq2seq model with user comment modeling performs the best, even surpassing human prediction. More analyses shed light on the effects of emotion types, topic description lengths, contexts from user comments, and the limited capacity of the existing models.
pdf
bib
abs
Named Entity Recognition for Social Media Texts with Semantic Augmentation
Yuyang Nie
|
Yuanhe Tian
|
Xiang Wan
|
Yan Song
|
Bo Dai
Existing approaches for named entity recognition suffer from data sparsity problems when conducted on short and informal texts, especially user-generated social media content. Semantic augmentation is a potential way to alleviate this problem. Given that rich semantic information is implicitly preserved in pre-trained word embeddings, they are potential ideal resources for semantic augmentation. In this paper, we propose a neural-based approach to NER for social media texts where both local (from running text) and augmented semantics are taken into account. In particular, we obtain the augmented semantic information from a large-scale corpus, and propose an attentive semantic augmentation module and a gate module to encode and aggregate such information, respectively. Extensive experiments are performed on three benchmark datasets collected from English and Chinese social media platforms, where the results demonstrate the superiority of our approach to previous studies across all three datasets.
pdf
bib
abs
Coupled Hierarchical Transformer for Stance-Aware Rumor Verification in Social Media Conversations
Jianfei Yu
|
Jing Jiang
|
Ling Min Serena Khoo
|
Hai Leong Chieu
|
Rui Xia
The prevalent use of social media enables rapid spread of rumors on a massive scale, which leads to the emerging need of automatic rumor verification (RV). A number of previous studies focus on leveraging stance classification to enhance RV with multi-task learning (MTL) methods. However, most of these methods failed to employ pre-trained contextualized embeddings such as BERT, and did not exploit inter-task dependencies by using predicted stance labels to improve the RV task. Therefore, in this paper, to extend BERT to obtain thread representations, we first propose a Hierarchical Transformer, which divides each long thread into shorter subthreads, and employs BERT to separately represent each subthread, followed by a global Transformer layer to encode all the subthreads. We further propose a Coupled Transformer Module to capture the inter-task interactions and a Post-Level Attention layer to use the predicted stance labels for RV, respectively. Experiments on two benchmark datasets show the superiority of our Coupled Hierarchical Transformer model over existing MTL approaches.
pdf
bib
abs
Social Media Attributions in the Context of Water Crisis
Rupak Sarkar
|
Sayantan Mahinder
|
Hirak Sarkar
|
Ashiqur KhudaBukhsh
Attribution of natural disasters/collective misfortune is a widely-studied political science problem. However, such studies typically rely on surveys, or expert opinions, or external signals such as voting outcomes. In this paper, we explore the viability of using unstructured, noisy social media data to complement traditional surveys through automatically extracting attribution factors. We present a novel prediction task of attribution tie detection of identifying the factors (e.g., poor city planning, exploding population etc.) held responsible for the crisis in a social media document. We focus on the 2019 Chennai water crisis that rapidly escalated into a discussion topic with global importance following alarming water-crisis statistics. On a challenging data set constructed from YouTube comments (72,098 comments posted by 43,859 users on 623 videos relevant to the crisis), we present a neural baseline to identify attribution ties that achieves a reasonable performance (accuracy: 87.34% on attribution detection and 81.37% on attribution resolution). We release the first annotated data set of 2,500 comments in this important domain.
pdf
bib
abs
On the Reliability and Validity of Detecting Approval of Political Actors in Tweets
Indira Sen
|
Fabian Flöck
|
Claudia Wagner
Social media sites like Twitter possess the potential to complement surveys that measure political opinions and, more specifically, political actors’ approval. However, new challenges related to the reliability and validity of social-media-based estimates arise. Various sentiment analysis and stance detection methods have been developed and used in previous research to measure users’ political opinions based on their content on social media. In this work, we attempt to gauge the efficacy of untargeted sentiment, targeted sentiment, and stance detection methods in labeling various political actors’ approval by benchmarking them across several datasets. We also contrast the performance of these pretrained methods that can be used in an off-the-shelf (OTS) manner against a set of models trained on minimal custom data. We find that OTS methods have low generalizability on unseen and familiar targets, while low-resource custom models are more robust. Our work sheds light on the strengths and limitations of existing methods proposed for understanding politicians’ approval from tweets.
pdf
bib
abs
Towards Medical Machine Reading Comprehension with Structural Knowledge and Plain Text
Dongfang Li
|
Baotian Hu
|
Qingcai Chen
|
Weihua Peng
|
Anqi Wang
Machine reading comprehension (MRC) has achieved significant progress on the open domain in recent years, mainly due to large-scale pre-trained language models. However, it performs much worse in specific domains such as the medical field due to the lack of extensive training data and professional structural knowledge neglect. As an effort, we first collect a large scale medical multi-choice question dataset (more than 21k instances) for the National Licensed Pharmacist Examination in China. It is a challenging medical examination with a passing rate of less than 14.2% in 2018. Then we propose a novel reading comprehension model KMQA, which can fully exploit the structural medical knowledge (i.e., medical knowledge graph) and the reference medical plain text (i.e., text snippets retrieved from reference books). The experimental results indicate that the KMQA outperforms existing competitive models with a large margin and passes the exam with 61.8% accuracy rate on the test set.
pdf
bib
abs
Generating Radiology Reports via Memory-driven Transformer
Zhihong Chen
|
Yan Song
|
Tsung-Hui Chang
|
Xiang Wan
Medical imaging is frequently used in clinical practice and trials for diagnosis and treatment. Writing imaging reports is time-consuming and can be error-prone for inexperienced radiologists. Therefore, automatically generating radiology reports is highly desired to lighten the workload of radiologists and accordingly promote clinical automation, which is an essential task to apply artificial intelligence to the medical domain. In this paper, we propose to generate radiology reports with memory-driven Transformer, where a relational memory is designed to record key information of the generation process and a memory-driven conditional layer normalization is applied to incorporating the memory into the decoder of Transformer. Experimental results on two prevailing radiology report datasets, IU X-Ray and MIMIC-CXR, show that our proposed approach outperforms previous models with respect to both language generation metrics and clinical evaluations. Particularly, this is the first work reporting the generation results on MIMIC-CXR to the best of our knowledge. Further analyses also demonstrate that our approach is able to generate long reports with necessary medical terms as well as meaningful image-text attention mappings.
pdf
bib
abs
Planning and Generating Natural and Diverse Disfluent Texts as Augmentation for Disfluency Detection
Jingfeng Yang
|
Diyi Yang
|
Zhaoran Ma
Existing approaches to disfluency detection heavily depend on human-annotated data. Numbers of data augmentation methods have been proposed to alleviate the dependence on labeled data. However, current augmentation approaches such as random insertion or repetition fail to resemble training corpus well and usually resulted in unnatural and limited types of disfluencies. In this work, we propose a simple Planner-Generator based disfluency generation model to generate natural and diverse disfluent texts as augmented data, where the Planner decides on where to insert disfluent segments and the Generator follows the prediction to generate corresponding disfluent segments. We further utilize this augmented data for pretraining and leverage it for the task of disfluency detection. Experiments demonstrated that our two-stage disfluency generation model outperforms existing baselines; those disfluent sentences generated significantly aided the task of disfluency detection and led to state-of-the-art performance on Switchboard corpus.
pdf
bib
abs
Predicting Clinical Trial Results by Implicit Evidence Integration
Qiao Jin
|
Chuanqi Tan
|
Mosha Chen
|
Xiaozhong Liu
|
Songfang Huang
Clinical trials provide essential guidance for practicing Evidence-Based Medicine, though often accompanying with unendurable costs and risks. To optimize the design of clinical trials, we introduce a novel Clinical Trial Result Prediction (CTRP) task. In the CTRP framework, a model takes a PICO-formatted clinical trial proposal with its background as input and predicts the result, i.e. how the Intervention group compares with the Comparison group in terms of the measured Outcome in the studied Population. While structured clinical evidence is prohibitively expensive for manual collection, we exploit large-scale unstructured sentences from medical literature that implicitly contain PICOs and results as evidence. Specifically, we pre-train a model to predict the disentangled results from such implicit evidence and fine-tune the model with limited data on the downstream datasets. Experiments on the benchmark Evidence Integration dataset show that the proposed model outperforms the baselines by large margins, e.g., with a 10.7% relative gain over BioBERT in macro-F1. Moreover, the performance improvement is also validated on another dataset composed of clinical trials related to COVID-19.
pdf
bib
abs
Explainable Clinical Decision Support from Text
Jinyue Feng
|
Chantal Shaib
|
Frank Rudzicz
Clinical prediction models often use structured variables and provide outcomes that are not readily interpretable by clinicians. Further, free-text medical notes may contain information not immediately available in structured variables. We propose a hierarchical CNN-transformer model with explicit attention as an interpretable, multi-task clinical language model, which achieves an AUROC of 0.75 and 0.78 on sepsis and mortality prediction, respectively. We also explore the relationships between learned features from structured and unstructured variables using projection-weighted canonical correlation analysis. Finally, we outline a protocol to evaluate model usability in a clinical decision support context. From domain-expert evaluations, our model generates informative rationales that have promising real-life applications.
pdf
bib
abs
A Knowledge-driven Generative Model for Multi-implication Chinese Medical Procedure Entity Normalization
Jinghui Yan
|
Yining Wang
|
Lu Xiang
|
Yu Zhou
|
Chengqing Zong
Medical entity normalization, which links medical mentions in the text to entities in knowledge bases, is an important research topic in medical natural language processing. In this paper, we focus on Chinese medical procedure entity normalization. However, nonstandard Chinese expressions and combined procedures present challenges in our problem. The existing strategies relying on the discriminative model are poorly to cope with normalizing combined procedure mentions. We propose a sequence generative framework to directly generate all the corresponding medical procedure entities. we adopt two strategies: category-based constraint decoding and category-based model refining to avoid unrealistic results. The method is capable of linking entities when a mention contains multiple procedure concepts and our comprehensive experiments demonstrate that the proposed model can achieve remarkable improvements over existing baselines, particularly significant in the case of multi-implication Chinese medical procedures.
pdf
bib
abs
Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT
Akshay Smit
|
Saahil Jain
|
Pranav Rajpurkar
|
Anuj Pareek
|
Andrew Ng
|
Matthew Lungren
The extraction of labels from radiology text reports enables large-scale training of medical imaging models. Existing approaches to report labeling typically rely either on sophisticated feature engineering based on medical domain knowledge or manual annotations by experts. In this work, we introduce a BERT-based approach to medical image report labeling that exploits both the scale of available rule-based systems and the quality of expert annotations. We demonstrate superior performance of a biomedically pretrained BERT model first trained on annotations of a rule-based labeler and then finetuned on a small set of expert annotations augmented with automated backtranslation. We find that our final model, CheXbert, is able to outperform the previous best rules-based labeler with statistical significance, setting a new SOTA for report labeling on one of the largest datasets of chest x-rays.
pdf
bib
abs
Benchmarking Meaning Representations in Neural Semantic Parsing
Jiaqi Guo
|
Qian Liu
|
Jian-Guang Lou
|
Zhenwen Li
|
Xueqing Liu
|
Tao Xie
|
Ting Liu
Meaning representation is an important component of semantic parsing. Although researchers have designed a lot of meaning representations, recent work focuses on only a few of them. Thus, the impact of meaning representation on semantic parsing is less understood. Furthermore, existing work’s performance is often not comprehensively evaluated due to the lack of readily-available execution engines. Upon identifying these gaps, we propose , a new unified benchmark on meaning representations, by integrating existing semantic parsing datasets, completing the missing logical forms, and implementing the missing execution engines. The resulting unified benchmark contains the complete enumeration of logical forms and execution engines over three datasets
× four meaning representations. A thorough experimental study on Unimer reveals that neural semantic parsing approaches exhibit notably different performance when they are trained to generate different meaning representations. Also, program alias and grammar rules heavily impact the performance of different meaning representations. Our benchmark, execution engines and implementation can be found on:
https://github.com/JasperGuo/Unimer.
pdf
bib
abs
Analogous Process Structure Induction for Sub-event Sequence Prediction
Hongming Zhang
|
Muhao Chen
|
Haoyu Wang
|
Yangqiu Song
|
Dan Roth
Computational and cognitive studies of event understanding suggest that identifying, comprehending, and predicting events depend on having structured representations of a sequence of events and on conceptualizing (abstracting) its components into (soft) event categories. Thus, knowledge about a known process such as “buying a car” can be used in the context of a new but analogous process such as “buying a house”. Nevertheless, most event understanding work in NLP is still at the ground level and does not consider abstraction. In this paper, we propose an Analogous Process Structure Induction (APSI) framework, which leverages analogies among processes and conceptualization of sub-event instances to predict the whole sub-event sequence of previously unseen open-domain processes. As our experiments and analysis indicate, APSI supports the generation of meaningful sub-event sequences for unseen processes and can help predict missing events.
pdf
bib
abs
SLM: Learning a Discourse Language Representation with Sentence Unshuffling
Haejun Lee
|
Drew A. Hudson
|
Kangwook Lee
|
Christopher D. Manning
We introduce Sentence-level Language Modeling, a new pre-training objective for learning a discourse language representation in a fully self-supervised manner. Recent pre-training methods in NLP focus on learning either bottom or top-level language representations: contextualized word representations derived from language model objectives at one extreme and a whole sequence representation learned by order classification of two given textual segments at the other. However, these models are not directly encouraged to capture representations of intermediate-size structures that exist in natural languages such as sentences and the relationships among them. To that end, we propose a new approach to encourage learning of a contextualized sentence-level representation by shuffling the sequence of input sentences and training a hierarchical transformer model to reconstruct the original ordering. Through experiments on downstream tasks such as GLUE, SQuAD, and DiscoEval, we show that this feature of our model improves the performance of the original BERT by large margins.
pdf
bib
abs
Detecting Fine-Grained Cross-Lingual Semantic Divergences without Supervision by Learning to Rank
Eleftheria Briakou
|
Marine Carpuat
Detecting fine-grained differences in content conveyed in different languages matters for cross-lingual NLP and multilingual corpora analysis, but it is a challenging machine learning problem since annotation is expensive and hard to scale. This work improves the prediction and annotation of fine-grained semantic divergences. We introduce a training strategy for multilingual BERT models by learning to rank synthetic divergent examples of varying granularity. We evaluate our models on the Rationalized English-French Semantic Divergences, a new dataset released with this work, consisting of English-French sentence-pairs annotated with semantic divergence classes and token-level rationales. Learning to rank helps detect fine-grained sentence-level divergences more accurately than a strong sentence-level similarity model, while token-level predictions have the potential of further distinguishing between coarse and fine-grained divergences.
pdf
bib
abs
A Bilingual Generative Transformer for Semantic Sentence Embedding
John Wieting
|
Graham Neubig
|
Taylor Berg-Kirkpatrick
Semantic sentence embedding models encode natural language sentences into vectors, such that closeness in embedding space indicates closeness in the semantics between the sentences. Bilingual data offers a useful signal for learning such embeddings: properties shared by both sentences in a translation pair are likely semantic, while divergent properties are likely stylistic or language-specific. We propose a deep latent variable model that attempts to perform source separation on parallel sentences, isolating what they have in common in a latent semantic vector, and explaining what is left over with language-specific latent vectors. Our proposed approach differs from past work on semantic sentence encoding in two ways. First, by using a variational probabilistic framework, we introduce priors that encourage source separation, and can use our model’s posterior to predict sentence embeddings for monolingual data at test time. Second, we use high-capacity transformers as both data generating distributions and inference networks – contrasting with most past work on sentence embeddings. In experiments, our approach substantially outperforms the state-of-the-art on a standard suite of unsupervised semantic similarity evaluations. Further, we demonstrate that our approach yields the largest gains on more difficult subsets of these evaluations where simple word overlap is not a good indicator of similarity.
pdf
bib
abs
Semantically Inspired AMR Alignment for the Portuguese Language
Rafael Anchiêta
|
Thiago Pardo
Abstract Meaning Representation (AMR) is a graph-based semantic formalism where the nodes are concepts and edges are relations among them. Most of AMR parsing methods require alignment between the nodes of the graph and the words of the sentence. However, this alignment is not provided by manual annotations and available automatic aligners focus only on the English language, not performing well for other languages. Aiming to fulfill this gap, we developed an alignment method for the Portuguese language based on a more semantically matched word-concept pair. We performed both intrinsic and extrinsic evaluations and showed that our alignment approach outperforms the alignment strategies developed for English, improving AMR parsers, and achieving competitive results with a parser designed for the Portuguese language.
pdf
bib
abs
An Unsupervised Sentence Embedding Method by Mutual Information Maximization
Yan Zhang
|
Ruidan He
|
Zuozhu Liu
|
Kwan Hui Lim
|
Lidong Bing
BERT is inefficient for sentence-pair tasks such as clustering or semantic search as it needs to evaluate combinatorially many sentence pairs which is very time-consuming. Sentence BERT (SBERT) attempted to solve this challenge by learning semantically meaningful representations of single sentences, such that similarity comparison can be easily accessed. However, SBERT is trained on corpus with high-quality labeled sentence pairs, which limits its application to tasks where labeled data is extremely scarce. In this paper, we propose a lightweight extension on top of BERT and a novel self-supervised learning objective based on mutual information maximization strategies to derive meaningful sentence embeddings in an unsupervised manner. Unlike SBERT, our method is not restricted by the availability of labeled data, such that it can be applied on different domain-specific corpus. Experimental results show that the proposed method significantly outperforms other unsupervised sentence embedding baselines on common semantic textual similarity (STS) tasks and downstream supervised tasks. It also outperforms SBERT in a setting where in-domain labeled data is not available, and achieves performance competitive with supervised methods on various tasks.
pdf
bib
abs
Compositional Phrase Alignment and Beyond
Yuki Arase
|
Jun’ichi Tsujii
Phrase alignment is the basis for modelling sentence pair interactions, such as paraphrase and textual entailment recognition. Most phrase alignments are compositional processes such that an alignment of a phrase pair is constructed based on the alignments of their child phrases. Nonetheless, studies have revealed that non-compositional alignments involving long-distance phrase reordering are prevalent in practice. We address the phrase alignment problem by combining an unordered tree mapping algorithm and phrase representation modelling that explicitly embeds the similarity distribution in the sentences onto powerful contextualized representations. Experimental results demonstrate that our method effectively handles compositional and non-compositional global phrase alignments. Our method significantly outperforms that used in a previous study and achieves a performance competitive with that of experienced human annotators.
pdf
bib
abs
Table Fact Verification with Structure-Aware Transformer
Hongzhi Zhang
|
Yingyao Wang
|
Sirui Wang
|
Xuezhi Cao
|
Fuzheng Zhang
|
Zhongyuan Wang
Verifying fact on semi-structured evidence like tables requires the ability to encode structural information and perform symbolic reasoning. Pre-trained language models trained on natural language could not be directly applied to encode tables, because simply linearizing tables into sequences will lose the cell alignment information. To better utilize pre-trained transformers for table representation, we propose a Structure-Aware Transformer (SAT), which injects the table structural information into the mask of the self-attention layer. A method to combine symbolic and linguistic reasoning is also explored for this task. Our method outperforms baseline with 4.93% on TabFact, a large scale table verification dataset.
pdf
bib
abs
Double Graph Based Reasoning for Document-level Relation Extraction
Shuang Zeng
|
Runxin Xu
|
Baobao Chang
|
Lei Li
Document-level relation extraction aims to extract relations among entities within a document. Different from sentence-level relation extraction, it requires reasoning over multiple sentences across paragraphs. In this paper, we propose Graph Aggregation-and-Inference Network (GAIN), a method to recognize such relations for long paragraphs. GAIN constructs two graphs, a heterogeneous mention-level graph (MG) and an entity-level graph (EG). The former captures complex interaction among different mentions and the latter aggregates mentions underlying for the same entities. Based on the graphs we propose a novel path reasoning mechanism to infer relations between entities. Experiments on the public dataset, DocRED, show GAIN achieves a significant performance improvement (2.85 on F1) over the previous state-of-the-art. Our code is available at
https://github.com/PKUnlp-icler/GAIN.
pdf
bib
abs
Event Extraction as Machine Reading Comprehension
Jian Liu
|
Yubo Chen
|
Kang Liu
|
Wei Bi
|
Xiaojiang Liu
Event extraction (EE) is a crucial information extraction task that aims to extract event information in texts. Previous methods for EE typically model it as a classification task, which are usually prone to the data scarcity problem. In this paper, we propose a new learning paradigm of EE, by explicitly casting it as a machine reading comprehension problem (MRC). Our approach includes an unsupervised question generation process, which can transfer event schema into a set of natural questions, followed by a BERT-based question-answering process to retrieve answers as EE results. This learning paradigm enables us to strengthen the reasoning process of EE, by introducing sophisticated models in MRC, and relieve the data scarcity problem, by introducing the large-scale datasets in MRC. The empirical results show that: i) our approach attains state-of-the-art performance by considerable margins over previous methods. ii) Our model is excelled in the data-scarce scenario, for example, obtaining 49.8% in F1 for event argument extraction with only 1% data, compared with 2.2% of the previous method. iii) Our model also fits with zero-shot scenarios, achieving 37.0% and 16% in F1 on two datasets without using any EE training data.
pdf
bib
abs
MAVEN: A Massive General Domain Event Detection Dataset
Xiaozhi Wang
|
Ziqi Wang
|
Xu Han
|
Wangyi Jiang
|
Rong Han
|
Zhiyuan Liu
|
Juanzi Li
|
Peng Li
|
Yankai Lin
|
Jie Zhou
Event detection (ED), which means identifying event trigger words and classifying event types, is the first and most fundamental step for extracting event knowledge from plain text. Most existing datasets exhibit the following issues that limit further development of ED: (1) Data scarcity. Existing small-scale datasets are not sufficient for training and stably benchmarking increasingly sophisticated modern neural methods. (2) Low coverage. Limited event types of existing datasets cannot well cover general-domain events, which restricts the applications of ED models. To alleviate these problems, we present a MAssive eVENt detection dataset (MAVEN), which contains 4,480 Wikipedia documents, 118,732 event mention instances, and 168 event types. MAVEN alleviates the data scarcity problem and covers much more general event types. We reproduce the recent state-of-the-art ED models and conduct a thorough evaluation on MAVEN. The experimental results show that existing ED methods cannot achieve promising results on MAVEN as on the small datasets, which suggests that ED in the real world remains a challenging task and requires further research efforts. We also discuss further directions for general domain ED with empirical analyses. The source code and dataset can be obtained from
https://github.com/THU-KEG/MAVEN-dataset.
pdf
bib
abs
Knowledge Graph Alignment with Entity-Pair Embedding
Zhichun Wang
|
Jinjian Yang
|
Xiaoju Ye
Knowledge Graph (KG) alignment is to match entities in different KGs, which is important to knowledge fusion and integration. Recently, a number of embedding-based approaches for KG alignment have been proposed and achieved promising results. These approaches first embed entities in low-dimensional vector spaces, and then obtain entity alignments by computations on their vector representations. Although continuous improvements have been achieved by recent work, the performances of existing approaches are still not satisfactory. In this work, we present a new approach that directly learns embeddings of entity-pairs for KG alignment. Our approach first generates a pair-wise connectivity graph (PCG) of two KGs, whose nodes are entity-pairs and edges correspond to relation-pairs; it then learns node (entity-pair) embeddings of the PCG, which are used to predict equivalent relations of entities. To get desirable embeddings, a convolutional neural network is used to generate similarity features of entity-pairs from their attributes; and a graph neural network is employed to propagate the similarity features and get the final embeddings of entity-pairs. Experiments on five real-world datasets show that our approach can achieve the state-of-the-art KG alignment results.
pdf
bib
abs
Adaptive Attentional Network for Few-Shot Knowledge Graph Completion
Jiawei Sheng
|
Shu Guo
|
Zhenyu Chen
|
Juwei Yue
|
Lihong Wang
|
Tingwen Liu
|
Hongbo Xu
Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes. The source code is available at
https://github.com/JiaweiSheng/FAAN.
pdf
bib
abs
Pre-training Entity Relation Encoder with Intra-span and Inter-span Information
Yijun Wang
|
Changzhi Sun
|
Yuanbin Wu
|
Junchi Yan
|
Peng Gao
|
Guotong Xie
In this paper, we integrate span-related information into pre-trained encoder for entity relation extraction task. Instead of using general-purpose sentence encoder (e.g., existing universal pre-trained models), we introduce a span encoder and a span pair encoder to the pre-training network, which makes it easier to import intra-span and inter-span information into the pre-trained model. To learn the encoders, we devise three customized pre-training objectives from different perspectives, which target on tokens, spans, and span pairs. In particular, a span encoder is trained to recover a random shuffling of tokens in a span, and a span pair encoder is trained to predict positive pairs that are from the same sentences and negative pairs that are from different sentences using contrastive loss. Experimental results show that the proposed pre-training method outperforms distantly supervised pre-training, and achieves promising performance on two entity relation extraction benchmark datasets (ACE05, SciERC).
pdf
bib
abs
Two are Better than One: Joint Entity and Relation Extraction with Table-Sequence Encoders
Jue Wang
|
Wei Lu
Named entity recognition and relation extraction are two important fundamental problems. Joint learning algorithms have been proposed to solve both tasks simultaneously, and many of them cast the joint task as a table-filling problem. However, they typically focused on learning a single encoder (usually learning representation in the form of a table) to capture information required for both tasks within the same space. We argue that it can be beneficial to design two distinct encoders to capture such two different types of information in the learning process. In this work, we propose the novel table-sequence encoders where two different encoders – a table encoder and a sequence encoder are designed to help each other in the representation learning process. Our experiments confirm the advantages of having two encoders over one encoder. On several standard datasets, our model shows significant improvements over existing approaches.
pdf
bib
abs
Beyond [CLS] through Ranking by Generation
Cicero Nogueira dos Santos
|
Xiaofei Ma
|
Ramesh Nallapati
|
Zhiheng Huang
|
Bing Xiang
Generative models for Information Retrieval, where ranking of documents is viewed as the task of generating a query from a document’s language model, were very successful in various IR tasks in the past. However, with the advent of modern deep neural networks, attention has shifted to discriminative ranking functions that model the semantic similarity of documents and queries instead. Recently, deep generative models such as GPT2 and BART have been shown to be excellent text generators, but their effectiveness as rankers have not been demonstrated yet. In this work, we revisit the generative framework for information retrieval and show that our generative approaches are as effective as state-of-the-art semantic similarity-based discriminative models for the answer selection task. Additionally, we demonstrate the effectiveness of unlikelihood losses for IR.
pdf
bib
abs
Tired of Topic Models? Clusters of Pretrained Word Embeddings Make for Fast and Good Topics too!
Suzanna Sia
|
Ayush Dalmia
|
Sabrina J. Mielke
Topic models are a useful analysis tool to uncover the underlying themes within document collections. The dominant approach is to use probabilistic topic models that posit a generative story, but in this paper we propose an alternative way to obtain topics: clustering pre-trained word embeddings while incorporating document information for weighted clustering and reranking top words. We provide benchmarks for the combination of different word embeddings and clustering algorithms, and analyse their performance under dimensionality reduction with PCA. The best performing combination for our approach performs as well as classical topic models, but with lower runtime and computational complexity.
pdf
bib
abs
Multi-document Summarization with Maximal Marginal Relevance-guided Reinforcement Learning
Yuning Mao
|
Yanru Qu
|
Yiqing Xie
|
Xiang Ren
|
Jiawei Han
While neural sequence learning methods have made significant progress in single-document summarization (SDS), they produce unsatisfactory results on multi-document summarization (MDS). We observe two major challenges when adapting SDS advances to MDS: (1) MDS involves larger search space and yet more limited training data, setting obstacles for neural methods to learn adequate representations; (2) MDS needs to resolve higher information redundancy among the source documents, which SDS methods are less effective to handle. To close the gap, we present RL-MMR, Maximal Margin Relevance-guided Reinforcement Learning for MDS, which unifies advanced neural SDS methods and statistical measures used in classical MDS. RL-MMR casts MMR guidance on fewer promising candidates, which restrains the search space and thus leads to better representation learning. Additionally, the explicit redundancy measure in MMR helps the neural representation of the summary to better capture redundancy. Extensive experiments demonstrate that RL-MMR achieves state-of-the-art performance on benchmark MDS datasets. In particular, we show the benefits of incorporating MMR into end-to-end learning when adapting SDS to MDS in terms of both learning effectiveness and efficiency.
pdf
bib
abs
Improving Neural Topic Models using Knowledge Distillation
Alexander Miserlis Hoyle
|
Pranav Goel
|
Philip Resnik
Topic models are often used to identify human-interpretable topics to help make sense of large document collections. We use knowledge distillation to combine the best attributes of probabilistic topic models and pretrained transformers. Our modular method can be straightforwardly applied with any neural topic model to improve topic quality, which we demonstrate using two models having disparate architectures, obtaining state-of-the-art topic coherence. We show that our adaptable framework not only improves performance in the aggregate over all estimated topics, as is commonly reported, but also in head-to-head comparisons of aligned topics.
pdf
bib
abs
Short Text Topic Modeling with Topic Distribution Quantization and Negative Sampling Decoder
Xiaobao Wu
|
Chunping Li
|
Yan Zhu
|
Yishu Miao
Topic models have been prevailing for many years on discovering latent semantics while modeling long documents. However, for short texts they generally suffer from data sparsity because of extremely limited word co-occurrences; thus tend to yield repetitive or trivial topics with low quality. In this paper, to address this issue, we propose a novel neural topic model in the framework of autoencoding with a new topic distribution quantization approach generating peakier distributions that are more appropriate for modeling short texts. Besides the encoding, to tackle this issue in terms of decoding, we further propose a novel negative sampling decoder learning from negative samples to avoid yielding repetitive topics. We observe that our model can highly improve short text topic modeling performance. Through extensive experiments on real-world datasets, we demonstrate our model can outperform both strong traditional and neural baselines under extreme data sparsity scenes, producing high-quality topics.
pdf
bib
abs
Querying Across Genres for Medical Claims in News
Chaoyuan Zuo
|
Narayan Acharya
|
Ritwik Banerjee
We present a query-based biomedical information retrieval task across two vastly different genres – newswire and research literature – where the goal is to find the research publication that supports the primary claim made in a health-related news article. For this task, we present a new dataset of 5,034 claims from news paired with research abstracts. Our approach consists of two steps: (i) selecting the most relevant candidates from a collection of 222k research abstracts, and (ii) re-ranking this list. We compare the classical IR approach using BM25 with more recent transformer-based models. Our results show that cross-genre medical IR is a viable task, but incorporating domain-specific knowledge is crucial.
pdf
bib
abs
Incorporating Multimodal Information in Open-Domain Web Keyphrase Extraction
Yansen Wang
|
Zhen Fan
|
Carolyn Rose
Open-domain Keyphrase extraction (KPE) on the Web is a fundamental yet complex NLP task with a wide range of practical applications within the field of Information Retrieval. In contrast to other document types, web page designs are intended for easy navigation and information finding. Effective designs encode within the layout and formatting signals that point to where the important information can be found. In this work, we propose a modeling approach that leverages these multi-modal signals to aid in the KPE task. In particular, we leverage both lexical and visual features (e.g., size, font, position) at the micro-level to enable effective strategy induction and meta-level features that describe pages at a macro-level to aid in strategy selection. Our evaluation demonstrates that a combination of effective strategy induction and strategy selection within this approach for the KPE task outperforms state-of-the-art models. A qualitative post-hoc analysis illustrates how these features function within the model.
pdf
bib
abs
CMU-MOSEAS: A Multimodal Language Dataset for Spanish, Portuguese, German and French
AmirAli Bagher Zadeh
|
Yansheng Cao
|
Simon Hessner
|
Paul Pu Liang
|
Soujanya Poria
|
Louis-Philippe Morency
Modeling multimodal language is a core research area in natural language processing. While languages such as English have relatively large multimodal language resources, other widely spoken languages across the globe have few or no large-scale datasets in this area. This disproportionately affects native speakers of languages other than English. As a step towards building more equitable and inclusive multimodal systems, we introduce the first large-scale multimodal language dataset for Spanish, Portuguese, German and French. The proposed dataset, called CMU-MOSEAS (CMU Multimodal Opinion Sentiment, Emotions and Attributes), is the largest of its kind with 40,000 total labelled sentences. It covers a diverse set topics and speakers, and carries supervision of 20 labels including sentiment (and subjectivity), emotions, and attributes. Our evaluations on a state-of-the-art multimodal model demonstrates that CMU-MOSEAS enables further research for multilingual studies in multimodal language.
pdf
bib
abs
Combining Self-Training and Self-Supervised Learning for Unsupervised Disfluency Detection
Shaolei Wang
|
Zhongyuan Wang
|
Wanxiang Che
|
Ting Liu
Most existing approaches to disfluency detection heavily rely on human-annotated corpora, which is expensive to obtain in practice. There have been several proposals to alleviate this issue with, for instance, self-supervised learning techniques, but they still require human-annotated corpora. In this work, we explore the unsupervised learning paradigm which can potentially work with unlabeled text corpora that are cheaper and easier to obtain. Our model builds upon the recent work on Noisy Student Training, a semi-supervised learning approach that extends the idea of self-training. Experimental results on the commonly used English Switchboard test set show that our approach achieves competitive performance compared to the previous state-of-the-art supervised systems using contextualized word embeddings (e.g. BERT and ELECTRA).
pdf
bib
abs
Multimodal Routing: Improving Local and Global Interpretability of Multimodal Language Analysis
Yao-Hung Hubert Tsai
|
Martin Ma
|
Muqiao Yang
|
Ruslan Salakhutdinov
|
Louis-Philippe Morency
The human language can be expressed through multiple sources of information known as modalities, including tones of voice, facial gestures, and spoken language. Recent multimodal learning with strong performances on human-centric tasks such as sentiment analysis and emotion recognition are often black-box, with very limited interpretability. In this paper we propose, which dynamically adjusts weights between input modalities and output representations differently for each input sample. Multimodal routing can identify relative importance of both individual modalities and cross-modality factors. Moreover, the weight assignment by routing allows us to interpret modality-prediction relationships not only globally (i.e. general trends over the whole dataset), but also locally for each single input sample, meanwhile keeping competitive performance compared to state-of-the-art methods.
pdf
bib
abs
Multistage Fusion with Forget Gate for Multimodal Summarization in Open-Domain Videos
Nayu Liu
|
Xian Sun
|
Hongfeng Yu
|
Wenkai Zhang
|
Guangluan Xu
Multimodal summarization for open-domain videos is an emerging task, aiming to generate a summary from multisource information (video, audio, transcript). Despite the success of recent multiencoder-decoder frameworks on this task, existing methods lack fine-grained multimodality interactions of multisource inputs. Besides, unlike other multimodal tasks, this task has longer multimodal sequences with more redundancy and noise. To address these two issues, we propose a multistage fusion network with the fusion forget gate module, which builds upon this approach by modeling fine-grained interactions between the modalities through a multistep fusion schema and controlling the flow of redundant information between multimodal long sequences via a forgetting module. Experimental results on the How2 dataset show that our proposed model achieves a new state-of-the-art performance. Comprehensive analysis empirically verifies the effectiveness of our fusion schema and forgetting module on multiple encoder-decoder architectures. Specially, when using high noise ASR transcripts (WER>30%), our model still achieves performance close to the ground-truth transcript model, which reduces manual annotation cost.
pdf
bib
abs
BiST: Bi-directional Spatio-Temporal Reasoning for Video-Grounded Dialogues
Hung Le
|
Doyen Sahoo
|
Nancy Chen
|
Steven C.H. Hoi
Video-grounded dialogues are very challenging due to (i) the complexity of videos which contain both spatial and temporal variations, and (ii) the complexity of user utterances which query different segments and/or different objects in videos over multiple dialogue turns. However, existing approaches to video-grounded dialogues often focus on superficial temporal-level visual cues, but neglect more fine-grained spatial signals from videos. To address this drawback, we proposed Bi-directional Spatio-Temporal Learning (BiST), a vision-language neural framework for high-resolution queries in videos based on textual cues. Specifically, our approach not only exploits both spatial and temporal-level information, but also learns dynamic information diffusion between the two feature spaces through spatial-to-temporal and temporal-to-spatial reasoning. The bidirectional strategy aims to tackle the evolving semantics of user queries in the dialogue setting. The retrieved visual cues are used as contextual information to construct relevant responses to the users. Our empirical results and comprehensive qualitative analysis show that BiST achieves competitive performance and generates reasonable responses on a large-scale AVSD benchmark. We also adapt our BiST models to the Video QA setting, and substantially outperform prior approaches on the TGIF-QA benchmark.
pdf
bib
abs
UniConv: A Unified Conversational Neural Architecture for Multi-domain Task-oriented Dialogues
Hung Le
|
Doyen Sahoo
|
Chenghao Liu
|
Nancy Chen
|
Steven C.H. Hoi
Building an end-to-end conversational agent for multi-domain task-oriented dialogues has been an open challenge for two main reasons. First, tracking dialogue states of multiple domains is non-trivial as the dialogue agent must obtain complete states from all relevant domains, some of which might have shared slots among domains as well as unique slots specifically for one domain only. Second, the dialogue agent must also process various types of information across domains, including dialogue context, dialogue states, and database, to generate natural responses to users. Unlike the existing approaches that are often designed to train each module separately, we propose “UniConv” - a novel unified neural architecture for end-to-end conversational systems in multi-domain task-oriented dialogues, which is designed to jointly train (i) a Bi-level State Tracker which tracks dialogue states by learning signals at both slot and domain level independently, and (ii) a Joint Dialogue Act and Response Generator which incorporates information from various input components and models dialogue acts and target responses simultaneously. We conduct comprehensive experiments in dialogue state tracking, context-to-text, and end-to-end settings on the MultiWOZ2.1 benchmark, achieving superior performance over competitive baselines.
pdf
bib
abs
GraphDialog: Integrating Graph Knowledge into End-to-End Task-Oriented Dialogue Systems
Shiquan Yang
|
Rui Zhang
|
Sarah Erfani
End-to-end task-oriented dialogue systems aim to generate system responses directly from plain text inputs. There are two challenges for such systems: one is how to effectively incorporate external knowledge bases (KBs) into the learning framework; the other is how to accurately capture the semantics of dialogue history. In this paper, we address these two challenges by exploiting the graph structural information in the knowledge base and in the dependency parsing tree of the dialogue. To effectively leverage the structural information in dialogue history, we propose a new recurrent cell architecture which allows representation learning on graphs. To exploit the relations between entities in KBs, the model combines multi-hop reasoning ability based on the graph structure. Experimental results show that the proposed model achieves consistent improvement over state-of-the-art models on two different task-oriented dialogue datasets.
pdf
bib
abs
Structured Attention for Unsupervised Dialogue Structure Induction
Liang Qiu
|
Yizhou Zhao
|
Weiyan Shi
|
Yuan Liang
|
Feng Shi
|
Tao Yuan
|
Zhou Yu
|
Song-Chun Zhu
Inducing a meaningful structural representation from one or a set of dialogues is a crucial but challenging task in computational linguistics. Advancement made in this area is critical for dialogue system design and discourse analysis. It can also be extended to solve grammatical inference. In this work, we propose to incorporate structured attention layers into a Variational Recurrent Neural Network (VRNN) model with discrete latent states to learn dialogue structure in an unsupervised fashion. Compared to a vanilla VRNN, structured attention enables a model to focus on different parts of the source sentence embeddings while enforcing a structural inductive bias. Experiments show that on two-party dialogue datasets, VRNN with structured attention learns semantic structures that are similar to templates used to generate this dialogue corpus. While on multi-party dialogue datasets, our model learns an interactive structure demonstrating its capability of distinguishing speakers or addresses, automatically disentangling dialogues without explicit human annotation.
pdf
bib
abs
Cross Copy Network for Dialogue Generation
Changzhen Ji
|
Xin Zhou
|
Yating Zhang
|
Xiaozhong Liu
|
Changlong Sun
|
Conghui Zhu
|
Tiejun Zhao
In the past few years, audiences from different fields witness the achievements of sequence-to-sequence models (e.g., LSTM+attention, Pointer Generator Networks and Transformer) to enhance dialogue content generation. While content fluency and accuracy often serve as the major indicators for model training, dialogue logics, carrying critical information for some particular domains, are often ignored. Take customer service and court debate dialogue as examples, compatible logics can be observed across different dialogue instances, and this information can provide vital evidence for utterance generation. In this paper, we propose a novel network architecture - Cross Copy Networks (CCN) to explore the current dialog context and similar dialogue instances’ logical structure simultaneously. Experiments with two tasks, court debate and customer service content generation, proved that the proposed algorithm is superior to existing state-of-art content generation models.
pdf
bib
abs
Multi-turn Response Selection using Dialogue Dependency Relations
Qi Jia
|
Yizhu Liu
|
Siyu Ren
|
Kenny Zhu
|
Haifeng Tang
Multi-turn response selection is a task designed for developing dialogue agents. The performance on this task has a remarkable improvement with pre-trained language models. However, these models simply concatenate the turns in dialogue history as the input and largely ignore the dependencies between the turns. In this paper, we propose a dialogue extraction algorithm to transform a dialogue history into threads based on their dependency relations. Each thread can be regarded as a self-contained sub-dialogue. We also propose Thread-Encoder model to encode threads and candidates into compact representations by pre-trained Transformers and finally get the matching score through an attention layer. The experiments show that dependency relations are helpful for dialogue context understanding, and our model outperforms the state-of-the-art baselines on both DSTC7 and DSTC8*, with competitive results on UbuntuV2.
pdf
bib
abs
Parallel Interactive Networks for Multi-Domain Dialogue State Generation
Junfan Chen
|
Richong Zhang
|
Yongyi Mao
|
Jie Xu
The dependencies between system and user utterances in the same turn and across different turns are not fully considered in existing multidomain dialogue state tracking (MDST) models. In this study, we argue that the incorporation of these dependencies is crucial for the design of MDST and propose Parallel Interactive Networks (PIN) to model these dependencies. Specifically, we integrate an interactive encoder to jointly model the in-turn dependencies and cross-turn dependencies. The slot-level context is introduced to extract more expressive features for different slots. And a distributed copy mechanism is utilized to selectively copy words from historical system utterances or historical user utterances. Empirical studies demonstrated the superiority of the proposed PIN model.
pdf
bib
abs
SlotRefine: A Fast Non-Autoregressive Model for Joint Intent Detection and Slot Filling
Di Wu
|
Liang Ding
|
Fan Lu
|
Jian Xie
Slot filling and intent detection are two main tasks in spoken language understanding (SLU) system. In this paper, we propose a novel non-autoregressive model named SlotRefine for joint intent detection and slot filling. Besides, we design a novel two-pass iteration mechanism to handle the uncoordinated slots problem caused by conditional independence of non-autoregressive model. Experiments demonstrate that our model significantly outperforms previous models in slot filling task, while considerably speeding up the decoding (up to x10.77). In-depth analysis show that 1) pretraining schemes could further enhance our model; 2) two-pass mechanism indeed remedy the uncoordinated slots.
pdf
bib
abs
An Information Bottleneck Approach for Controlling Conciseness in Rationale Extraction
Bhargavi Paranjape
|
Mandar Joshi
|
John Thickstun
|
Hannaneh Hajishirzi
|
Luke Zettlemoyer
Decisions of complex models for language understanding can be explained by limiting the inputs they are provided to a relevant subsequence of the original text — a rationale. Models that condition predictions on a concise rationale, while being more interpretable, tend to be less accurate than models that are able to use the entire context. In this paper, we show that it is possible to better manage the trade-off between concise explanations and high task accuracy by optimizing a bound on the Information Bottleneck (IB) objective. Our approach jointly learns an explainer that predicts sparse binary masks over input sentences without explicit supervision, and an end-task predictor that considers only the residual sentences. Using IB, we derive a learning objective that allows direct control of mask sparsity levels through a tunable sparse prior. Experiments on the ERASER benchmark demonstrate significant gains over previous work for both task performance and agreement with human rationales. Furthermore, we find that in the semi-supervised setting, a modest amount of gold rationales (25% of training examples with gold masks) can close the performance gap with a model that uses the full input.
pdf
bib
abs
CrowS-Pairs: A Challenge Dataset for Measuring Social Biases in Masked Language Models
Nikita Nangia
|
Clara Vania
|
Rasika Bhalerao
|
Samuel R. Bowman
Pretrained language models, especially masked language models (MLMs) have seen success across many NLP tasks. However, there is ample evidence that they use the cultural biases that are undoubtedly present in the corpora they are trained on, implicitly creating harm with biased representations. To measure some forms of social bias in language models against protected demographic groups in the US, we introduce the Crowdsourced Stereotype Pairs benchmark (CrowS-Pairs). CrowS-Pairs has 1508 examples that cover stereotypes dealing with nine types of bias, like race, religion, and age. In CrowS-Pairs a model is presented with two sentences: one that is more stereotyping and another that is less stereotyping. The data focuses on stereotypes about historically disadvantaged groups and contrasts them with advantaged groups. We find that all three of the widely-used MLMs we evaluate substantially favor sentences that express stereotypes in every category in CrowS-Pairs. As work on building less biased models advances, this dataset can be used as a benchmark to evaluate progress.
pdf
bib
abs
LOGAN: Local Group Bias Detection by Clustering
Jieyu Zhao
|
Kai-Wei Chang
Machine learning techniques have been widely used in natural language processing (NLP). However, as revealed by many recent studies, machine learning models often inherit and amplify the societal biases in data. Various metrics have been proposed to quantify biases in model predictions. In particular, several of them evaluate disparity in model performance between protected groups and advantaged groups in the test corpus. However, we argue that evaluating bias at the corpus level is not enough for understanding how biases are embedded in a model. In fact, a model with similar aggregated performance between different groups on the entire data may behave differently on instances in a local region. To analyze and detect such local bias, we propose LOGAN, a new bias detection technique based on clustering. Experiments on toxicity classification and object classification tasks show that LOGAN identifies bias in a local region and allows us to better analyze the biases in model predictions.
pdf
bib
abs
RNNs can generate bounded hierarchical languages with optimal memory
John Hewitt
|
Michael Hahn
|
Surya Ganguli
|
Percy Liang
|
Christopher D. Manning
Recurrent neural networks empirically generate natural language with high syntactic fidelity. However, their success is not well-understood theoretically. We provide theoretical insight into this success, proving in a finite-precision setting that RNNs can efficiently generate bounded hierarchical languages that reflect the scaffolding of natural language syntax. We introduce Dyck-(k,m), the language of well-nested brackets (of k types) and m-bounded nesting depth, reflecting the bounded memory needs and long-distance dependencies of natural language syntax. The best known results use O(km⁄2) memory (hidden units) to generate these languages. We prove that an RNN with O(m log k) hidden units suffices, an exponential reduction in memory, by an explicit construction. Finally, we show that no algorithm, even with unbounded computation, can suffice with o(m log k) hidden units.
pdf
bib
abs
Detecting Independent Pronoun Bias with Partially-Synthetic Data Generation
Robert Munro
|
Alex (Carmen) Morrison
We report that state-of-the-art parsers consistently failed to identify “hers” and “theirs” as pronouns but identified the masculine equivalent “his”. We find that the same biases exist in recent language models like BERT. While some of the bias comes from known sources, like training data with gender imbalances, we find that the bias is _amplified_ in the language models and that linguistic differences between English pronouns that are not inherently biased can become biases in some machine learning models. We introduce a new technique for measuring bias in models, using Bayesian approximations to generate partially-synthetic data from the model itself.
pdf
bib
abs
Visually Grounded Continual Learning of Compositional Phrases
Xisen Jin
|
Junyi Du
|
Arka Sadhu
|
Ram Nevatia
|
Xiang Ren
Humans acquire language continually with much more limited access to data samples at a time, as compared to contemporary NLP systems. To study this human-like language acquisition ability, we present VisCOLL, a visually grounded language learning task, which simulates the continual acquisition of compositional phrases from streaming visual scenes. In the task, models are trained on a paired image-caption stream which has shifting object distribution; while being constantly evaluated by a visually-grounded masked language prediction task on held-out test sets. VisCOLL compounds the challenges of continual learning (i.e., learning from continuously shifting data distribution) and compositional generalization (i.e., generalizing to novel compositions). To facilitate research on VisCOLL, we construct two datasets, COCO-shift and Flickr-shift, and benchmark them using different continual learning methods. Results reveal that SoTA continual learning approaches provide little to no improvements on VisCOLL, since storing examples of all possible compositions is infeasible. We conduct further ablations and analysis to guide future work.
pdf
bib
abs
MAF: Multimodal Alignment Framework for Weakly-Supervised Phrase Grounding
Qinxin Wang
|
Hao Tan
|
Sheng Shen
|
Michael Mahoney
|
Zhewei Yao
Phrase localization is a task that studies the mapping from textual phrases to regions of an image. Given difficulties in annotating phrase-to-object datasets at scale, we develop a Multimodal Alignment Framework (MAF) to leverage more widely-available caption-image datasets, which can then be used as a form of weak supervision. We first present algorithms to model phrase-object relevance by leveraging fine-grained visual representations and visually-aware language representations. By adopting a contrastive objective, our method uses information in caption-image pairs to boost the performance in weakly-supervised scenarios. Experiments conducted on the widely-adopted Flickr30k dataset show a significant improvement over existing weakly-supervised methods. With the help of the visually-aware language representations, we can also improve the previous best unsupervised result by 5.56%. We conduct ablation studies to show that both our novel model and our weakly-supervised strategies significantly contribute to our strong results.
pdf
bib
abs
Domain-Specific Lexical Grounding in Noisy Visual-Textual Documents
Gregory Yauney
|
Jack Hessel
|
David Mimno
Images can give us insights into the contextual meanings of words, but current image-text grounding approaches require detailed annotations. Such granular annotation is rare, expensive, and unavailable in most domain-specific contexts. In contrast, unlabeled multi-image, multi-sentence documents are abundant. Can lexical grounding be learned from such documents, even though they have significant lexical and visual overlap? Working with a case study dataset of real estate listings, we demonstrate the challenge of distinguishing highly correlated grounded terms, such as “kitchen” and “bedroom”, and introduce metrics to assess this document similarity. We present a simple unsupervised clustering-based method that increases precision and recall beyond object detection and image tagging baselines when evaluated on labeled subsets of the dataset. The proposed method is particularly effective for local contextual meanings of a word, for example associating “granite” with countertops in the real estate dataset and with rocky landscapes in a Wikipedia dataset.
pdf
bib
abs
HERO: Hierarchical Encoder for Video+Language Omni-representation Pre-training
Linjie Li
|
Yen-Chun Chen
|
Yu Cheng
|
Zhe Gan
|
Licheng Yu
|
Jingjing Liu
We present HERO, a novel framework for large-scale video+language omni-representation learning. HERO encodes multimodal inputs in a hierarchical structure, where local context of a video frame is captured by a Cross-modal Transformer via multimodal fusion, and global video context is captured by a Temporal Transformer. In addition to standard Masked Language Modeling (MLM) and Masked Frame Modeling (MFM) objectives, we design two new pre-training tasks: (i) Video-Subtitle Matching (VSM), where the model predicts both global and local temporal alignment; and (ii) Frame Order Modeling (FOM), where the model predicts the right order of shuffled video frames. HERO is jointly trained on HowTo100M and large-scale TV datasets to gain deep understanding of complex social dynamics with multi-character interactions. Comprehensive experiments demonstrate that HERO achieves new state of the art on multiple benchmarks over Text-based Video/Video-moment Retrieval, Video Question Answering (QA), Video-and-language Inference and Video Captioning tasks across different domains. We also introduce two new challenging benchmarks How2QA and How2R for Video QA and Retrieval, collected from diverse video content over multimodalities.
pdf
bib
abs
Vokenization: Improving Language Understanding with Contextualized, Visual-Grounded Supervision
Hao Tan
|
Mohit Bansal
Humans learn language by listening, speaking, writing, reading, and also, via interaction with the multimodal real world. Existing language pre-training frameworks show the effectiveness of text-only self-supervision while we explore the idea of a visually-supervised language model in this paper. We find that the main reason hindering this exploration is the large divergence in magnitude and distributions between the visually-grounded language datasets and pure-language corpora. Therefore, we develop a technique named “vokenization” that extrapolates multimodal alignments to language-only data by contextually mapping language tokens to their related images (which we call “vokens”). The “vokenizer” is trained on relatively small image captioning datasets and we then apply it to generate vokens for large language corpora. Trained with these contextually generated vokens, our visually-supervised language models show consistent improvements over self-supervised alternatives on multiple pure-language tasks such as GLUE, SQuAD, and SWAG.
pdf
bib
abs
Detecting Cross-Modal Inconsistency to Defend Against Neural Fake News
Reuben Tan
|
Bryan Plummer
|
Kate Saenko
Large-scale dissemination of disinformation online intended to mislead or deceive the general population is a major societal problem. Rapid progression in image, video, and natural language generative models has only exacerbated this situation and intensified our need for an effective defense mechanism. While existing approaches have been proposed to defend against neural fake news, they are generally constrained to the very limited setting where articles only have text and metadata such as the title and authors. In this paper, we introduce the more realistic and challenging task of defending against machine-generated news that also includes images and captions. To identify the possible weaknesses that adversaries can exploit, we create a NeuralNews dataset which is comprised of 4 different types of generated articles as well as conduct a series of human user study experiments based on this dataset. Coupled with providing a relatively effective approach based on detecting visual-semantic inconsistencies, the valuable insights gleaned from our user study experiments and, consequently, this paper will serve as an effective first line of defense and a valuable reference for future work in defending against machine-generated disinformation.
pdf
bib
abs
Enhancing Aspect Term Extraction with Soft Prototypes
Zhuang Chen
|
Tieyun Qian
Aspect term extraction (ATE) aims to extract aspect terms from a review sentence that users have expressed opinions on. Existing studies mostly focus on designing neural sequence taggers to extract linguistic features from the token level. However, since the aspect terms and context words usually exhibit long-tail distributions, these taggers often converge to an inferior state without enough sample exposure. In this paper, we propose to tackle this problem by correlating words with each other through soft prototypes. These prototypes, generated by a soft retrieval process, can introduce global knowledge from internal or external data and serve as the supporting evidence for discovering the aspect terms. Our proposed model is a general framework and can be combined with almost all sequence taggers. Experiments on four SemEval datasets show that our model boosts the performance of three typical ATE methods by a large margin.
pdf
bib
abs
FedED: Federated Learning via Ensemble Distillation for Medical Relation Extraction
Dianbo Sui
|
Yubo Chen
|
Jun Zhao
|
Yantao Jia
|
Yuantao Xie
|
Weijian Sun
Unlike other domains, medical texts are inevitably accompanied by private information, so sharing or copying these texts is strictly restricted. However, training a medical relation extraction model requires collecting these privacy-sensitive texts and storing them on one machine, which comes in conflict with privacy protection. In this paper, we propose a privacy-preserving medical relation extraction model based on federated learning, which enables training a central model with no single piece of private local data being shared or exchanged. Though federated learning has distinct advantages in privacy protection, it suffers from the communication bottleneck, which is mainly caused by the need to upload cumbersome local parameters. To overcome this bottleneck, we leverage a strategy based on knowledge distillation. Such a strategy uses the uploaded predictions of ensemble local models to train the central model without requiring uploading local parameters. Experiments on three publicly available medical relation extraction datasets demonstrate the effectiveness of our method.
pdf
bib
abs
Multimodal Joint Attribute Prediction and Value Extraction for E-commerce Product
Tiangang Zhu
|
Yue Wang
|
Haoran Li
|
Youzheng Wu
|
Xiaodong He
|
Bowen Zhou
Product attribute values are essential in many e-commerce scenarios, such as customer service robots, product recommendations, and product retrieval. While in the real world, the attribute values of a product are usually incomplete and vary over time, which greatly hinders the practical applications. In this paper, we propose a multimodal method to jointly predict product attributes and extract values from textual product descriptions with the help of the product images. We argue that product attributes and values are highly correlated, e.g., it will be easier to extract the values on condition that the product attributes are given. Thus, we jointly model the attribute prediction and value extraction tasks from multiple aspects towards the interactions between attributes and values. Moreover, product images have distinct effects on our tasks for different product attributes and values. Thus, we selectively draw useful visual information from product images to enhance our model. We annotate a multimodal product attribute value dataset that contains 87,194 instances, and the experimental results on this dataset demonstrate that explicitly modeling the relationship between attributes and values facilitates our method to establish the correspondence between them, and selectively utilizing visual product information is necessary for the task. Our code and dataset are available at
https://github.com/jd-aig/JAVE.
pdf
bib
abs
A Predicate-Function-Argument Annotation of Natural Language for Open-Domain Information eXpression
Mingming Sun
|
Wenyue Hua
|
Zoey Liu
|
Xin Wang
|
Kangjie Zheng
|
Ping Li
Existing OIE (Open Information Extraction) algorithms are independent of each other such that there exist lots of redundant works; the featured strategies are not reusable and not adaptive to new tasks. This paper proposes a new pipeline to build OIE systems, where an Open-domain Information eXpression (OIX) task is proposed to provide a platform for all OIE strategies. The OIX is an OIE friendly expression of a sentence without information loss. The generation procedure of OIX contains shared works of OIE algorithms so that OIE strategies can be developed on the platform of OIX as inference operations focusing on more critical problems. Based on the same platform of OIX, the OIE strategies are reusable, and people can select a set of strategies to assemble their algorithm for a specific task so that the adaptability may be significantly increased. This paper focuses on the task of OIX and propose a solution – Open Information Annotation (OIA). OIA is a predicate-function-argument annotation for sentences. We label a data set of sentence-OIA pairs and propose a dependency-based rule system to generate OIA annotations from sentences. The evaluation results reveal that learning the OIA from a sentence is a challenge owing to the complexity of natural language sentences, and it is worthy of attracting more attention from the research community.
pdf
bib
abs
Retrofitting Structure-aware Transformer Language Model for End Tasks
Hao Fei
|
Yafeng Ren
|
Donghong Ji
We consider retrofitting structure-aware Transformer language model for facilitating end tasks by proposing to exploit syntactic distance to encode both the phrasal constituency and dependency connection into the language model. A middle-layer structural learning strategy is leveraged for structure integration, accomplished with main semantic task training under multi-task learning scheme. Experimental results show that the retrofitted structure-aware Transformer language model achieves improved perplexity, meanwhile inducing accurate syntactic phrases. By performing structure-aware fine-tuning, our model achieves significant improvements for both semantic- and syntactic-dependent tasks.
pdf
bib
abs
Lightweight, Dynamic Graph Convolutional Networks for AMR-to-Text Generation
Yan Zhang
|
Zhijiang Guo
|
Zhiyang Teng
|
Wei Lu
|
Shay B. Cohen
|
Zuozhu Liu
|
Lidong Bing
AMR-to-text generation is used to transduce Abstract Meaning Representation structures (AMR) into text. A key challenge in this task is to efficiently learn effective graph representations. Previously, Graph Convolution Networks (GCNs) were used to encode input AMRs, however, vanilla GCNs are not able to capture non-local information and additionally, they follow a local (first-order) information aggregation scheme. To account for these issues, larger and deeper GCN models are required to capture more complex interactions. In this paper, we introduce a dynamic fusion mechanism, proposing Lightweight Dynamic Graph Convolutional Networks (LDGCNs) that capture richer non-local interactions by synthesizing higher order information from the input graphs. We further develop two novel parameter saving strategies based on the group graph convolutions and weight tied convolutions to reduce memory usage and model complexity. With the help of these strategies, we are able to train a model with fewer parameters while maintaining the model capacity. Experiments demonstrate that LDGCNs outperform state-of-the-art models on two benchmark datasets for AMR-to-text generation with significantly fewer parameters.
pdf
bib
abs
If beam search is the answer, what was the question?
Clara Meister
|
Ryan Cotterell
|
Tim Vieira
Quite surprisingly, exact maximum a posteriori (MAP) decoding of neural language generators frequently leads to low-quality results. Rather, most state-of-the-art results on language generation tasks are attained using beam search despite its overwhelmingly high search error rate. This implies that the MAP objective alone does not express the properties we desire in text, which merits the question: if beam search is the answer, what was the question? We frame beam search as the exact solution to a different decoding objective in order to gain insights into why high probability under a model alone may not indicate adequacy. We find that beam search enforces uniform information density in text, a property motivated by cognitive science. We suggest a set of decoding objectives that explicitly enforce this property and find that exact decoding with these objectives alleviates the problems encountered when decoding poorly calibrated language generation models. Additionally, we analyze the text produced using various decoding strategies and see that, in our neural machine translation experiments, the extent to which this property is adhered to strongly correlates with BLEU.
pdf
bib
abs
Understanding the Mechanics of SPIGOT: Surrogate Gradients for Latent Structure Learning
Tsvetomila Mihaylova
|
Vlad Niculae
|
André F. T. Martins
Latent structure models are a powerful tool for modeling language data: they can mitigate the error propagation and annotation bottleneck in pipeline systems, while simultaneously uncovering linguistic insights about the data. One challenge with end-to-end training of these models is the argmax operation, which has null gradient. In this paper, we focus on surrogate gradients, a popular strategy to deal with this problem. We explore latent structure learning through the angle of pulling back the downstream learning objective. In this paradigm, we discover a principled motivation for both the straight-through estimator (STE) as well as the recently-proposed SPIGOT – a variant of STE for structured models. Our perspective leads to new algorithms in the same family. We empirically compare the known and the novel pulled-back estimators against the popular alternatives, yielding new insight for practitioners and revealing intriguing failure cases.
pdf
bib
abs
Is the Best Better? Bayesian Statistical Model Comparison for Natural Language Processing
Piotr Szymański
|
Kyle Gorman
Recent work raises concerns about the use of standard splits to compare natural language processing models. We propose a Bayesian statistical model comparison technique which uses k-fold cross-validation across multiple data sets to estimate the likelihood that one model will outperform the other, or that the two will produce practically equivalent results. We use this technique to rank six English part-of-speech taggers across two data sets and three evaluation metrics.
pdf
bib
abs
Exploring Logically Dependent Multi-task Learning with Causal Inference
Wenqing Chen
|
Jidong Tian
|
Liqiang Xiao
|
Hao He
|
Yaohui Jin
Previous studies have shown that hierarchical multi-task learning (MTL) can utilize task dependencies by stacking encoders and outperform democratic MTL. However, stacking encoders only considers the dependencies of feature representations and ignores the label dependencies in logically dependent tasks. Furthermore, how to properly utilize the labels remains an issue due to the cascading errors between tasks. In this paper, we view logically dependent MTL from the perspective of causal inference and suggest a mediation assumption instead of the confounding assumption in conventional MTL models. We propose a model including two key mechanisms: label transfer (LT) for each task to utilize the labels of all its lower-level tasks, and Gumbel sampling (GS) to deal with cascading errors. In the field of causal inference, GS in our model is essentially a counterfactual reasoning process, trying to estimate the causal effect between tasks and utilize it to improve MTL. We conduct experiments on two English datasets and one Chinese dataset. Experiment results show that our model achieves state-of-the-art on six out of seven subtasks and improves predictions’ consistency.
pdf
bib
abs
Masking as an Efficient Alternative to Finetuning for Pretrained Language Models
Mengjie Zhao
|
Tao Lin
|
Fei Mi
|
Martin Jaggi
|
Hinrich Schütze
We present an efficient method of utilizing pretrained language models, where we learn selective binary masks for pretrained weights in lieu of modifying them through finetuning. Extensive evaluations of masking BERT, RoBERTa, and DistilBERT on eleven diverse NLP tasks show that our masking scheme yields performance comparable to finetuning, yet has a much smaller memory footprint when several tasks need to be inferred. Intrinsic evaluations show that representations computed by our binary masked language models encode information necessary for solving downstream tasks. Analyzing the loss landscape, we show that masking and finetuning produce models that reside in minima that can be connected by a line segment with nearly constant test accuracy. This confirms that masking can be utilized as an efficient alternative to finetuning.
pdf
bib
abs
Dynamic Context Selection for Document-level Neural Machine Translation via Reinforcement Learning
Xiaomian Kang
|
Yang Zhao
|
Jiajun Zhang
|
Chengqing Zong
Document-level neural machine translation has yielded attractive improvements. However, majority of existing methods roughly use all context sentences in a fixed scope. They neglect the fact that different source sentences need different sizes of context. To address this problem, we propose an effective approach to select dynamic context so that the document-level translation model can utilize the more useful selected context sentences to produce better translations. Specifically, we introduce a selection module that is independent of the translation module to score each candidate context sentence. Then, we propose two strategies to explicitly select a variable number of context sentences and feed them into the translation module. We train the two modules end-to-end via reinforcement learning. A novel reward is proposed to encourage the selection and utilization of dynamic context sentences. Experiments demonstrate that our approach can select adaptive context sentences for different source sentences, and significantly improves the performance of document-level translation methods.
pdf
bib
abs
Data Rejuvenation: Exploiting Inactive Training Examples for Neural Machine Translation
Wenxiang Jiao
|
Xing Wang
|
Shilin He
|
Irwin King
|
Michael Lyu
|
Zhaopeng Tu
Large-scale training datasets lie at the core of the recent success of neural machine translation (NMT) models. However, the complex patterns and potential noises in the large-scale data make training NMT models difficult. In this work, we explore to identify the inactive training examples which contribute less to the model performance, and show that the existence of inactive examples depends on the data distribution. We further introduce data rejuvenation to improve the training of NMT models on large-scale datasets by exploiting inactive examples. The proposed framework consists of three phases. First, we train an identification model on the original training data, and use it to distinguish inactive examples and active examples by their sentence-level output probabilities. Then, we train a rejuvenation model on the active examples, which is used to re-label the inactive examples with forward- translation. Finally, the rejuvenated examples and the active examples are combined to train the final NMT model. Experimental results on WMT14 English-German and English-French datasets show that the proposed data rejuvenation consistently and significantly improves performance for several strong NMT models. Extensive analyses reveal that our approach stabilizes and accelerates the training process of NMT models, resulting in final models with better generalization capability.
pdf
bib
abs
Pronoun-Targeted Fine-tuning for NMT with Hybrid Losses
Prathyusha Jwalapuram
|
Shafiq Joty
|
Youlin Shen
Popular Neural Machine Translation model training uses strategies like backtranslation to improve BLEU scores, requiring large amounts of additional data and training. We introduce a class of conditional generative-discriminative hybrid losses that we use to fine-tune a trained machine translation model. Through a combination of targeted fine-tuning objectives and intuitive re-use of the training data the model has failed to adequately learn from, we improve the model performance of both a sentence-level and a contextual model without using any additional data. We target the improvement of pronoun translations through our fine-tuning and evaluate our models on a pronoun benchmark testset. Our sentence-level model shows a 0.5 BLEU improvement on both the WMT14 and the IWSLT13 De-En testsets, while our contextual model achieves the best results, improving from 31.81 to 32 BLEU on WMT14 De-En testset, and from 32.10 to 33.13 on the IWSLT13 De-En testset, with corresponding improvements in pronoun translation. We further show the generalizability of our method by reproducing the improvements on two additional language pairs, Fr-En and Cs-En.
pdf
bib
abs
Learning Adaptive Segmentation Policy for Simultaneous Translation
Ruiqing Zhang
|
Chuanqiang Zhang
|
Zhongjun He
|
Hua Wu
|
Haifeng Wang
Balancing accuracy and latency is a great challenge for simultaneous translation. To achieve high accuracy, the model usually needs to wait for more streaming text before translation, which results in increased latency. However, keeping low latency would probably hurt accuracy. Therefore, it is essential to segment the ASR output into appropriate units for translation. Inspired by human interpreters, we propose a novel adaptive segmentation policy for simultaneous translation. The policy learns to segment the source text by considering possible translations produced by the translation model, maintaining consistency between the segmentation and translation. Experimental results on Chinese-English and German-English translation show that our method achieves a better accuracy-latency trade-off over recently proposed state-of-the-art methods.
pdf
bib
abs
Learn to Cross-lingual Transfer with Meta Graph Learning Across Heterogeneous Languages
Zheng Li
|
Mukul Kumar
|
William Headden
|
Bing Yin
|
Ying Wei
|
Yu Zhang
|
Qiang Yang
Recent emergence of multilingual pre-training language model (mPLM) has enabled breakthroughs on various downstream cross-lingual transfer (CLT) tasks. However, mPLM-based methods usually involve two problems: (1) simply fine-tuning may not adapt general-purpose multilingual representations to be task-aware on low-resource languages; (2) ignore how cross-lingual adaptation happens for downstream tasks. To address the issues, we propose a meta graph learning (MGL) method. Unlike prior works that transfer from scratch, MGL can learn to cross-lingual transfer by extracting meta-knowledge from historical CLT experiences (tasks), making mPLM insensitive to low-resource languages. Besides, for each CLT task, MGL formulates its transfer process as information propagation over a dynamic graph, where the geometric structure can automatically capture intrinsic language relationships to explicitly guide cross-lingual transfer. Empirically, extensive experiments on both public and real-world datasets demonstrate the effectiveness of the MGL method.
pdf
bib
abs
UDapter: Language Adaptation for Truly Universal Dependency Parsing
Ahmet Üstün
|
Arianna Bisazza
|
Gosse Bouma
|
Gertjan van Noord
Recent advances in multilingual dependency parsing have brought the idea of a truly universal parser closer to reality. However, cross-language interference and restrained model capacity remain major obstacles. To address this, we propose a novel multilingual task adaptation approach based on contextual parameter generation and adapter modules. This approach enables to learn adapters via language embeddings while sharing model parameters across languages. It also allows for an easy but effective integration of existing linguistic typology features into the parsing network. The resulting parser, UDapter, outperforms strong monolingual and multilingual baselines on the majority of both high-resource and low-resource (zero-shot) languages, showing the success of the proposed adaptation approach. Our in-depth analyses show that soft parameter sharing via typological features is key to this success.
pdf
bib
abs
Uncertainty-Aware Label Refinement for Sequence Labeling
Tao Gui
|
Jiacheng Ye
|
Qi Zhang
|
Zhengyan Li
|
Zichu Fei
|
Yeyun Gong
|
Xuanjing Huang
Conditional random fields (CRF) for label decoding has become ubiquitous in sequence labeling tasks. However, the local label dependencies and inefficient Viterbi decoding have always been a problem to be solved. In this work, we introduce a novel two-stage label decoding framework to model long-term label dependencies, while being much more computationally efficient. A base model first predicts draft labels, and then a novel two-stream self-attention model makes refinements on these draft predictions based on long-range label dependencies, which can achieve parallel decoding for a faster prediction. In addition, in order to mitigate the side effects of incorrect draft labels, Bayesian neural networks are used to indicate the labels with a high probability of being wrong, which can greatly assist in preventing error propagation. The experimental results on three sequence labeling benchmarks demonstrated that the proposed method not only outperformed the CRF-based methods but also greatly accelerated the inference process.
pdf
bib
abs
Adversarial Attack and Defense of Structured Prediction Models
Wenjuan Han
|
Liwen Zhang
|
Yong Jiang
|
Kewei Tu
Building an effective adversarial attacker and elaborating on countermeasures for adversarial attacks for natural language processing (NLP) have attracted a lot of research in recent years. However, most of the existing approaches focus on classification problems. In this paper, we investigate attacks and defenses for structured prediction tasks in NLP. Besides the difficulty of perturbing discrete words and the sentence fluency problem faced by attackers in any NLP tasks, there is a specific challenge to attackers of structured prediction models: the structured output of structured prediction models is sensitive to small perturbations in the input. To address these problems, we propose a novel and unified framework that learns to attack a structured prediction model using a sequence-to-sequence model with feedbacks from multiple reference models of the same structured prediction task. Based on the proposed attack, we further reinforce the victim model with adversarial training, making its prediction more robust and accurate. We evaluate the proposed framework in dependency parsing and part-of-speech tagging. Automatic and human evaluations show that our proposed framework succeeds in both attacking state-of-the-art structured prediction models and boosting them with adversarial training.
pdf
bib
abs
Position-Aware Tagging for Aspect Sentiment Triplet Extraction
Lu Xu
|
Hao Li
|
Wei Lu
|
Lidong Bing
Aspect Sentiment Triplet Extraction (ASTE) is the task of extracting the triplets of target entities, their associated sentiment, and opinion spans explaining the reason for the sentiment. Existing research efforts mostly solve this problem using pipeline approaches, which break the triplet extraction process into several stages. Our observation is that the three elements within a triplet are highly related to each other, and this motivates us to build a joint model to extract such triplets using a sequence tagging approach. However, how to effectively design a tagging approach to extract the triplets that can capture the rich interactions among the elements is a challenging research question. In this work, we propose the first end-to-end model with a novel position-aware tagging scheme that is capable of jointly extracting the triplets. Our experimental results on several existing datasets show that jointly capturing elements in the triplet using our approach leads to improved performance over the existing approaches. We also conducted extensive experiments to investigate the model effectiveness and robustness.
pdf
bib
abs
Simultaneous Machine Translation with Visual Context
Ozan Caglayan
|
Julia Ive
|
Veneta Haralampieva
|
Pranava Madhyastha
|
Loïc Barrault
|
Lucia Specia
Simultaneous machine translation (SiMT) aims to translate a continuous input text stream into another language with the lowest latency and highest quality possible. The translation thus has to start with an incomplete source text, which is read progressively, creating the need for anticipation. In this paper, we seek to understand whether the addition of visual information can compensate for the missing source context. To this end, we analyse the impact of different multimodal approaches and visual features on state-of-the-art SiMT frameworks. Our results show that visual context is helpful and that visually-grounded models based on explicit object region information are much better than commonly used global features, reaching up to 3 BLEU points improvement under low latency scenarios. Our qualitative analysis illustrates cases where only the multimodal systems are able to translate correctly from English into gender-marked languages, as well as deal with differences in word order, such as adjective-noun placement between English and French.
pdf
bib
abs
XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning
Edoardo Maria Ponti
|
Goran Glavaš
|
Olga Majewska
|
Qianchu Liu
|
Ivan Vulić
|
Anna Korhonen
In order to simulate human language capacity, natural language processing systems must be able to reason about the dynamics of everyday situations, including their possible causes and effects. Moreover, they should be able to generalise the acquired world knowledge to new languages, modulo cultural differences. Advances in machine reasoning and cross-lingual transfer depend on the availability of challenging evaluation benchmarks. Motivated by both demands, we introduce Cross-lingual Choice of Plausible Alternatives (XCOPA), a typologically diverse multilingual dataset for causal commonsense reasoning in 11 languages, which includes resource-poor languages like Eastern Apurímac Quechua and Haitian Creole. We evaluate a range of state-of-the-art models on this novel dataset, revealing that the performance of current methods based on multilingual pretraining and zero-shot fine-tuning falls short compared to translation-based transfer. Finally, we propose strategies to adapt multilingual models to out-of-sample resource-lean languages where only a small corpus or a bilingual dictionary is available, and report substantial improvements over the random baseline. The XCOPA dataset is freely available at github.com/cambridgeltl/xcopa.
pdf
bib
abs
The Secret is in the Spectra: Predicting Cross-lingual Task Performance with Spectral Similarity Measures
Haim Dubossarsky
|
Ivan Vulić
|
Roi Reichart
|
Anna Korhonen
Performance in cross-lingual NLP tasks is impacted by the (dis)similarity of languages at hand: e.g., previous work has suggested there is a connection between the expected success of bilingual lexicon induction (BLI) and the assumption of (approximate) isomorphism between monolingual embedding spaces. In this work we present a large-scale study focused on the correlations between monolingual embedding space similarity and task performance, covering thousands of language pairs and four different tasks: BLI, parsing, POS tagging and MT. We hypothesize that statistics of the spectrum of each monolingual embedding space indicate how well they can be aligned. We then introduce several isomorphism measures between two embedding spaces, based on the relevant statistics of their individual spectra. We empirically show that (1) language similarity scores derived from such spectral isomorphism measures are strongly associated with performance observed in different cross-lingual tasks, and (2) our spectral-based measures consistently outperform previous standard isomorphism measures, while being computationally more tractable and easier to interpret. Finally, our measures capture complementary information to typologically driven language distance measures, and the combination of measures from the two families yields even higher task performance correlations.
pdf
bib
abs
Bridging Linguistic Typology and Multilingual Machine Translation with Multi-View Language Representations
Arturo Oncevay
|
Barry Haddow
|
Alexandra Birch
Sparse language vectors from linguistic typology databases and learned embeddings from tasks like multilingual machine translation have been investigated in isolation, without analysing how they could benefit from each other’s language characterisation. We propose to fuse both views using singular vector canonical correlation analysis and study what kind of information is induced from each source. By inferring typological features and language phylogenies, we observe that our representations embed typology and strengthen correlations with language relationships. We then take advantage of our multi-view language vector space for multilingual machine translation, where we achieve competitive overall translation accuracy in tasks that require information about language similarities, such as language clustering and ranking candidates for multilingual transfer. With our method, we can easily project and assess new languages without expensive retraining of massive multilingual or ranking models, which are major disadvantages of related approaches.
pdf
bib
abs
AnswerFact: Fact Checking in Product Question Answering
Wenxuan Zhang
|
Yang Deng
|
Jing Ma
|
Wai Lam
Product-related question answering platforms nowadays are widely employed in many E-commerce sites, providing a convenient way for potential customers to address their concerns during online shopping. However, the misinformation in the answers on those platforms poses unprecedented challenges for users to obtain reliable and truthful product information, which may even cause a commercial loss in E-commerce business. To tackle this issue, we investigate to predict the veracity of answers in this paper and introduce AnswerFact, a large scale fact checking dataset from product question answering forums. Each answer is accompanied by its veracity label and associated evidence sentences, providing a valuable testbed for evidence-based fact checking tasks in QA settings. We further propose a novel neural model with tailored evidence ranking components to handle the concerned answer veracity prediction problem. Extensive experiments are conducted with our proposed model and various existing fact checking methods, showing that our method outperforms all baselines on this task.
pdf
bib
abs
Context-Aware Answer Extraction in Question Answering
Yeon Seonwoo
|
Ji-Hoon Kim
|
Jung-Woo Ha
|
Alice Oh
Extractive QA models have shown very promising performance in predicting the correct answer to a question for a given passage. However, they sometimes result in predicting the correct answer text but in a context irrelevant to the given question. This discrepancy becomes especially important as the number of occurrences of the answer text in a passage increases. To resolve this issue, we propose BLANC (BLock AttentioN for Context prediction) based on two main ideas: context prediction as an auxiliary task in multi-task learning manner, and a block attention method that learns the context prediction task. With experiments on reading comprehension, we show that BLANC outperforms the state-of-the-art QA models, and the performance gap increases as the number of answer text occurrences increases. We also conduct an experiment of training the models using SQuAD and predicting the supporting facts on HotpotQA and show that BLANC outperforms all baseline models in this zero-shot setting.
pdf
bib
abs
What do Models Learn from Question Answering Datasets?
Priyanka Sen
|
Amir Saffari
While models have reached superhuman performance on popular question answering (QA) datasets such as SQuAD, they have yet to outperform humans on the task of question answering itself. In this paper, we investigate if models are learning reading comprehension from QA datasets by evaluating BERT-based models across five datasets. We evaluate models on their generalizability to out-of-domain examples, responses to missing or incorrect data, and ability to handle question variations. We find that no single dataset is robust to all of our experiments and identify shortcomings in both datasets and evaluation methods. Following our analysis, we make recommendations for building future QA datasets that better evaluate the task of question answering through reading comprehension. We also release code to convert QA datasets to a shared format for easier experimentation at
https://github.com/amazon-research/qa-dataset-converterpdf
bib
abs
Discern: Discourse-Aware Entailment Reasoning Network for Conversational Machine Reading
Yifan Gao
|
Chien-Sheng Wu
|
Jingjing Li
|
Shafiq Joty
|
Steven C.H. Hoi
|
Caiming Xiong
|
Irwin King
|
Michael Lyu
Document interpretation and dialog understanding are the two major challenges for conversational machine reading. In this work, we propose “Discern”, a discourse-aware entailment reasoning network to strengthen the connection and enhance the understanding of both document and dialog. Specifically, we split the document into clause-like elementary discourse units (EDU) using a pre-trained discourse segmentation model, and we train our model in a weakly-supervised manner to predict whether each EDU is entailed by the user feedback in a conversation. Based on the learned EDU and entailment representations, we either reply to the user our final decision “yes/no/irrelevant” of the initial question, or generate a follow-up question to inquiry more information. Our experiments on the ShARC benchmark (blind, held-out test set) show that Discern achieves state-of-the-art results of 78.3% macro-averaged accuracy on decision making and 64.0 BLEU1 on follow-up question generation. Code and models are released at
https://github.com/Yifan-Gao/Discern.
pdf
bib
abs
A Method for Building a Commonsense Inference Dataset based on Basic Events
Kazumasa Omura
|
Daisuke Kawahara
|
Sadao Kurohashi
We present a scalable, low-bias, and low-cost method for building a commonsense inference dataset that combines automatic extraction from a corpus and crowdsourcing. Each problem is a multiple-choice question that asks contingency between basic events. We applied the proposed method to a Japanese corpus and acquired 104k problems. While humans can solve the resulting problems with high accuracy (88.9%), the accuracy of a high-performance transfer learning model is reasonably low (76.0%). We also confirmed through dataset analysis that the resulting dataset contains low bias. We released the datatset to facilitate language understanding research.
pdf
bib
abs
Neural Deepfake Detection with Factual Structure of Text
Wanjun Zhong
|
Duyu Tang
|
Zenan Xu
|
Ruize Wang
|
Nan Duan
|
Ming Zhou
|
Jiahai Wang
|
Jian Yin
Deepfake detection, the task of automatically discriminating machine-generated text, is increasingly critical with recent advances in natural language generative models. Existing approaches to deepfake detection typically represent documents with coarse-grained representations. However, they struggle to capture factual structures of documents, which is a discriminative factor between machine-generated and human-written text according to our statistical analysis. To address this, we propose a graph-based model that utilizes the factual structure of a document for deepfake detection of text. Our approach represents the factual structure of a given document as an entity graph, which is further utilized to learn sentence representations with a graph neural network. Sentence representations are then composed to a document representation for making predictions, where consistent relations between neighboring sentences are sequentially modeled. Results of experiments on two public deepfake datasets show that our approach significantly improves strong base models built with RoBERTa. Model analysis further indicates that our model can distinguish the difference in the factual structure between machine-generated text and human-written text.
pdf
bib
abs
MultiCQA: Zero-Shot Transfer of Self-Supervised Text Matching Models on a Massive Scale
Andreas Rücklé
|
Jonas Pfeiffer
|
Iryna Gurevych
We study the zero-shot transfer capabilities of text matching models on a massive scale, by self-supervised training on 140 source domains from community question answering forums in English. We investigate the model performances on nine benchmarks of answer selection and question similarity tasks, and show that all 140 models transfer surprisingly well, where the large majority of models substantially outperforms common IR baselines. We also demonstrate that considering a broad selection of source domains is crucial for obtaining the best zero-shot transfer performances, which contrasts the standard procedure that merely relies on the largest and most similar domains. In addition, we extensively study how to best combine multiple source domains. We propose to incorporate self-supervised with supervised multi-task learning on all available source domains. Our best zero-shot transfer model considerably outperforms in-domain BERT and the previous state of the art on six benchmarks. Fine-tuning of our model with in-domain data results in additional large gains and achieves the new state of the art on all nine benchmarks.
pdf
bib
abs
XL-AMR: Enabling Cross-Lingual AMR Parsing with Transfer Learning Techniques
Rexhina Blloshmi
|
Rocco Tripodi
|
Roberto Navigli
Abstract Meaning Representation (AMR) is a popular formalism of natural language that represents the meaning of a sentence as a semantic graph. It is agnostic about how to derive meanings from strings and for this reason it lends itself well to the encoding of semantics across languages. However, cross-lingual AMR parsing is a hard task, because training data are scarce in languages other than English and the existing English AMR parsers are not directly suited to being used in a cross-lingual setting. In this work we tackle these two problems so as to enable cross-lingual AMR parsing: we explore different transfer learning techniques for producing automatic AMR annotations across languages and develop a cross-lingual AMR parser, XL-AMR. This can be trained on the produced data and does not rely on AMR aligners or source-copy mechanisms as is commonly the case in English AMR parsing. The results of XL-AMR significantly surpass those previously reported in Chinese, German, Italian and Spanish. Finally we provide a qualitative analysis which sheds light on the suitability of AMR across languages. We release XL-AMR at github.com/SapienzaNLP/xl-amr.
pdf
bib
abs
Improving AMR Parsing with Sequence-to-Sequence Pre-training
Dongqin Xu
|
Junhui Li
|
Muhua Zhu
|
Min Zhang
|
Guodong Zhou
In the literature, the research on abstract meaning representation (AMR) parsing is much restricted by the size of human-curated dataset which is critical to build an AMR parser with good performance. To alleviate such data size restriction, pre-trained models have been drawing more and more attention in AMR parsing. However, previous pre-trained models, like BERT, are implemented for general purpose which may not work as expected for the specific task of AMR parsing. In this paper, we focus on sequence-to-sequence (seq2seq) AMR parsing and propose a seq2seq pre-training approach to build pre-trained models in both single and joint way on three relevant tasks, i.e., machine translation, syntactic parsing, and AMR parsing itself. Moreover, we extend the vanilla fine-tuning method to a multi-task learning fine-tuning method that optimizes for the performance of AMR parsing while endeavors to preserve the response of pre-trained models. Extensive experimental results on two English benchmark datasets show that both the single and joint pre-trained models significantly improve the performance (e.g., from 71.5 to 80.2 on AMR 2.0), which reaches the state of the art. The result is very encouraging since we achieve this with seq2seq models rather than complex models. We make our code and model available at
https://github.com/xdqkid/S2S-AMR-Parser.
pdf
bib
abs
Hate-Speech and Offensive Language Detection in Roman Urdu
Hammad Rizwan
|
Muhammad Haroon Shakeel
|
Asim Karim
The task of automatic hate-speech and offensive language detection in social media content is of utmost importance due to its implications in unprejudiced society concerning race, gender, or religion. Existing research in this area, however, is mainly focused on the English language, limiting the applicability to particular demographics. Despite its prevalence, Roman Urdu (RU) lacks language resources, annotated datasets, and language models for this task. In this study, we: (1) Present a lexicon of hateful words in RU, (2) Develop an annotated dataset called RUHSOLD consisting of 10,012 tweets in RU with both coarse-grained and fine-grained labels of hate-speech and offensive language, (3) Explore the feasibility of transfer learning of five existing embedding models to RU, (4) Propose a novel deep learning architecture called CNN-gram for hate-speech and offensive language detection and compare its performance with seven current baseline approaches on RUHSOLD dataset, and (5) Train domain-specific embeddings on more than 4.7 million tweets and make them publicly available. We conclude that transfer learning is more beneficial as compared to training embedding from scratch and that the proposed model exhibits greater robustness as compared to the baselines.
pdf
bib
abs
Suicidal Risk Detection for Military Personnel
Sungjoon Park
|
Kiwoong Park
|
Jaimeen Ahn
|
Alice Oh
We analyze social media for detecting the suicidal risk of military personnel, which is especially crucial for countries with compulsory military service such as the Republic of Korea. From a widely-used Korean social Q&A site, we collect posts containing military-relevant content written by active-duty military personnel. We then annotate the posts with two groups of experts: military experts and mental health experts. Our dataset includes 2,791 posts with 13,955 corresponding expert annotations of suicidal risk levels, and this dataset is available to researchers who consent to research ethics agreement. Using various fine-tuned state-of-the-art language models, we predict the level of suicide risk, reaching .88 F1 score for classifying the risks.
pdf
bib
abs
Comparative Evaluation of Label-Agnostic Selection Bias in Multilingual Hate Speech Datasets
Nedjma Ousidhoum
|
Yangqiu Song
|
Dit-Yan Yeung
Work on bias in hate speech typically aims to improve classification performance while relatively overlooking the quality of the data. We examine selection bias in hate speech in a language and label independent fashion. We first use topic models to discover latent semantics in eleven hate speech corpora, then, we present two bias evaluation metrics based on the semantic similarity between topics and search words frequently used to build corpora. We discuss the possibility of revising the data collection process by comparing datasets and analyzing contrastive case studies.
pdf
bib
abs
HENIN: Learning Heterogeneous Neural Interaction Networks for Explainable Cyberbullying Detection on Social Media
Hsin-Yu Chen
|
Cheng-Te Li
In the computational detection of cyberbullying, existing work largely focused on building generic classifiers that rely exclusively on text analysis of social media sessions. Despite their empirical success, we argue that a critical missing piece is the model explainability, i.e., why a particular piece of media session is detected as cyberbullying. In this paper, therefore, we propose a novel deep model, HEterogeneous Neural Interaction Networks (HENIN), for explainable cyberbullying detection. HENIN contains the following components: a comment encoder, a post-comment co-attention sub-network, and session-session and post-post interaction extractors. Extensive experiments conducted on real datasets exhibit not only the promising performance of HENIN, but also highlight evidential comments so that one can understand why a media session is identified as cyberbullying.
pdf
bib
abs
Reactive Supervision: A New Method for Collecting Sarcasm Data
Boaz Shmueli
|
Lun-Wei Ku
|
Soumya Ray
Sarcasm detection is an important task in affective computing, requiring large amounts of labeled data. We introduce reactive supervision, a novel data collection method that utilizes the dynamics of online conversations to overcome the limitations of existing data collection techniques. We use the new method to create and release a first-of-its-kind large dataset of tweets with sarcasm perspective labels and new contextual features. The dataset is expected to advance sarcasm detection research. Our method can be adapted to other affective computing domains, thus opening up new research opportunities.
pdf
bib
abs
Self-Induced Curriculum Learning in Self-Supervised Neural Machine Translation
Dana Ruiter
|
Josef van Genabith
|
Cristina España-Bonet
Self-supervised neural machine translation (SSNMT) jointly learns to identify and select suitable training data from comparable (rather than parallel) corpora and to translate, in a way that the two tasks support each other in a virtuous circle. In this study, we provide an in-depth analysis of the sampling choices the SSNMT model makes during training. We show how, without it having been told to do so, the model self-selects samples of increasing (i) complexity and (ii) task-relevance in combination with (iii) performing a denoising curriculum. We observe that the dynamics of the mutual-supervision signals of both system internal representation types are vital for the extraction and translation performance. We show that in terms of the Gunning-Fog Readability index, SSNMT starts extracting and learning from Wikipedia data suitable for high school students and quickly moves towards content suitable for first year undergraduate students.
pdf
bib
abs
Towards Reasonably-Sized Character-Level Transformer NMT by Finetuning Subword Systems
Jindřich Libovický
|
Alexander Fraser
Applying the Transformer architecture on the character level usually requires very deep architectures that are difficult and slow to train. These problems can be partially overcome by incorporating a segmentation into tokens in the model. We show that by initially training a subword model and then finetuning it on characters, we can obtain a neural machine translation model that works at the character level without requiring token segmentation. We use only the vanilla 6-layer Transformer Base architecture. Our character-level models better capture morphological phenomena and show more robustness to noise at the expense of somewhat worse overall translation quality. Our study is a significant step towards high-performance and easy to train character-based models that are not extremely large.
pdf
bib
abs
Transfer Learning and Distant Supervision for Multilingual Transformer Models: A Study on African Languages
Michael A. Hedderich
|
David I. Adelani
|
Dawei Zhu
|
Jesujoba Alabi
|
Udia Markus
|
Dietrich Klakow
Multilingual transformer models like mBERT and XLM-RoBERTa have obtained great improvements for many NLP tasks on a variety of languages. However, recent works also showed that results from high-resource languages could not be easily transferred to realistic, low-resource scenarios. In this work, we study trends in performance for different amounts of available resources for the three African languages Hausa, isiXhosa and on both NER and topic classification. We show that in combination with transfer learning or distant supervision, these models can achieve with as little as 10 or 100 labeled sentences the same performance as baselines with much more supervised training data. However, we also find settings where this does not hold. Our discussions and additional experiments on assumptions such as time and hardware restrictions highlight challenges and opportunities in low-resource learning.
pdf
bib
abs
Translation Quality Estimation by Jointly Learning to Score and Rank
Jingyi Zhang
|
Josef van Genabith
The translation quality estimation (QE) task, particularly the QE as a Metric task, aims to evaluate the general quality of a translation based on the translation and the source sentence without using reference translations. Supervised learning of this QE task requires human evaluation of translation quality as training data. Human evaluation of translation quality can be performed in different ways, including assigning an absolute score to a translation or ranking different translations. In order to make use of different types of human evaluation data for supervised learning, we present a multi-task learning QE model that jointly learns two tasks: score a translation and rank two translations. Our QE model exploits cross-lingual sentence embeddings from pre-trained multilingual language models. We obtain new state-of-the-art results on the WMT 2019 QE as a Metric task and outperform sentBLEU on the WMT 2019 Metrics task.
pdf
bib
abs
Direct Segmentation Models for Streaming Speech Translation
Javier Iranzo-Sánchez
|
Adrià Giménez Pastor
|
Joan Albert Silvestre-Cerdà
|
Pau Baquero-Arnal
|
Jorge Civera Saiz
|
Alfons Juan
The cascade approach to Speech Translation (ST) is based on a pipeline that concatenates an Automatic Speech Recognition (ASR) system followed by a Machine Translation (MT) system. These systems are usually connected by a segmenter that splits the ASR output into hopefully, semantically self-contained chunks to be fed into the MT system. This is specially challenging in the case of streaming ST, where latency requirements must also be taken into account. This work proposes novel segmentation models for streaming ST that incorporate not only textual, but also acoustic information to decide when the ASR output is split into a chunk. An extensive and throughly experimental setup is carried out on the Europarl-ST dataset to prove the contribution of acoustic information to the performance of the segmentation model in terms of BLEU score in a streaming ST scenario. Finally, comparative results with previous work also show the superiority of the segmentation models proposed in this work.
pdf
bib
abs
Not Low-Resource Anymore: Aligner Ensembling, Batch Filtering, and New Datasets for Bengali-English Machine Translation
Tahmid Hasan
|
Abhik Bhattacharjee
|
Kazi Samin
|
Masum Hasan
|
Madhusudan Basak
|
M. Sohel Rahman
|
Rifat Shahriyar
Despite being the seventh most widely spoken language in the world, Bengali has received much less attention in machine translation literature due to being low in resources. Most publicly available parallel corpora for Bengali are not large enough; and have rather poor quality, mostly because of incorrect sentence alignments resulting from erroneous sentence segmentation, and also because of a high volume of noise present in them. In this work, we build a customized sentence segmenter for Bengali and propose two novel methods for parallel corpus creation on low-resource setups: aligner ensembling and batch filtering. With the segmenter and the two methods combined, we compile a high-quality Bengali-English parallel corpus comprising of 2.75 million sentence pairs, more than 2 million of which were not available before. Training on neural models, we achieve an improvement of more than 9 BLEU score over previous approaches to Bengali-English machine translation. We also evaluate on a new test set of 1000 pairs made with extensive quality control. We release the segmenter, parallel corpus, and the evaluation set, thus elevating Bengali from its low-resource status. To the best of our knowledge, this is the first ever large scale study on Bengali-English machine translation. We believe our study will pave the way for future research on Bengali-English machine translation as well as other low-resource languages. Our data and code are available at
https://github.com/csebuetnlp/banglanmt.
pdf
bib
abs
CSP:Code-Switching Pre-training for Neural Machine Translation
Zhen Yang
|
Bojie Hu
|
Ambyera Han
|
Shen Huang
|
Qi Ju
This paper proposes a new pre-training method, called Code-Switching Pre-training (CSP for short) for Neural Machine Translation (NMT). Unlike traditional pre-training method which randomly masks some fragments of the input sentence, the proposed CSP randomly replaces some words in the source sentence with their translation words in the target language. Specifically, we firstly perform lexicon induction with unsupervised word embedding mapping between the source and target languages, and then randomly replace some words in the input sentence with their translation words according to the extracted translation lexicons. CSP adopts the encoder-decoder framework: its encoder takes the code-mixed sentence as input, and its decoder predicts the replaced fragment of the input sentence. In this way, CSP is able to pre-train the NMT model by explicitly making the most of the alignment information extracted from the source and target monolingual corpus. Additionally, we relieve the pretrain-finetune discrepancy caused by the artificial symbols like [mask]. To verify the effectiveness of the proposed method, we conduct extensive experiments on unsupervised and supervised NMT. Experimental results show that CSP achieves significant improvements over baselines without pre-training or with other pre-training methods.
pdf
bib
abs
Type B Reflexivization as an Unambiguous Testbed for Multilingual Multi-Task Gender Bias
Ana Valeria González
|
Maria Barrett
|
Rasmus Hvingelby
|
Kellie Webster
|
Anders Søgaard
The one-sided focus on English in previous studies of gender bias in NLP misses out on opportunities in other languages: English challenge datasets such as GAP and WinoGender highlight model preferences that are “hallucinatory”, e.g., disambiguating gender-ambiguous occurrences of ‘doctor’ as male doctors. We show that for languages with type B reflexivization, e.g., Swedish and Russian, we can construct multi-task challenge datasets for detecting gender bias that lead to unambiguously wrong model predictions: In these languages, the direct translation of ‘the doctor removed his mask’ is not ambiguous between a coreferential reading and a disjoint reading. Instead, the coreferential reading requires a non-gendered pronoun, and the gendered, possessive pronouns are anti-reflexive. We present a multilingual, multi-task challenge dataset, which spans four languages and four NLP tasks and focuses only on this phenomenon. We find evidence for gender bias across all task-language combinations and correlate model bias with national labor market statistics.
pdf
bib
abs
Pre-training Multilingual Neural Machine Translation by Leveraging Alignment Information
Zehui Lin
|
Xiao Pan
|
Mingxuan Wang
|
Xipeng Qiu
|
Jiangtao Feng
|
Hao Zhou
|
Lei Li
We investigate the following question for machine translation (MT): can we develop a single universal MT model to serve as the common seed and obtain derivative and improved models on arbitrary language pairs? We propose mRASP, an approach to pre-train a universal multilingual neural machine translation model. Our key idea in mRASP is its novel technique of random aligned substitution, which brings words and phrases with similar meanings across multiple languages closer in the representation space. We pre-train a mRASP model on 32 language pairs jointly with only public datasets. The model is then fine-tuned on downstream language pairs to obtain specialized MT models. We carry out extensive experiments on 42 translation directions across a diverse settings, including low, medium, rich resource, and as well as transferring to exotic language pairs. Experimental results demonstrate that mRASP achieves significant performance improvement compared to directly training on those target pairs. It is the first time to verify that multiple lowresource language pairs can be utilized to improve rich resource MT. Surprisingly, mRASP is even able to improve the translation quality on exotic languages that never occur in the pretraining corpus. Code, data, and pre-trained models are available at
https://github.com/linzehui/mRASP.
pdf
bib
abs
Losing Heads in the Lottery: Pruning Transformer Attention in Neural Machine Translation
Maximiliana Behnke
|
Kenneth Heafield
The attention mechanism is the crucial component of the transformer architecture. Recent research shows that most attention heads are not confident in their decisions and can be pruned. However, removing them before training a model results in lower quality. In this paper, we apply the lottery ticket hypothesis to prune heads in the early stages of training. Our experiments on machine translation show that it is possible to remove up to three-quarters of attention heads from transformer-big during early training with an average -0.1 change in BLEU for Turkish→English. The pruned model is 1.5 times as fast at inference, albeit at the cost of longer training. Our method is complementary to other approaches, such as teacher-student, with English→German student model gaining an additional 10% speed-up with 75% encoder attention removed and 0.2 BLEU loss.
pdf
bib
abs
Towards Enhancing Faithfulness for Neural Machine Translation
Rongxiang Weng
|
Heng Yu
|
Xiangpeng Wei
|
Weihua Luo
Neural machine translation (NMT) has achieved great success due to the ability to generate high-quality sentences. Compared with human translations, one of the drawbacks of current NMT is that translations are not usually faithful to the input, e.g., omitting information or generating unrelated fragments, which inevitably decreases the overall quality, especially for human readers. In this paper, we propose a novel training strategy with a multi-task learning paradigm to build a faithfulness enhanced NMT model (named FEnmt). During the NMT training process, we sample a subset from the training set and translate them to get fragments that have been mistranslated. Afterward, the proposed multi-task learning paradigm is employed on both encoder and decoder to guide NMT to correctly translate these fragments. Both automatic and human evaluations verify that our FEnmt could improve translation quality by effectively reducing unfaithful translations.
pdf
bib
abs
COMET: A Neural Framework for MT Evaluation
Ricardo Rei
|
Craig Stewart
|
Ana C Farinha
|
Alon Lavie
We present COMET, a neural framework for training multilingual machine translation evaluation models which obtains new state-of-the-art levels of correlation with human judgements. Our framework leverages recent breakthroughs in cross-lingual pretrained language modeling resulting in highly multilingual and adaptable MT evaluation models that exploit information from both the source input and a target-language reference translation in order to more accurately predict MT quality. To showcase our framework, we train three models with different types of human judgements: Direct Assessments, Human-mediated Translation Edit Rate and Multidimensional Quality Metric. Our models achieve new state-of-the-art performance on the WMT 2019 Metrics shared task and demonstrate robustness to high-performing systems.
pdf
bib
abs
Reusing a Pretrained Language Model on Languages with Limited Corpora for Unsupervised NMT
Alexandra Chronopoulou
|
Dario Stojanovski
|
Alexander Fraser
Using a language model (LM) pretrained on two languages with large monolingual data in order to initialize an unsupervised neural machine translation (UNMT) system yields state-of-the-art results. When limited data is available for one language, however, this method leads to poor translations. We present an effective approach that reuses an LM that is pretrained only on the high-resource language. The monolingual LM is fine-tuned on both languages and is then used to initialize a UNMT model. To reuse the pretrained LM, we have to modify its predefined vocabulary, to account for the new language. We therefore propose a novel vocabulary extension method. Our approach, RE-LM, outperforms a competitive cross-lingual pretraining model (XLM) in English-Macedonian (En-Mk) and English-Albanian (En-Sq), yielding more than +8.3 BLEU points for all four translation directions.
pdf
bib
abs
LNMap: Departures from Isomorphic Assumption in Bilingual Lexicon Induction Through Non-Linear Mapping in Latent Space
Tasnim Mohiuddin
|
M Saiful Bari
|
Shafiq Joty
Most of the successful and predominant methods for Bilingual Lexicon Induction (BLI) are mapping-based, where a linear mapping function is learned with the assumption that the word embedding spaces of different languages exhibit similar geometric structures (i.e. approximately isomorphic). However, several recent studies have criticized this simplified assumption showing that it does not hold in general even for closely related languages. In this work, we propose a novel semi-supervised method to learn cross-lingual word embeddings for BLI. Our model is independent of the isomorphic assumption and uses non-linear mapping in the latent space of two independently pre-trained autoencoders. Through extensive experiments on fifteen (15) different language pairs (in both directions) comprising resource-rich and low-resource languages from two different datasets, we demonstrate that our method outperforms existing models by a good margin. Ablation studies show the importance of different model components and the necessity of non-linear mapping.
pdf
bib
abs
Uncertainty-Aware Semantic Augmentation for Neural Machine Translation
Xiangpeng Wei
|
Heng Yu
|
Yue Hu
|
Rongxiang Weng
|
Luxi Xing
|
Weihua Luo
As a sequence-to-sequence generation task, neural machine translation (NMT) naturally contains intrinsic uncertainty, where a single sentence in one language has multiple valid counterparts in the other. However, the dominant methods for NMT only observe one of them from the parallel corpora for the model training but have to deal with adequate variations under the same meaning at inference. This leads to a discrepancy of the data distribution between the training and the inference phases. To address this problem, we propose uncertainty-aware semantic augmentation, which explicitly captures the universal semantic information among multiple semantically-equivalent source sentences and enhances the hidden representations with this information for better translations. Extensive experiments on various translation tasks reveal that our approach significantly outperforms the strong baselines and the existing methods.
pdf
bib
abs
Can Automatic Post-Editing Improve NMT?
Shamil Chollampatt
|
Raymond Hendy Susanto
|
Liling Tan
|
Ewa Szymanska
Automatic post-editing (APE) aims to improve machine translations, thereby reducing human post-editing effort. APE has had notable success when used with statistical machine translation (SMT) systems but has not been as successful over neural machine translation (NMT) systems. This has raised questions on the relevance of APE task in the current scenario. However, the training of APE models has been heavily reliant on large-scale artificial corpora combined with only limited human post-edited data. We hypothesize that APE models have been underperforming in improving NMT translations due to the lack of adequate supervision. To ascertain our hypothesis, we compile a larger corpus of human post-edits of English to German NMT. We empirically show that a state-of-art neural APE model trained on this corpus can significantly improve a strong in-domain NMT system, challenging the current understanding in the field. We further investigate the effects of varying training data sizes, using artificial training data, and domain specificity for the APE task. We release this new corpus under CC BY-NC-SA 4.0 license at
https://github.com/shamilcm/pedra.
pdf
bib
abs
Parsing Gapping Constructions Based on Grammatical and Semantic Roles
Yoshihide Kato
|
Shigeki Matsubara
A gapping construction consists of a coordinated structure where redundant elements are elided from all but one conjuncts. This paper proposes a method of parsing sentences with gapping to recover elided elements. The proposed method is based on constituent trees annotated with grammatical and semantic roles that are useful for identifying elided elements. Our method outperforms the previous method in terms of F-measure and recall.
pdf
bib
abs
Span-based discontinuous constituency parsing: a family of exact chart-based algorithms with time complexities from O(nˆ6) down to O(nˆ3)
Caio Corro
We introduce a novel chart-based algorithm for span-based parsing of discontinuous constituency trees of block degree two, including ill-nested structures. In particular, we show that we can build variants of our parser with smaller search spaces and time complexities ranging from O(nˆ6) down to O(nˆ3). The cubic time variant covers 98% of constituents observed in linguistic treebanks while having the same complexity as continuous constituency parsers. We evaluate our approach on German and English treebanks (Negra, Tiger, and DPTB) and report state-of-the-art results in the fully supervised setting. We also experiment with pre-trained word embeddings and Bert-based neural networks.
pdf
bib
abs
Some Languages Seem Easier to Parse Because Their Treebanks Leak
Anders Søgaard
Cross-language differences in (universal) dependency parsing performance are mostly attributed to treebank size, average sentence length, average dependency length, morphological complexity, and domain differences. We point at a factor not previously discussed: If we abstract away from words and dependency labels, how many graphs in the test data were seen in the training data? We compute graph isomorphisms, and show that, treebank size aside, overlap between training and test graphs explain more of the observed variation than standard explanations such as the above.
pdf
bib
abs
Discontinuous Constituent Parsing as Sequence Labeling
David Vilares
|
Carlos Gómez-Rodríguez
This paper reduces discontinuous parsing to sequence labeling. It first shows that existing reductions for constituent parsing as labeling do not support discontinuities. Second, it fills this gap and proposes to encode tree discontinuities as nearly ordered permutations of the input sequence. Third, it studies whether such discontinuous representations are learnable. The experiments show that despite the architectural simplicity, under the right representation, the models are fast and accurate.
pdf
bib
abs
Modularized Syntactic Neural Networks for Sentence Classification
Haiyan Wu
|
Ying Liu
|
Shaoyun Shi
This paper focuses on tree-based modeling for the sentence classification task. In existing works, aggregating on a syntax tree usually considers local information of sub-trees. In contrast, in addition to the local information, our proposed Modularized Syntactic Neural Network (MSNN) utilizes the syntax category labels and takes advantage of the global context while modeling sub-trees. In MSNN, each node of a syntax tree is modeled by a label-related syntax module. Each syntax module aggregates the outputs of lower-level modules, and finally, the root module provides the sentence representation. We design a tree-parallel mini-batch strategy for efficient training and predicting. Experimental results on four benchmark datasets show that our MSNN significantly outperforms previous state-of-the-art tree-based methods on the sentence classification task.
pdf
bib
abs
TED-CDB: A Large-Scale Chinese Discourse Relation Dataset on TED Talks
Wanqiu Long
|
Bonnie Webber
|
Deyi Xiong
As different genres are known to differ in their communicative properties and as previously, for Chinese, discourse relations have only been annotated over news text, we have created the TED-CDB dataset. TED-CDB comprises a large set of TED talks in Chinese that have been manually annotated according to the goals and principles of Penn Discourse Treebank, but adapted to features that are not present in English. It serves as a unique Chinese corpus of spoken discourse. Benchmark experiments show that TED-CDB poses a challenge for state-of-the-art discourse relation classifiers, whose F1 performance on 4-way classification is 60%. This is a dramatic drop of 35% from performance on the news text in the Chinese Discourse Treebank. Transfer learning experiments have been carried out with the TED-CDB for both same-language cross-domain transfer and same-domain cross-language transfer. Both demonstrate that the TED-CDB can improve the performance of systems being developed for languages other than Chinese and would be helpful for insufficient or unbalanced data in other corpora. The dataset and our Chinese annotation guidelines will be made freely available.
pdf
bib
abs
QADiscourse - Discourse Relations as QA Pairs: Representation, Crowdsourcing and Baselines
Valentina Pyatkin
|
Ayal Klein
|
Reut Tsarfaty
|
Ido Dagan
Discourse relations describe how two propositions relate to one another, and identifying them automatically is an integral part of natural language understanding. However, annotating discourse relations typically requires expert annotators. Recently, different semantic aspects of a sentence have been represented and crowd-sourced via question-and-answer (QA) pairs. This paper proposes a novel representation of discourse relations as QA pairs, which in turn allows us to crowd-source wide-coverage data annotated with discourse relations, via an intuitively appealing interface for composing such questions and answers. Based on our proposed representation, we collect a novel and wide-coverage QADiscourse dataset, and present baseline algorithms for predicting QADiscourse relations.
pdf
bib
abs
Discourse Self-Attention for Discourse Element Identification in Argumentative Student Essays
Wei Song
|
Ziyao Song
|
Ruiji Fu
|
Lizhen Liu
|
Miaomiao Cheng
|
Ting Liu
This paper proposes to adapt self-attention to discourse level for modeling discourse elements in argumentative student essays. Specifically, we focus on two issues. First, we propose structural sentence positional encodings to explicitly represent sentence positions. Second, we propose to use inter-sentence attentions to capture sentence interactions and enhance sentence representation. We conduct experiments on two datasets: a Chinese dataset and an English dataset. We find that (i) sentence positional encoding can lead to a large improvement for identifying discourse elements; (ii) a structural relative positional encoding of sentences shows to be most effective; (iii) inter-sentence attention vectors are useful as a kind of sentence representations for identifying discourse elements.
pdf
bib
abs
MEGATRON-CNTRL: Controllable Story Generation with External Knowledge Using Large-Scale Language Models
Peng Xu
|
Mostofa Patwary
|
Mohammad Shoeybi
|
Raul Puri
|
Pascale Fung
|
Anima Anandkumar
|
Bryan Catanzaro
Existing pre-trained large language models have shown unparalleled generative capabilities. However, they are not controllable. In this paper, we propose MEGATRON-CNTRL, a novel framework that uses large-scale language models and adds control to text generation by incorporating an external knowledge base. Our framework consists of a keyword predictor, a knowledge retriever, a contextual knowledge ranker, and a conditional text generator. As we do not have access to ground-truth supervision for the knowledge ranker, we make use of weak supervision from sentence embedding. The empirical results show that our model generates more fluent, consistent, and coherent stories with less repetition and higher diversity compared to prior work on the ROC story dataset. We showcase the controllability of our model by replacing the keywords used to generate stories and re-running the generation process. Human evaluation results show that 77.5% of these stories are successfully controlled by the new keywords. Furthermore, by scaling our model from 124 million to 8.3 billion parameters we demonstrate that larger models improve both the quality of generation (from 74.5% to 93.0% for consistency) and controllability (from 77.5% to 91.5%).
pdf
bib
abs
Incomplete Utterance Rewriting as Semantic Segmentation
Qian Liu
|
Bei Chen
|
Jian-Guang Lou
|
Bin Zhou
|
Dongmei Zhang
Recent years the task of incomplete utterance rewriting has raised a large attention. Previous works usually shape it as a machine translation task and employ sequence to sequence based architecture with copy mechanism. In this paper, we present a novel and extensive approach, which formulates it as a semantic segmentation task. Instead of generating from scratch, such a formulation introduces edit operations and shapes the problem as prediction of a word-level edit matrix. Benefiting from being able to capture both local and global information, our approach achieves state-of-the-art performance on several public datasets. Furthermore, our approach is four times faster than the standard approach in inference.
pdf
bib
abs
Improving Grammatical Error Correction Models with Purpose-Built Adversarial Examples
Lihao Wang
|
Xiaoqing Zheng
A sequence-to-sequence (seq2seq) learning with neural networks empirically shows to be an effective framework for grammatical error correction (GEC), which takes a sentence with errors as input and outputs the corrected one. However, the performance of GEC models with the seq2seq framework heavily relies on the size and quality of the corpus on hand. We propose a method inspired by adversarial training to generate more meaningful and valuable training examples by continually identifying the weak spots of a model, and to enhance the model by gradually adding the generated adversarial examples to the training set. Extensive experimental results show that such adversarial training can improve both the generalization and robustness of GEC models.
pdf
bib
abs
Homophonic Pun Generation with Lexically Constrained Rewriting
Zhiwei Yu
|
Hongyu Zang
|
Xiaojun Wan
Punning is a creative way to make conversation enjoyable and literary writing elegant. In this paper, we focus on the task of generating a pun sentence given a pair of homophones. We first find the constraint words supporting the semantic incongruity for a sentence. Then we rewrite the sentence with explicit positive and negative constraints. Our model achieves the state-of-the-art results in both automatic and human evaluations. We further make an error analysis and discuss the challenges for the computational pun models.
pdf
bib
abs
How to Make Neural Natural Language Generation as Reliable as Templates in Task-Oriented Dialogue
Henry Elder
|
Alexander O’Connor
|
Jennifer Foster
Neural Natural Language Generation (NLG) systems are well known for their unreliability. To overcome this issue, we propose a data augmentation approach which allows us to restrict the output of a network and guarantee reliability. While this restriction means generation will be less diverse than if randomly sampled, we include experiments that demonstrate the tendency of existing neural generation approaches to produce dull and repetitive text, and we argue that reliability is more important than diversity for this task. The system trained using this approach scored 100% in semantic accuracy on the E2E NLG Challenge dataset, the same as a template system.
pdf
bib
abs
Multilingual AMR-to-Text Generation
Angela Fan
|
Claire Gardent
Generating text from structured data is challenging because it requires bridging the gap between (i) structure and natural language (NL) and (ii) semantically underspecified input and fully specified NL output. Multilingual generation brings in an additional challenge: that of generating into languages with varied word order and morphological properties. In this work, we focus on Abstract Meaning Representations (AMRs) as structured input, where previous research has overwhelmingly focused on generating only into English. We leverage advances in cross-lingual embeddings, pretraining, and multilingual models to create multilingual AMR-to-text models that generate in twenty one different languages. Our multilingual models surpass baselines that generate into one language in eighteen languages, based on automatic metrics. We analyze the ability of our multilingual models to accurately capture morphology and word order using human evaluation, and find that native speakers judge our generations to be fluent.
pdf
bib
abs
Exploring the Linear Subspace Hypothesis in Gender Bias Mitigation
Francisco Vargas
|
Ryan Cotterell
Bolukbasi et al. (2016) presents one of the first gender bias mitigation techniques for word embeddings. Their method takes pre-trained word embeddings as input and attempts to isolate a linear subspace that captures most of the gender bias in the embeddings. As judged by an analogical evaluation task, their method virtually eliminates gender bias in the embeddings. However, an implicit and untested assumption of their method is that the bias subspace is actually linear. In this work, we generalize their method to a kernelized, non-linear version. We take inspiration from kernel principal component analysis and derive a non-linear bias isolation technique. We discuss and overcome some of the practical drawbacks of our method for non-linear gender bias mitigation in word embeddings and analyze empirically whether the bias subspace is actually linear. Our analysis shows that gender bias is in fact well captured by a linear subspace, justifying the assumption of Bolukbasi et al. (2016).
pdf
bib
abs
Lifelong Language Knowledge Distillation
Yung-Sung Chuang
|
Shang-Yu Su
|
Yun-Nung Chen
It is challenging to perform lifelong language learning (LLL) on a stream of different tasks without any performance degradation comparing to the multi-task counterparts. To address this issue, we present Lifelong Language Knowledge Distillation (L2KD), a simple but efficient method that can be easily applied to existing LLL architectures in order to mitigate the degradation. Specifically, when the LLL model is trained on a new task, we assign a teacher model to first learn the new task, and pass the knowledge to the LLL model via knowledge distillation. Therefore, the LLL model can better adapt to the new task while keeping the previously learned knowledge. Experiments show that the proposed L2KD consistently improves previous state-of-the-art models, and the degradation comparing to multi-task models in LLL tasks is well mitigated for both sequence generation and text classification tasks.
pdf
bib
abs
Sparse Parallel Training of Hierarchical Dirichlet Process Topic Models
Alexander Terenin
|
Måns Magnusson
|
Leif Jonsson
To scale non-parametric extensions of probabilistic topic models such as Latent Dirichlet allocation to larger data sets, practitioners rely increasingly on parallel and distributed systems. In this work, we study data-parallel training for the hierarchical Dirichlet process (HDP) topic model. Based upon a representation of certain conditional distributions within an HDP, we propose a doubly sparse data-parallel sampler for the HDP topic model. This sampler utilizes all available sources of sparsity found in natural language - an important way to make computation efficient. We benchmark our method on a well-known corpus (PubMed) with 8m documents and 768m tokens, using a single multi-core machine in under four days.
pdf
bib
abs
Multi-label Few/Zero-shot Learning with Knowledge Aggregated from Multiple Label Graphs
Jueqing Lu
|
Lan Du
|
Ming Liu
|
Joanna Dipnall
Few/Zero-shot learning is a big challenge of many classifications tasks, where a classifier is required to recognise instances of classes that have very few or even no training samples. It becomes more difficult in multi-label classification, where each instance is labelled with more than one class. In this paper, we present a simple multi-graph aggregation model that fuses knowledge from multiple label graphs encoding different semantic label relationships in order to study how the aggregated knowledge can benefit multi-label zero/few-shot document classification. The model utilises three kinds of semantic information, i.e., the pre-trained word embeddings, label description, and pre-defined label relations. Experimental results derived on two large clinical datasets (i.e., MIMIC-II and MIMIC-III ) and the EU legislation dataset show that methods equipped with the multi-graph knowledge aggregation achieve significant performance improvement across almost all the measures on few/zero-shot labels.
pdf
bib
abs
Word Rotator’s Distance
Sho Yokoi
|
Ryo Takahashi
|
Reina Akama
|
Jun Suzuki
|
Kentaro Inui
One key principle for assessing textual similarity is measuring the degree of semantic overlap between texts by considering the word alignment. Such alignment-based approaches are both intuitive and interpretable; however, they are empirically inferior to the simple cosine similarity between general-purpose sentence vectors. We focus on the fact that the norm of word vectors is a good proxy for word importance, and the angle of them is a good proxy for word similarity. However, alignment-based approaches do not distinguish the norm and direction, whereas sentence-vector approaches automatically use the norm as the word importance. Accordingly, we propose decoupling word vectors into their norm and direction then computing the alignment-based similarity with the help of earth mover’s distance (optimal transport), which we refer to as word rotator’s distance. Furthermore, we demonstrate how to grow the norm and direction of word vectors (vector converter); this is a new systematic approach derived from the sentence-vector estimation methods, which can significantly improve the performance of the proposed method. On several STS benchmarks, the proposed methods outperform not only alignment-based approaches but also strong baselines. The source code is avaliable at
https://github.com/eumesy/wrdpdf
bib
abs
Disentangle-based Continual Graph Representation Learning
Xiaoyu Kou
|
Yankai Lin
|
Shaobo Liu
|
Peng Li
|
Jie Zhou
|
Yan Zhang
Graph embedding (GE) methods embed nodes (and/or edges) in graph into a low-dimensional semantic space, and have shown its effectiveness in modeling multi-relational data. However, existing GE models are not practical in real-world applications since it overlooked the streaming nature of incoming data. To address this issue, we study the problem of continual graph representation learning which aims to continually train a GE model on new data to learn incessantly emerging multi-relational data while avoiding catastrophically forgetting old learned knowledge. Moreover, we propose a disentangle-based continual graph representation learning (DiCGRL) framework inspired by the human’s ability to learn procedural knowledge. The experimental results show that DiCGRL could effectively alleviate the catastrophic forgetting problem and outperform state-of-the-art continual learning models. The code and datasets are released on
https://github.com/KXY-PUBLIC/DiCGRL.
pdf
bib
abs
Semi-Supervised Bilingual Lexicon Induction with Two-way Interaction
Xu Zhao
|
Zihao Wang
|
Hao Wu
|
Yong Zhang
Semi-supervision is a promising paradigm for Bilingual Lexicon Induction (BLI) with limited annotations. However, previous semisupervised methods do not fully utilize the knowledge hidden in annotated and nonannotated data, which hinders further improvement of their performance. In this paper, we propose a new semi-supervised BLI framework to encourage the interaction between the supervised signal and unsupervised alignment. We design two message-passing mechanisms to transfer knowledge between annotated and non-annotated data, named prior optimal transport and bi-directional lexicon update respectively. Then, we perform semi-supervised learning based on a cyclic or a parallel parameter feeding routine to update our models. Our framework is a general framework that can incorporate any supervised and unsupervised BLI methods based on optimal transport. Experimental results on MUSE and VecMap datasets show significant improvement of our models. Ablation study also proves that the two-way interaction between the supervised signal and unsupervised alignment accounts for the gain of the overall performance. Results on distant language pairs further illustrate the advantage and robustness of our proposed method.
pdf
bib
abs
Wasserstein Distance Regularized Sequence Representation for Text Matching in Asymmetrical Domains
Weijie Yu
|
Chen Xu
|
Jun Xu
|
Liang Pang
|
Xiaopeng Gao
|
Xiaozhao Wang
|
Ji-Rong Wen
One approach to matching texts from asymmetrical domains is projecting the input sequences into a common semantic space as feature vectors upon which the matching function can be readily defined and learned. In real-world matching practices, it is often observed that with the training goes on, the feature vectors projected from different domains tend to be indistinguishable. The phenomenon, however, is often overlooked in existing matching models. As a result, the feature vectors are constructed without any regularization, which inevitably increases the difficulty of learning the downstream matching functions. In this paper, we propose a novel match method tailored for text matching in asymmetrical domains, called WD-Match. In WD-Match, a Wasserstein distance-based regularizer is defined to regularize the features vectors projected from different domains. As a result, the method enforces the feature projection function to generate vectors such that those correspond to different domains cannot be easily discriminated. The training process of WD-Match amounts to a game that minimizes the matching loss regularized by the Wasserstein distance. WD-Match can be used to improve different text matching methods, by using the method as its underlying matching model. Four popular text matching methods have been exploited in the paper. Experimental results based on four publicly available benchmarks showed that WD-Match consistently outperformed the underlying methods and the baselines.
pdf
bib
abs
A Simple Approach to Learning Unsupervised Multilingual Embeddings
Pratik Jawanpuria
|
Mayank Meghwanshi
|
Bamdev Mishra
Recent progress on unsupervised cross-lingual embeddings in the bilingual setting has given the impetus to learning a shared embedding space for several languages. A popular framework to solve the latter problem is to solve the following two sub-problems jointly: 1) learning unsupervised word alignment between several language pairs, and 2) learning how to map the monolingual embeddings of every language to shared multilingual space. In contrast, we propose a simple approach by decoupling the above two sub-problems and solving them separately, one after another, using existing techniques. We show that this proposed approach obtains surprisingly good performance in tasks such as bilingual lexicon induction, cross-lingual word similarity, multilingual document classification, and multilingual dependency parsing. When distant languages are involved, the proposed approach shows robust behavior and outperforms existing unsupervised multilingual word embedding approaches.
pdf
bib
abs
Bootstrapped Q-learning with Context Relevant Observation Pruning to Generalize in Text-based Games
Subhajit Chaudhury
|
Daiki Kimura
|
Kartik Talamadupula
|
Michiaki Tatsubori
|
Asim Munawar
|
Ryuki Tachibana
We show that Reinforcement Learning (RL) methods for solving Text-Based Games (TBGs) often fail to generalize on unseen games, especially in small data regimes. To address this issue, we propose Context Relevant Episodic State Truncation (CREST) for irrelevant token removal in observation text for improved generalization. Our method first trains a base model using Q-learning, which typically overfits the training games. The base model’s action token distribution is used to perform observation pruning that removes irrelevant tokens. A second bootstrapped model is then retrained on the pruned observation text. Our bootstrapped agent shows improved generalization in solving unseen TextWorld games, using 10x-20x fewer training games compared to previous state-of-the-art (SOTA) methods despite requiring fewer number of training episodes.
pdf
bib
abs
BERT-EMD: Many-to-Many Layer Mapping for BERT Compression with Earth Mover’s Distance
Jianquan Li
|
Xiaokang Liu
|
Honghong Zhao
|
Ruifeng Xu
|
Min Yang
|
Yaohong Jin
Pre-trained language models (e.g., BERT) have achieved significant success in various natural language processing (NLP) tasks. However, high storage and computational costs obstruct pre-trained language models to be effectively deployed on resource-constrained devices. In this paper, we propose a novel BERT distillation method based on many-to-many layer mapping, which allows each intermediate student layer to learn from any intermediate teacher layers. In this way, our model can learn from different teacher layers adaptively for different NLP tasks. In addition, we leverage Earth Mover’s Distance (EMD) to compute the minimum cumulative cost that must be paid to transform knowledge from teacher network to student network. EMD enables effective matching for the many-to-many layer mapping. Furthermore, we propose a cost attention mechanism to learn the layer weights used in EMD automatically, which is supposed to further improve the model’s performance and accelerate convergence time. Extensive experiments on GLUE benchmark demonstrate that our model achieves competitive performance compared to strong competitors in terms of both accuracy and model compression
pdf
bib
abs
Slot Attention with Value Normalization for Multi-Domain Dialogue State Tracking
Yexiang Wang
|
Yi Guo
|
Siqi Zhu
Incompleteness of domain ontology and unavailability of some values are two inevitable problems of dialogue state tracking (DST). Existing approaches generally fall into two extremes: choosing models without ontology or embedding ontology in models leading to over-dependence. In this paper, we propose a new architecture to cleverly exploit ontology, which consists of Slot Attention (SA) and Value Normalization (VN), referred to as SAVN. Moreover, we supplement the annotation of supporting span for MultiWOZ 2.1, which is the shortest span in utterances to support the labeled value. SA shares knowledge between slots and utterances and only needs a simple structure to predict the supporting span. VN is designed specifically for the use of ontology, which can convert supporting spans to the values. Empirical results demonstrate that SAVN achieves the state-of-the-art joint accuracy of 54.52% on MultiWOZ 2.0 and 54.86% on MultiWOZ 2.1. Besides, we evaluate VN with incomplete ontology. The results show that even if only 30% ontology is used, VN can also contribute to our model.
pdf
bib
abs
Don’t Read Too Much Into It: Adaptive Computation for Open-Domain Question Answering
Yuxiang Wu
|
Sebastian Riedel
|
Pasquale Minervini
|
Pontus Stenetorp
Most approaches to Open-Domain Question Answering consist of a light-weight retriever that selects a set of candidate passages, and a computationally expensive reader that examines the passages to identify the correct answer. Previous works have shown that as the number of retrieved passages increases, so does the performance of the reader. However, they assume all retrieved passages are of equal importance and allocate the same amount of computation to them, leading to a substantial increase in computational cost. To reduce this cost, we propose the use of adaptive computation to control the computational budget allocated for the passages to be read. We first introduce a technique operating on individual passages in isolation which relies on anytime prediction and a per-layer estimation of early exit probability. We then introduce SKYLINEBUILDER, an approach for dynamically deciding on which passage to allocate computation at each step, based on a resource allocation policy trained via reinforcement learning. Our results on SQuAD-Open show that adaptive computation with global prioritisation improves over several strong static and adaptive methods, leading to a 4.3x reduction in computation while retaining 95% performance of the full model.
pdf
bib
abs
Multi-Step Inference for Reasoning Over Paragraphs
Jiangming Liu
|
Matt Gardner
|
Shay B. Cohen
|
Mirella Lapata
Complex reasoning over text requires understanding and chaining together free-form predicates and logical connectives. Prior work has largely tried to do this either symbolically or with black-box transformers. We present a middle ground between these two extremes: a compositional model reminiscent of neural module networks that can perform chained logical reasoning. This model first finds relevant sentences in the context and then chains them together using neural modules. Our model gives significant performance improvements (up to 29% relative error reduction when combined with a reranker) on ROPES, a recently-introduced complex reasoning dataset.
pdf
bib
abs
Learning a Cost-Effective Annotation Policy for Question Answering
Bernhard Kratzwald
|
Stefan Feuerriegel
|
Huan Sun
State-of-the-art question answering (QA) relies upon large amounts of training data for which labeling is time consuming and thus expensive. For this reason, customizing QA systems is challenging. As a remedy, we propose a novel framework for annotating QA datasets that entails learning a cost-effective annotation policy and a semi-supervised annotation scheme. The latter reduces the human effort: it leverages the underlying QA system to suggest potential candidate annotations. Human annotators then simply provide binary feedback on these candidates. Our system is designed such that past annotations continuously improve the future performance and thus overall annotation cost. To the best of our knowledge, this is the first paper to address the problem of annotating questions with minimal annotation cost. We compare our framework against traditional manual annotations in an extensive set of experiments. We find that our approach can reduce up to 21.1% of the annotation cost.
pdf
bib
abs
Scene Restoring for Narrative Machine Reading Comprehension
Zhixing Tian
|
Yuanzhe Zhang
|
Kang Liu
|
Jun Zhao
|
Yantao Jia
|
Zhicheng Sheng
This paper focuses on machine reading comprehension for narrative passages. Narrative passages usually describe a chain of events. When reading this kind of passage, humans tend to restore a scene according to the text with their prior knowledge, which helps them understand the passage comprehensively. Inspired by this behavior of humans, we propose a method to let the machine imagine a scene during reading narrative for better comprehension. Specifically, we build a scene graph by utilizing Atomic as the external knowledge and propose a novel Graph Dimensional-Iteration Network (GDIN) to encode the graph. We conduct experiments on the ROCStories, a dataset of Story Cloze Test (SCT), and CosmosQA, a dataset of multiple choice. Our method achieves state-of-the-art.
pdf
bib
abs
A Simple and Effective Model for Answering Multi-span Questions
Elad Segal
|
Avia Efrat
|
Mor Shoham
|
Amir Globerson
|
Jonathan Berant
Models for reading comprehension (RC) commonly restrict their output space to the set of all single contiguous spans from the input, in order to alleviate the learning problem and avoid the need for a model that generates text explicitly. However, forcing an answer to be a single span can be restrictive, and some recent datasets also include multi-span questions, i.e., questions whose answer is a set of non-contiguous spans in the text. Naturally, models that return single spans cannot answer these questions. In this work, we propose a simple architecture for answering multi-span questions by casting the task as a sequence tagging problem, namely, predicting for each input token whether it should be part of the output or not. Our model substantially improves performance on span extraction questions from DROP and Quoref by 9.9 and 5.5 EM points respectively.
pdf
bib
abs
Top-Rank-Focused Adaptive Vote Collection for the Evaluation of Domain-Specific Semantic Models
Pierangelo Lombardo
|
Alessio Boiardi
|
Luca Colombo
|
Angelo Schiavone
|
Nicolò Tamagnone
The growth of domain-specific applications of semantic models, boosted by the recent achievements of unsupervised embedding learning algorithms, demands domain-specific evaluation datasets. In many cases, content-based recommenders being a prime example, these models are required to rank words or texts according to their semantic relatedness to a given concept, with particular focus on top ranks. In this work, we give a threefold contribution to address these requirements: (i) we define a protocol for the construction, based on adaptive pairwise comparisons, of a relatedness-based evaluation dataset tailored on the available resources and optimized to be particularly accurate in top-rank evaluation; (ii) we define appropriate metrics, extensions of well-known ranking correlation coefficients, to evaluate a semantic model via the aforementioned dataset by taking into account the greater significance of top ranks. Finally, (iii) we define a stochastic transitivity model to simulate semantic-driven pairwise comparisons, which confirms the effectiveness of the proposed dataset construction protocol.
pdf
bib
abs
Meta Fine-Tuning Neural Language Models for Multi-Domain Text Mining
Chengyu Wang
|
Minghui Qiu
|
Jun Huang
|
Xiaofeng He
Pre-trained neural language models bring significant improvement for various NLP tasks, by fine-tuning the models on task-specific training sets. During fine-tuning, the parameters are initialized from pre-trained models directly, which ignores how the learning process of similar NLP tasks in different domains is correlated and mutually reinforced. In this paper, we propose an effective learning procedure named Meta Fine-Tuning (MFT), serving as a meta-learner to solve a group of similar NLP tasks for neural language models. Instead of simply multi-task training over all the datasets, MFT only learns from typical instances of various domains to acquire highly transferable knowledge. It further encourages the language model to encode domain-invariant representations by optimizing a series of novel domain corruption loss functions. After MFT, the model can be fine-tuned for each domain with better parameter initializations and higher generalization ability. We implement MFT upon BERT to solve several multi-domain text mining tasks. Experimental results confirm the effectiveness of MFT and its usefulness for few-shot learning.
pdf
bib
abs
Incorporating Behavioral Hypotheses for Query Generation
Ruey-Cheng Chen
|
Chia-Jung Lee
Generative neural networks have been shown effective on query suggestion. Commonly posed as a conditional generation problem, the task aims to leverage earlier inputs from users in a search session to predict queries that they will likely issue at a later time. User inputs come in various forms such as querying and clicking, each of which can imply different semantic signals channeled through the corresponding behavioral patterns. This paper induces these behavioral biases as hypotheses for query generation, where a generic encoder-decoder Transformer framework is presented to aggregate arbitrary hypotheses of choice. Our experimental results show that the proposed approach leads to significant improvements on top-k word error rate and Bert F1 Score compared to a recent BART model.
pdf
bib
abs
Conditional Causal Relationships between Emotions and Causes in Texts
Xinhong Chen
|
Qing Li
|
Jianping Wang
The causal relationships between emotions and causes in text have recently received a lot of attention. Most of the existing works focus on the extraction of the causally related clauses from documents. However, none of these works has considered the possibility that the causal relationships among the extracted emotion and cause clauses may only be valid under a specific context, without which the extracted clauses may not be causally related. To address such an issue, we propose a new task of determining whether or not an input pair of emotion and cause has a valid causal relationship under different contexts, and construct a corresponding dataset via manual annotation and negative sampling based on an existing benchmark dataset. Furthermore, we propose a prediction aggregation module with low computational overhead to fine-tune the prediction results based on the characteristics of the input clauses. Experiments demonstrate the effectiveness and generality of our aggregation module.
pdf
bib
abs
COMETA: A Corpus for Medical Entity Linking in the Social Media
Marco Basaldella
|
Fangyu Liu
|
Ehsan Shareghi
|
Nigel Collier
Whilst there has been growing progress in Entity Linking (EL) for general language, existing datasets fail to address the complex nature of health terminology in layman’s language. Meanwhile, there is a growing need for applications that can understand the public’s voice in the health domain. To address this we introduce a new corpus called COMETA, consisting of 20k English biomedical entity mentions from Reddit expert-annotated with links to SNOMED CT, a widely-used medical knowledge graph. Our corpus satisfies a combination of desirable properties, from scale and coverage to diversity and quality, that to the best of our knowledge has not been met by any of the existing resources in the field. Through benchmark experiments on 20 EL baselines from string- to neural-based models we shed light on the ability of these systems to perform complex inference on entities and concepts under 2 challenging evaluation scenarios. Our experimental results on COMETA illustrate that no golden bullet exists and even the best mainstream techniques still have a significant performance gap to fill, while the best solution relies on combining different views of data.
pdf
bib
abs
Pareto Probing: Trading Off Accuracy for Complexity
Tiago Pimentel
|
Naomi Saphra
|
Adina Williams
|
Ryan Cotterell
The question of how to probe contextual word representations in a way that is principled and useful has seen significant recent attention. In our contribution to this discussion, we argue, first, for a probe metric that reflects the trade-off between probe complexity and performance: the Pareto hypervolume. To measure complexity, we present a number of parametric and non-parametric metrics. Our experiments with such metrics show that probe’s performance curves often fail to align with widely accepted rankings between language representations (with, e.g., non-contextual representations outperforming contextual ones). These results lead us to argue, second, that common simplistic probe tasks such as POS labeling and dependency arc labeling, are inadequate to evaluate the properties encoded in contextual word representations. We propose full dependency parsing as an example probe task, and demonstrate it with the Pareto hypervolume. In support of our arguments, the results of this illustrative experiment conform closer to accepted rankings among contextual word representations.
pdf
bib
abs
Interpretation of NLP models through input marginalization
Siwon Kim
|
Jihun Yi
|
Eunji Kim
|
Sungroh Yoon
To demystify the “black box” property of deep neural networks for natural language processing (NLP), several methods have been proposed to interpret their predictions by measuring the change in prediction probability after erasing each token of an input. Since existing methods replace each token with a predefined value (i.e., zero), the resulting sentence lies out of the training data distribution, yielding misleading interpretations. In this study, we raise the out-of-distribution problem induced by the existing interpretation methods and present a remedy; we propose to marginalize each token out. We interpret various NLP models trained for sentiment analysis and natural language inference using the proposed method.
pdf
bib
abs
Generating Label Cohesive and Well-Formed Adversarial Claims
Pepa Atanasova
|
Dustin Wright
|
Isabelle Augenstein
Adversarial attacks reveal important vulnerabilities and flaws of trained models. One potent type of attack are universal adversarial triggers, which are individual n-grams that, when appended to instances of a class under attack, can trick a model into predicting a target class. However, for inference tasks such as fact checking, these triggers often inadvertently invert the meaning of instances they are inserted in. In addition, such attacks produce semantically nonsensical inputs, as they simply concatenate triggers to existing samples. Here, we investigate how to generate adversarial attacks against fact checking systems that preserve the ground truth meaning and are semantically valid. We extend the HotFlip attack algorithm used for universal trigger generation by jointly minimizing the target class loss of a fact checking model and the entailment class loss of an auxiliary natural language inference model. We then train a conditional language model to generate semantically valid statements, which include the found universal triggers. We find that the generated attacks maintain the directionality and semantic validity of the claim better than previous work.
pdf
bib
abs
Are All Good Word Vector Spaces Isomorphic?
Ivan Vulić
|
Sebastian Ruder
|
Anders Søgaard
Existing algorithms for aligning cross-lingual word vector spaces assume that vector spaces are approximately isomorphic. As a result, they perform poorly or fail completely on non-isomorphic spaces. Such non-isomorphism has been hypothesised to result from typological differences between languages. In this work, we ask whether non-isomorphism is also crucially a sign of degenerate word vector spaces. We present a series of experiments across diverse languages which show that variance in performance across language pairs is not only due to typological differences, but can mostly be attributed to the size of the monolingual resources available, and to the properties and duration of monolingual training (e.g. “under-training”).
pdf
bib
abs
Cold-Start and Interpretability: Turning Regular Expressions into Trainable Recurrent Neural Networks
Chengyue Jiang
|
Yinggong Zhao
|
Shanbo Chu
|
Libin Shen
|
Kewei Tu
Neural networks can achieve impressive performance on many natural language processing applications, but they typically need large labeled data for training and are not easily interpretable. On the other hand, symbolic rules such as regular expressions are interpretable, require no training, and often achieve decent accuracy; but rules cannot benefit from labeled data when available and hence underperform neural networks in rich-resource scenarios. In this paper, we propose a type of recurrent neural networks called FA-RNNs that combine the advantages of neural networks and regular expression rules. An FA-RNN can be converted from regular expressions and deployed in zero-shot and cold-start scenarios. It can also utilize labeled data for training to achieve improved prediction accuracy. After training, an FA-RNN often remains interpretable and can be converted back into regular expressions. We apply FA-RNNs to text classification and observe that FA-RNNs significantly outperform previous neural approaches in both zero-shot and low-resource settings and remain very competitive in rich-resource settings.
pdf
bib
abs
When BERT Plays the Lottery, All Tickets Are Winning
Sai Prasanna
|
Anna Rogers
|
Anna Rumshisky
Large Transformer-based models were shown to be reducible to a smaller number of self-attention heads and layers. We consider this phenomenon from the perspective of the lottery ticket hypothesis, using both structured and magnitude pruning. For fine-tuned BERT, we show that (a) it is possible to find subnetworks achieving performance that is comparable with that of the full model, and (b) similarly-sized subnetworks sampled from the rest of the model perform worse. Strikingly, with structured pruning even the worst possible subnetworks remain highly trainable, indicating that most pre-trained BERT weights are potentially useful. We also study the “good” subnetworks to see if their success can be attributed to superior linguistic knowledge, but find them unstable, and not explained by meaningful self-attention patterns.
pdf
bib
abs
On the weak link between importance and prunability of attention heads
Aakriti Budhraja
|
Madhura Pande
|
Preksha Nema
|
Pratyush Kumar
|
Mitesh M. Khapra
Given the success of Transformer-based models, two directions of study have emerged: interpreting role of individual attention heads and down-sizing the models for efficiency. Our work straddles these two streams: We analyse the importance of basing pruning strategies on the interpreted role of the attention heads. We evaluate this on Transformer and BERT models on multiple NLP tasks. Firstly, we find that a large fraction of the attention heads can be randomly pruned with limited effect on accuracy. Secondly, for Transformers, we find no advantage in pruning attention heads identified to be important based on existing studies that relate importance to the location of a head. On the BERT model too we find no preference for top or bottom layers, though the latter are reported to have higher importance. However, strategies that avoid pruning middle layers and consecutive layers perform better. Finally, during fine-tuning the compensation for pruned attention heads is roughly equally distributed across the un-pruned heads. Our results thus suggest that interpretation of attention heads does not strongly inform pruning.
pdf
bib
abs
Towards Interpreting BERT for Reading Comprehension Based QA
Sahana Ramnath
|
Preksha Nema
|
Deep Sahni
|
Mitesh M. Khapra
BERT and its variants have achieved state-of-the-art performance in various NLP tasks. Since then, various works have been proposed to analyze the linguistic information being captured in BERT. However, the current works do not provide an insight into how BERT is able to achieve near human-level performance on the task of Reading Comprehension based Question Answering. In this work, we attempt to interpret BERT for RCQA. Since BERT layers do not have predefined roles, we define a layer’s role or functionality using Integrated Gradients. Based on the defined roles, we perform a preliminary analysis across all layers. We observed that the initial layers focus on query-passage interaction, whereas later layers focus more on contextual understanding and enhancing the answer prediction. Specifically for quantifier questions (how much/how many), we notice that BERT focuses on confusing words (i.e., on other numerical quantities in the passage) in the later layers, but still manages to predict the answer correctly. The fine-tuning and analysis scripts will be publicly available at
https://github.com/iitmnlp/BERT-Analysis-RCQA.
pdf
bib
abs
How do Decisions Emerge across Layers in Neural Models? Interpretation with Differentiable Masking
Nicola De Cao
|
Michael Sejr Schlichtkrull
|
Wilker Aziz
|
Ivan Titov
Attribution methods assess the contribution of inputs to the model prediction. One way to do so is erasure: a subset of inputs is considered irrelevant if it can be removed without affecting the prediction. Though conceptually simple, erasure’s objective is intractable and approximate search remains expensive with modern deep NLP models. Erasure is also susceptible to the hindsight bias: the fact that an input can be dropped does not mean that the model ‘knows’ it can be dropped. The resulting pruning is over-aggressive and does not reflect how the model arrives at the prediction. To deal with these challenges, we introduce Differentiable Masking. DiffMask learns to mask-out subsets of the input while maintaining differentiability. The decision to include or disregard an input token is made with a simple model based on intermediate hidden layers of the analyzed model. First, this makes the approach efficient because we predict rather than search. Second, as with probing classifiers, this reveals what the network ‘knows’ at the corresponding layers. This lets us not only plot attribution heatmaps but also analyze how decisions are formed across network layers. We use DiffMask to study BERT models on sentiment classification and question answering.
pdf
bib
abs
A Diagnostic Study of Explainability Techniques for Text Classification
Pepa Atanasova
|
Jakob Grue Simonsen
|
Christina Lioma
|
Isabelle Augenstein
Recent developments in machine learning have introduced models that approach human performance at the cost of increased architectural complexity. Efforts to make the rationales behind the models’ predictions transparent have inspired an abundance of new explainability techniques. Provided with an already trained model, they compute saliency scores for the words of an input instance. However, there exists no definitive guide on (i) how to choose such a technique given a particular application task and model architecture, and (ii) the benefits and drawbacks of using each such technique. In this paper, we develop a comprehensive list of diagnostic properties for evaluating existing explainability techniques. We then employ the proposed list to compare a set of diverse explainability techniques on downstream text classification tasks and neural network architectures. We also compare the saliency scores assigned by the explainability techniques with human annotations of salient input regions to find relations between a model’s performance and the agreement of its rationales with human ones. Overall, we find that the gradient-based explanations perform best across tasks and model architectures, and we present further insights into the properties of the reviewed explainability techniques.
pdf
bib
abs
STL-CQA: Structure-based Transformers with Localization and Encoding for Chart Question Answering
Hrituraj Singh
|
Sumit Shekhar
Chart Question Answering (CQA) is the task of answering natural language questions about visualisations in the chart image. Recent solutions, inspired by VQA approaches, rely on image-based attention for question/answering while ignoring the inherent chart structure. We propose STL-CQA which improves the question/answering through sequential elements localization, question encoding and then, a structural transformer-based learning approach. We conduct extensive experiments while proposing pre-training tasks, methodology and also an improved dataset with more complex and balanced questions of different types. The proposed methodology shows a significant accuracy improvement compared to the state-of-the-art approaches on various chart Q/A datasets, while outperforming even human baseline on the DVQA Dataset. We also demonstrate interpretability while examining different components in the inference pipeline.
pdf
bib
abs
Learning to Contrast the Counterfactual Samples for Robust Visual Question Answering
Zujie Liang
|
Weitao Jiang
|
Haifeng Hu
|
Jiaying Zhu
In the task of Visual Question Answering (VQA), most state-of-the-art models tend to learn spurious correlations in the training set and achieve poor performance in out-of-distribution test data. Some methods of generating counterfactual samples have been proposed to alleviate this problem. However, the counterfactual samples generated by most previous methods are simply added to the training data for augmentation and are not fully utilized. Therefore, we introduce a novel self-supervised contrastive learning mechanism to learn the relationship between original samples, factual samples and counterfactual samples. With the better cross-modal joint embeddings learned from the auxiliary training objective, the reasoning capability and robustness of the VQA model are boosted significantly. We evaluate the effectiveness of our method by surpassing current state-of-the-art models on the VQA-CP dataset, a diagnostic benchmark for assessing the VQA model’s robustness.
pdf
bib
abs
Learning Physical Common Sense as Knowledge Graph Completion via BERT Data Augmentation and Constrained Tucker Factorization
Zhenjie Zhao
|
Evangelos Papalexakis
|
Xiaojuan Ma
Physical common sense plays an essential role in the cognition abilities of robots for human-robot interaction. Machine learning methods have shown promising results on physical commonsense learning in natural language processing but still suffer from model generalization. In this paper, we formulate physical commonsense learning as a knowledge graph completion problem to better use the latent relationships among training samples. Compared with completing general knowledge graphs, completing a physical commonsense knowledge graph has three unique characteristics: training data are scarce, not all facts can be mined from existing texts, and the number of relationships is small. To deal with these problems, we first use a pre-training language model BERT to augment training data, and then employ constrained tucker factorization to model complex relationships by constraining types and adding negative relationships. We compare our method with existing state-of-the-art knowledge graph embedding methods and show its superior performance.
pdf
bib
abs
A Visually-grounded First-person Dialogue Dataset with Verbal and Non-verbal Responses
Hisashi Kamezawa
|
Noriki Nishida
|
Nobuyuki Shimizu
|
Takashi Miyazaki
|
Hideki Nakayama
In real-world dialogue, first-person visual information about where the other speakers are and what they are paying attention to is crucial to understand their intentions. Non-verbal responses also play an important role in social interactions. In this paper, we propose a visually-grounded first-person dialogue (VFD) dataset with verbal and non-verbal responses. The VFD dataset provides manually annotated (1) first-person images of agents, (2) utterances of human speakers, (3) eye-gaze locations of the speakers, and (4) the agents’ verbal and non-verbal responses. We present experimental results obtained using the proposed VFD dataset and recent neural network models (e.g., BERT, ResNet). The results demonstrate that first-person vision helps neural network models correctly understand human intentions, and the production of non-verbal responses is a challenging task like that of verbal responses. Our dataset is publicly available.
pdf
bib
abs
Cross-Media Keyphrase Prediction: A Unified Framework with Multi-Modality Multi-Head Attention and Image Wordings
Yue Wang
|
Jing Li
|
Michael Lyu
|
Irwin King
Social media produces large amounts of contents every day. To help users quickly capture what they need, keyphrase prediction is receiving a growing attention. Nevertheless, most prior efforts focus on text modeling, largely ignoring the rich features embedded in the matching images. In this work, we explore the joint effects of texts and images in predicting the keyphrases for a multimedia post. To better align social media style texts and images, we propose: (1) a novel Multi-Modality MultiHead Attention (M3H-Att) to capture the intricate cross-media interactions; (2) image wordings, in forms of optical characters and image attributes, to bridge the two modalities. Moreover, we design a unified framework to leverage the outputs of keyphrase classification and generation and couple their advantages. Extensive experiments on a large-scale dataset newly collected from Twitter show that our model significantly outperforms the previous state of the art based on traditional attention mechanisms. Further analyses show that our multi-head attention is able to attend information from various aspects and boost classification or generation in diverse scenarios.
pdf
bib
abs
VD-BERT: A Unified Vision and Dialog Transformer with BERT
Yue Wang
|
Shafiq Joty
|
Michael Lyu
|
Irwin King
|
Caiming Xiong
|
Steven C.H. Hoi
Visual dialog is a challenging vision-language task, where a dialog agent needs to answer a series of questions through reasoning on the image content and dialog history. Prior work has mostly focused on various attention mechanisms to model such intricate interactions. By contrast, in this work, we propose VD-BERT, a simple yet effective framework of unified vision-dialog Transformer that leverages the pretrained BERT language models for Visual Dialog tasks. The model is unified in that (1) it captures all the interactions between the image and the multi-turn dialog using a single-stream Transformer encoder, and (2) it supports both answer ranking and answer generation seamlessly through the same architecture. More crucially, we adapt BERT for the effective fusion of vision and dialog contents via visually grounded training. Without the need of pretraining on external vision-language data, our model yields new state of the art, achieving the top position in both single-model and ensemble settings (74.54 and 75.35 NDCG scores) on the visual dialog leaderboard. Our code and pretrained models are released at
https://github.com/salesforce/VD-BERT.
pdf
bib
abs
The Grammar of Emergent Languages
Oskar van der Wal
|
Silvan de Boer
|
Elia Bruni
|
Dieuwke Hupkes
In this paper, we consider the syntactic properties of languages emerged in referential games, using unsupervised grammar induction (UGI) techniques originally designed to analyse natural language. We show that the considered UGI techniques are appropriate to analyse emergent languages and we then study if the languages that emerge in a typical referential game setup exhibit syntactic structure, and to what extent this depends on the maximum message length and number of symbols that the agents are allowed to use. Our experiments demonstrate that a certain message length and vocabulary size are required for structure to emerge, but they also illustrate that more sophisticated game scenarios are required to obtain syntactic properties more akin to those observed in human language. We argue that UGI techniques should be part of the standard toolkit for analysing emergent languages and release a comprehensive library to facilitate such analysis for future researchers.
pdf
bib
abs
Sub-Instruction Aware Vision-and-Language Navigation
Yicong Hong
|
Cristian Rodriguez
|
Qi Wu
|
Stephen Gould
Vision-and-language navigation requires an agent to navigate through a real 3D environment following natural language instructions. Despite significant advances, few previous works are able to fully utilize the strong correspondence between the visual and textual sequences. Meanwhile, due to the lack of intermediate supervision, the agent’s performance at following each part of the instruction cannot be assessed during navigation. In this work, we focus on the granularity of the visual and language sequences as well as the traceability of agents through the completion of an instruction. We provide agents with fine-grained annotations during training and find that they are able to follow the instruction better and have a higher chance of reaching the target at test time. We enrich the benchmark dataset Room-to-Room (R2R) with sub-instructions and their corresponding paths. To make use of this data, we propose effective sub-instruction attention and shifting modules that select and attend to a single sub-instruction at each time-step. We implement our sub-instruction modules in four state-of-the-art agents, compare with their baseline models, and show that our proposed method improves the performance of all four agents. We release the Fine-Grained R2R dataset (FGR2R) and the code at
https://github.com/YicongHong/Fine-Grained-R2R.
pdf
bib
abs
Knowledge-Grounded Dialogue Generation with Pre-trained Language Models
Xueliang Zhao
|
Wei Wu
|
Can Xu
|
Chongyang Tao
|
Dongyan Zhao
|
Rui Yan
We study knowledge-grounded dialogue generation with pre-trained language models. To leverage the redundant external knowledge under capacity constraint, we propose equipping response generation defined by a pre-trained language model with a knowledge selection module, and an unsupervised approach to jointly optimizing knowledge selection and response generation with unlabeled dialogues. Empirical results on two benchmarks indicate that our model can significantly outperform state-of-the-art methods in both automatic evaluation and human judgment.
pdf
bib
abs
MinTL: Minimalist Transfer Learning for Task-Oriented Dialogue Systems
Zhaojiang Lin
|
Andrea Madotto
|
Genta Indra Winata
|
Pascale Fung
In this paper, we propose Minimalist Transfer Learning (MinTL) to simplify the system design process of task-oriented dialogue systems and alleviate the over-dependency on annotated data. MinTL is a simple yet effective transfer learning framework, which allows us to plug-and-play pre-trained seq2seq models, and jointly learn dialogue state tracking and dialogue response generation. Unlike previous approaches, which use a copy mechanism to “carryover” the old dialogue states to the new one, we introduce Levenshtein belief spans (Lev), that allows efficient dialogue state tracking with a minimal generation length. We instantiate our learning framework with two pre-trained backbones: T5 and BART, and evaluate them on MultiWOZ. Extensive experiments demonstrate that: 1) our systems establish new state-of-the-art results on end-to-end response generation, 2) MinTL-based systems are more robust than baseline methods in the low resource setting, and they achieve competitive results with only 20% training data, and 3) Lev greatly improves the inference efficiency.
pdf
bib
abs
Variational Hierarchical Dialog Autoencoder for Dialog State Tracking Data Augmentation
Kang Min Yoo
|
Hanbit Lee
|
Franck Dernoncourt
|
Trung Bui
|
Walter Chang
|
Sang-goo Lee
Recent works have shown that generative data augmentation, where synthetic samples generated from deep generative models complement the training dataset, benefit NLP tasks. In this work, we extend this approach to the task of dialog state tracking for goaloriented dialogs. Due to the inherent hierarchical structure of goal-oriented dialogs over utterances and related annotations, the deep generative model must be capable of capturing the coherence among different hierarchies and types of dialog features. We propose the Variational Hierarchical Dialog Autoencoder (VHDA) for modeling the complete aspects of goal-oriented dialogs, including linguistic features and underlying structured annotations, namely speaker information, dialog acts, and goals. The proposed architecture is designed to model each aspect of goal-oriented dialogs using inter-connected latent variables and learns to generate coherent goal-oriented dialogs from the latent spaces. To overcome training issues that arise from training complex variational models, we propose appropriate training strategies. Experiments on various dialog datasets show that our model improves the downstream dialog trackers’ robustness via generative data augmentation. We also discover additional benefits of our unified approach to modeling goal-oriented dialogs – dialog response generation and user simulation, where our model outperforms previous strong baselines.
pdf
bib
abs
Bridging the Gap between Prior and Posterior Knowledge Selection for Knowledge-Grounded Dialogue Generation
Xiuyi Chen
|
Fandong Meng
|
Peng Li
|
Feilong Chen
|
Shuang Xu
|
Bo Xu
|
Jie Zhou
Knowledge selection plays an important role in knowledge-grounded dialogue, which is a challenging task to generate more informative responses by leveraging external knowledge. Recently, latent variable models have been proposed to deal with the diversity of knowledge selection by using both prior and posterior distributions over knowledge and achieve promising performance. However, these models suffer from a huge gap between prior and posterior knowledge selection. Firstly, the prior selection module may not learn to select knowledge properly because of lacking the necessary posterior information. Secondly, latent variable models suffer from the exposure bias that dialogue generation is based on the knowledge selected from the posterior distribution at training but from the prior distribution at inference. Here, we deal with these issues on two aspects: (1) We enhance the prior selection module with the necessary posterior information obtained from the specially designed Posterior Information Prediction Module (PIPM); (2) We propose a Knowledge Distillation Based Training Strategy (KDBTS) to train the decoder with the knowledge selected from the prior distribution, removing the exposure bias of knowledge selection. Experimental results on two knowledge-grounded dialogue datasets show that both PIPM and KDBTS achieve performance improvement over the state-of-the-art latent variable model and their combination shows further improvement.
pdf
bib
abs
Counterfactual Off-Policy Training for Neural Dialogue Generation
Qingfu Zhu
|
Wei-Nan Zhang
|
Ting Liu
|
William Yang Wang
Open-domain dialogue generation suffers from the data insufficiency problem due to the vast size of potential responses. In this paper, we propose to explore potential responses by counterfactual reasoning. Given an observed response, the counterfactual reasoning model automatically infers the outcome of an alternative policy that could have been taken. The resulting counterfactual response synthesized in hindsight is of higher quality than the response synthesized from scratch. Training on the counterfactual responses under the adversarial learning framework helps to explore the high-reward area of the potential response space. An empirical study on the DailyDialog dataset shows that our approach significantly outperforms the HRED model as well as the conventional adversarial learning approaches.
pdf
bib
abs
Dialogue Distillation: Open-Domain Dialogue Augmentation Using Unpaired Data
Rongsheng Zhang
|
Yinhe Zheng
|
Jianzhi Shao
|
Xiaoxi Mao
|
Yadong Xi
|
Minlie Huang
Recent advances in open-domain dialogue systems rely on the success of neural models that are trained on large-scale data. However, collecting large-scale dialogue data is usually time-consuming and labor-intensive. To address this data dilemma, we propose a novel data augmentation method for training open-domain dialogue models by utilizing unpaired data. Specifically, a data-level distillation process is first proposed to construct augmented dialogues where both post and response are retrieved from the unpaired data. A ranking module is employed to filter out low-quality dialogues. Further, a model-level distillation process is employed to distill a teacher model trained on high-quality paired data to augmented dialogue pairs, thereby preventing dialogue models from being affected by the noise in the augmented data. Automatic and manual evaluation indicates that our method can produce high-quality dialogue pairs with diverse contents, and the proposed data-level and model-level dialogue distillation can improve the performance of competitive baselines.
pdf
bib
abs
Task-Completion Dialogue Policy Learning via Monte Carlo Tree Search with Dueling Network
Sihan Wang
|
Kaijie Zhou
|
Kunfeng Lai
|
Jianping Shen
We introduce a framework of Monte Carlo Tree Search with Double-q Dueling network (MCTS-DDU) for task-completion dialogue policy learning. Different from the previous deep model-based reinforcement learning methods, which uses background planning and may suffer from low-quality simulated experiences, MCTS-DDU performs decision-time planning based on dialogue state search trees built by Monte Carlo simulations and is robust to the simulation errors. Such idea arises naturally in human behaviors, e.g. predicting others’ responses and then deciding our own actions. In the simulated movie-ticket booking task, our method outperforms the background planning approaches significantly. We demonstrate the effectiveness of MCTS and the dueling network in detailed ablation studies, and also compare the performance upper bounds of these two planning methods.
pdf
bib
abs
Learning a Simple and Effective Model for Multi-turn Response Generation with Auxiliary Tasks
Yufan Zhao
|
Can Xu
|
Wei Wu
We study multi-turn response generation for open-domain dialogues. The existing state-of-the-art addresses the problem with deep neural architectures. While these models improved response quality, their complexity also hinders the application of the models in real systems. In this work, we pursue a model that has a simple structure yet can effectively leverage conversation contexts for response generation. To this end, we propose four auxiliary tasks including word order recovery, utterance order recovery, masked word recovery, and masked utterance recovery, and optimize the objectives of these tasks together with maximizing the likelihood of generation. By this means, the auxiliary tasks that relate to context understanding can guide the learning of the generation model to achieve a better local optimum. Empirical studies with three benchmarks indicate that our model can significantly outperform state-of-the-art generation models in terms of response quality on both automatic evaluation and human judgment, and at the same time enjoys a much faster decoding process.
pdf
bib
abs
AttnIO: Knowledge Graph Exploration with In-and-Out Attention Flow for Knowledge-Grounded Dialogue
Jaehun Jung
|
Bokyung Son
|
Sungwon Lyu
Retrieving the proper knowledge relevant to conversational context is an important challenge in dialogue systems, to engage users with more informative response. Several recent works propose to formulate this knowledge selection problem as a path traversal over an external knowledge graph (KG), but show only a limited utilization of KG structure, leaving rooms of improvement in performance. To this effect, we present AttnIO, a new dialog-conditioned path traversal model that makes a full use of rich structural information in KG based on two directions of attention flows. Through the attention flows, AttnIO is not only capable of exploring a broad range of multi-hop knowledge paths, but also learns to flexibly adjust the varying range of plausible nodes and edges to attend depending on the dialog context. Empirical evaluations present a marked performance improvement of AttnIO compared to all baselines in OpenDialKG dataset. Also, we find that our model can be trained to generate an adequate knowledge path even when the paths are not available and only the destination nodes are given as label, making it more applicable to real-world dialogue systems.
pdf
bib
abs
Amalgamating Knowledge from Two Teachers for Task-oriented Dialogue System with Adversarial Training
Wanwei He
|
Min Yang
|
Rui Yan
|
Chengming Li
|
Ying Shen
|
Ruifeng Xu
The challenge of both achieving task completion by querying the knowledge base and generating human-like responses for task-oriented dialogue systems is attracting increasing research attention. In this paper, we propose a “Two-Teacher One-Student” learning framework (TTOS) for task-oriented dialogue, with the goal of retrieving accurate KB entities and generating human-like responses simultaneously. TTOS amalgamates knowledge from two teacher networks that together provide comprehensive guidance to build a high-quality task-oriented dialogue system (student network). Each teacher network is trained via reinforcement learning with a goal-specific reward, which can be viewed as an expert towards the goal and transfers the professional characteristic to the student network. Instead of adopting the classic student-teacher learning of forcing the output of a student network to exactly mimic the soft targets produced by the teacher networks, we introduce two discriminators as in generative adversarial network (GAN) to transfer knowledge from two teachers to the student. The usage of discriminators relaxes the rigid coupling between the student and teachers. Extensive experiments on two benchmark datasets (i.e., CamRest and In-Car Assistant) demonstrate that TTOS significantly outperforms baseline methods.
pdf
bib
abs
Task-oriented Domain-specific Meta-Embedding for Text Classification
Xin Wu
|
Yi Cai
|
Yang Kai
|
Tao Wang
|
Qing Li
Meta-embedding learning, which combines complementary information in different word embeddings, have shown superior performances across different Natural Language Processing tasks. However, domain-specific knowledge is still ignored by existing meta-embedding methods, which results in unstable performances across specific domains. Moreover, the importance of general and domain word embeddings is related to downstream tasks, how to regularize meta-embedding to adapt downstream tasks is an unsolved problem. In this paper, we propose a method to incorporate both domain-specific and task-oriented information into meta-embeddings. We conducted extensive experiments on four text classification datasets and the results show the effectiveness of our proposed method.
pdf
bib
abs
Don’t Neglect the Obvious: On the Role of Unambiguous Words in Word Sense Disambiguation
Daniel Loureiro
|
Jose Camacho-Collados
State-of-the-art methods for Word Sense Disambiguation (WSD) combine two different features: the power of pre-trained language models and a propagation method to extend the coverage of such models. This propagation is needed as current sense-annotated corpora lack coverage of many instances in the underlying sense inventory (usually WordNet). At the same time, unambiguous words make for a large portion of all words in WordNet, while being poorly covered in existing sense-annotated corpora. In this paper, we propose a simple method to provide annotations for most unambiguous words in a large corpus. We introduce the UWA (Unambiguous Word Annotations) dataset and show how a state-of-the-art propagation-based model can use it to extend the coverage and quality of its word sense embeddings by a significant margin, improving on its original results on WSD.
pdf
bib
abs
Within-Between Lexical Relation Classification
Oren Barkan
|
Avi Caciularu
|
Ido Dagan
We propose the novel Within-Between Relation model for recognizing lexical-semantic relations between words. Our model integrates relational and distributional signals, forming an effective sub-space representation for each relation. We show that the proposed model is competitive and outperforms other baselines, across various benchmarks.
pdf
bib
abs
With More Contexts Comes Better Performance: Contextualized Sense Embeddings for All-Round Word Sense Disambiguation
Bianca Scarlini
|
Tommaso Pasini
|
Roberto Navigli
Contextualized word embeddings have been employed effectively across several tasks in Natural Language Processing, as they have proved to carry useful semantic information. However, it is still hard to link them to structured sources of knowledge. In this paper we present ARES (context-AwaRe Embeddings of Senses), a semi-supervised approach to producing sense embeddings for the lexical meanings within a lexical knowledge base that lie in a space that is comparable to that of contextualized word vectors. ARES representations enable a simple 1 Nearest-Neighbour algorithm to outperform state-of-the-art models, not only in the English Word Sense Disambiguation task, but also in the multilingual one, whilst training on sense-annotated data in English only. We further assess the quality of our embeddings in the Word-in-Context task, where, when used as an external source of knowledge, they consistently improve the performance of a neural model, leading it to compete with other more complex architectures. ARES embeddings for all WordNet concepts and the automatically-extracted contexts used for creating the sense representations are freely available at
http://sensembert.org/ares.
pdf
bib
abs
Convolution over Hierarchical Syntactic and Lexical Graphs for Aspect Level Sentiment Analysis
Mi Zhang
|
Tieyun Qian
The state-of-the-art methods in aspect-level sentiment classification have leveraged the graph based models to incorporate the syntactic structure of a sentence. While being effective, these methods ignore the corpus level word co-occurrence information, which reflect the collocations in linguistics like “nothing special”. Moreover, they do not distinguish the different types of syntactic dependency, e.g., a nominal subject relation “food-was” is treated equally as an adjectival complement relation “was-okay” in “food was okay”. To tackle the above two limitations, we propose a novel architecture which convolutes over hierarchical syntactic and lexical graphs. Specifically, we employ a global lexical graph to encode the corpus level word co-occurrence information. Moreover, we build a concept hierarchy on both the syntactic and lexical graphs for differentiating various types of dependency relations or lexical word pairs. Finally, we design a bi-level interactive graph convolution network to fully exploit these two graphs. Extensive experiments on five bench- mark datasets show that our method outperforms the state-of-the-art baselines.
pdf
bib
abs
Multi-Instance Multi-Label Learning Networks for Aspect-Category Sentiment Analysis
Yuncong Li
|
Cunxiang Yin
|
Sheng-hua Zhong
|
Xu Pan
Aspect-category sentiment analysis (ACSA) aims to predict sentiment polarities of sentences with respect to given aspect categories. To detect the sentiment toward a particular aspect category in a sentence, most previous methods first generate an aspect category-specific sentence representation for the aspect category, then predict the sentiment polarity based on the representation. These methods ignore the fact that the sentiment of an aspect category mentioned in a sentence is an aggregation of the sentiments of the words indicating the aspect category in the sentence, which leads to suboptimal performance. In this paper, we propose a Multi-Instance Multi-Label Learning Network for Aspect-Category sentiment analysis (AC-MIMLLN), which treats sentences as bags, words as instances, and the words indicating an aspect category as the key instances of the aspect category. Given a sentence and the aspect categories mentioned in the sentence, AC-MIMLLN first predicts the sentiments of the instances, then finds the key instances for the aspect categories, finally obtains the sentiments of the sentence toward the aspect categories by aggregating the key instance sentiments. Experimental results on three public datasets demonstrate the effectiveness of AC-MIMLLN.
pdf
bib
abs
Aspect Sentiment Classification with Aspect-Specific Opinion Spans
Lu Xu
|
Lidong Bing
|
Wei Lu
|
Fei Huang
Aspect based sentiment analysis, predicting sentiment polarity of given aspects, has drawn extensive attention. Previous attention-based models emphasize using aspect semantics to help extract opinion features for classification. However, these works are either not able to capture opinion spans as a whole, or not able to capture variable-length opinion spans. In this paper, we present a neat and effective structured attention model by aggregating multiple linear-chain CRFs. Such a design allows the model to extract aspect-specific opinion spans and then evaluate sentiment polarity by exploiting the extracted opinion features. The experimental results on four datasets demonstrate the effectiveness of the proposed model, and our analysis demonstrates that our model can capture aspect-specific opinion spans.
pdf
bib
abs
Emotion-Cause Pair Extraction as Sequence Labeling Based on A Novel Tagging Scheme
Chaofa Yuan
|
Chuang Fan
|
Jianzhu Bao
|
Ruifeng Xu
The task of emotion-cause pair extraction deals with finding all emotions and the corresponding causes in unannotated emotion texts. Most recent studies are based on the likelihood of Cartesian product among all clause candidates, resulting in a high computational cost. Targeting this issue, we regard the task as a sequence labeling problem and propose a novel tagging scheme with coding the distance between linked components into the tags, so that emotions and the corresponding causes can be extracted simultaneously. Accordingly, an end-to-end model is presented to process the input texts from left to right, always with linear time complexity, leading to a speed up. Experimental results show that our proposed model achieves the best performance, outperforming the state-of-the-art method by 2.26% (p<0.001) in F1 measure.
pdf
bib
abs
End-to-End Emotion-Cause Pair Extraction based on Sliding Window Multi-Label Learning
Zixiang Ding
|
Rui Xia
|
Jianfei Yu
Emotion-cause pair extraction (ECPE) is a new task that aims to extract the potential pairs of emotions and their corresponding causes in a document. The existing methods first perform emotion extraction and cause extraction independently, and then perform emotion-cause pairing and filtering. However, the above methods ignore the fact that the cause and the emotion it triggers are inseparable, and the extraction of the cause without specifying the emotion is pathological, which greatly limits the performance of the above methods in the first step. To tackle these shortcomings, we propose two joint frameworks for ECPE: 1) multi-label learning for the extraction of the cause clauses corresponding to the specified emotion clause (CMLL) and 2) multi-label learning for the extraction of the emotion clauses corresponding to the specified cause clause (EMLL). The window of multi-label learning is centered on the specified emotion clause or cause clause and slides as their positions move. Finally, CMLL and EMLL are integrated to obtain the final result. We evaluate our model on a benchmark emotion cause corpus, the results show that our approach achieves the best performance among all compared systems on the ECPE task.
pdf
bib
abs
Multi-modal Multi-label Emotion Detection with Modality and Label Dependence
Dong Zhang
|
Xincheng Ju
|
Junhui Li
|
Shoushan Li
|
Qiaoming Zhu
|
Guodong Zhou
As an important research issue in the natural language processing community, multi-label emotion detection has been drawing more and more attention in the last few years. However, almost all existing studies focus on one modality (e.g., textual modality). In this paper, we focus on multi-label emotion detection in a multi-modal scenario. In this scenario, we need to consider both the dependence among different labels (label dependence) and the dependence between each predicting label and different modalities (modality dependence). Particularly, we propose a multi-modal sequence-to-set approach to effectively model both kinds of dependence in multi-modal multi-label emotion detection. The detailed evaluation demonstrates the effectiveness of our approach.
pdf
bib
abs
Tasty Burgers, Soggy Fries: Probing Aspect Robustness in Aspect-Based Sentiment Analysis
Xiaoyu Xing
|
Zhijing Jin
|
Di Jin
|
Bingning Wang
|
Qi Zhang
|
Xuanjing Huang
Aspect-based sentiment analysis (ABSA) aims to predict the sentiment towards a specific aspect in the text. However, existing ABSA test sets cannot be used to probe whether a model can distinguish the sentiment of the target aspect from the non-target aspects. To solve this problem, we develop a simple but effective approach to enrich ABSA test sets. Specifically, we generate new examples to disentangle the confounding sentiments of the non-target aspects from the target aspect’s sentiment. Based on the SemEval 2014 dataset, we construct the Aspect Robustness Test Set (ARTS) as a comprehensive probe of the aspect robustness of ABSA models. Over 92% data of ARTS show high fluency and desired sentiment on all aspects by human evaluation. Using ARTS, we analyze the robustness of nine ABSA models, and observe, surprisingly, that their accuracy drops by up to 69.73%. We explore several ways to improve aspect robustness, and find that adversarial training can improve models’ performance on ARTS by up to 32.85%. Our code and new test set are available at
https://github.com/zhijing-jin/ARTS_TestSetpdf
bib
abs
Modeling Content Importance for Summarization with Pre-trained Language Models
Liqiang Xiao
|
Lu Wang
|
Hao He
|
Yaohui Jin
Modeling content importance is an essential yet challenging task for summarization. Previous work is mostly based on statistical methods that estimate word-level salience, which does not consider semantics and larger context when quantifying importance. It is thus hard for these methods to generalize to semantic units of longer text spans. In this work, we apply information theory on top of pre-trained language models and define the concept of importance from the perspective of information amount. It considers both the semantics and context when evaluating the importance of each semantic unit. With the help of pre-trained language models, it can easily generalize to different kinds of semantic units n-grams or sentences. Experiments on CNN/Daily Mail and New York Times datasets demonstrate that our method can better model the importance of content than prior work based on F1 and ROUGE scores.
pdf
bib
abs
Unsupervised Reference-Free Summary Quality Evaluation via Contrastive Learning
Hanlu Wu
|
Tengfei Ma
|
Lingfei Wu
|
Tariro Manyumwa
|
Shouling Ji
Evaluation of a document summarization system has been a critical factor to impact the success of the summarization task. Previous approaches, such as ROUGE, mainly consider the informativeness of the assessed summary and require human-generated references for each test summary. In this work, we propose to evaluate the summary qualities without reference summaries by unsupervised contrastive learning. Specifically, we design a new metric which covers both linguistic qualities and semantic informativeness based on BERT. To learn the metric, for each summary, we construct different types of negative samples with respect to different aspects of the summary qualities, and train our model with a ranking loss. Experiments on Newsroom and CNN/Daily Mail demonstrate that our new evaluation method outperforms other metrics even without reference summaries. Furthermore, we show that our method is general and transferable across datasets.
pdf
bib
abs
Neural Extractive Summarization with Hierarchical Attentive Heterogeneous Graph Network
Ruipeng Jia
|
Yanan Cao
|
Hengzhu Tang
|
Fang Fang
|
Cong Cao
|
Shi Wang
Sentence-level extractive text summarization is substantially a node classification task of network mining, adhering to the informative components and concise representations. There are lots of redundant phrases between extracted sentences, but it is difficult to model them exactly by the general supervised methods. Previous sentence encoders, especially BERT, specialize in modeling the relationship between source sentences. While, they have no ability to consider the overlaps of the target selected summary, and there are inherent dependencies among target labels of sentences. In this paper, we propose HAHSum (as shorthand for Hierarchical Attentive Heterogeneous Graph for Text Summarization), which well models different levels of information, including words and sentences, and spotlights redundancy dependencies between sentences. Our approach iteratively refines the sentence representations with redundancy-aware graph and delivers the label dependencies by message passing. Experiments on large scale benchmark corpus (CNN/DM, NYT, and NEWSROOM) demonstrate that HAHSum yields ground-breaking performance and outperforms previous extractive summarizers.
pdf
bib
abs
Coarse-to-Fine Query Focused Multi-Document Summarization
Yumo Xu
|
Mirella Lapata
We consider the problem of better modeling query-cluster interactions to facilitate query focused multi-document summarization. Due to the lack of training data, existing work relies heavily on retrieval-style methods for assembling query relevant summaries. We propose a coarse-to-fine modeling framework which employs progressively more accurate modules for estimating whether text segments are relevant, likely to contain an answer, and central. The modules can be independently developed and leverage training data if available. We present an instantiation of this framework with a trained evidence estimator which relies on distant supervision from question answering (where various resources exist) to identify segments which are likely to answer the query and should be included in the summary. Our framework is robust across domains and query types (i.e., long vs short) and outperforms strong comparison systems on benchmark datasets.
pdf
bib
abs
Pre-training for Abstractive Document Summarization by Reinstating Source Text
Yanyan Zou
|
Xingxing Zhang
|
Wei Lu
|
Furu Wei
|
Ming Zhou
Abstractive document summarization is usually modeled as a sequence-to-sequence (SEQ2SEQ) learning problem. Unfortunately, training large SEQ2SEQ based summarization models on limited supervised summarization data is challenging. This paper presents three sequence-to-sequence pre-training (in shorthand, STEP) objectives which allow us to pre-train a SEQ2SEQ based abstractive summarization model on unlabeled text. The main idea is that, given an input text artificially constructed from a document, a model is pre-trained to reinstate the original document. These objectives include sentence reordering, next sentence generation and masked document generation, which have close relations with the abstractive document summarization task. Experiments on two benchmark summarization datasets (i.e., CNN/DailyMail and New York Times) show that all three objectives can improve performance upon baselines. Compared to models pre-trained on large-scale data (larger than 160GB), our method, with only 19GB text for pre-training, achieves comparable results, which demonstrates its effectiveness.
pdf
bib
abs
Learning from Context or Names? An Empirical Study on Neural Relation Extraction
Hao Peng
|
Tianyu Gao
|
Xu Han
|
Yankai Lin
|
Peng Li
|
Zhiyuan Liu
|
Maosong Sun
|
Jie Zhou
Neural models have achieved remarkable success on relation extraction (RE) benchmarks. However, there is no clear understanding what information in text affects existing RE models to make decisions and how to further improve the performance of these models. To this end, we empirically study the effect of two main information sources in text: textual context and entity mentions (names). We find that (i) while context is the main source to support the predictions, RE models also heavily rely on the information from entity mentions, most of which is type information, and (ii) existing datasets may leak shallow heuristics via entity mentions and thus contribute to the high performance on RE benchmarks. Based on the analyses, we propose an entity-masked contrastive pre-training framework for RE to gain a deeper understanding on both textual context and type information while avoiding rote memorization of entities or use of superficial cues in mentions. We carry out extensive experiments to support our views, and show that our framework can improve the effectiveness and robustness of neural models in different RE scenarios. All the code and datasets are released at
https://github.com/thunlp/RE-Context-or-Names.
pdf
bib
abs
SelfORE: Self-supervised Relational Feature Learning for Open Relation Extraction
Xuming Hu
|
Lijie Wen
|
Yusong Xu
|
Chenwei Zhang
|
Philip Yu
Open relation extraction is the task of extracting open-domain relation facts from natural language sentences. Existing works either utilize heuristics or distant-supervised annotations to train a supervised classifier over pre-defined relations, or adopt unsupervised methods with additional assumptions that have less discriminative power. In this work, we propose a self-supervised framework named SelfORE, which exploits weak, self-supervised signals by leveraging large pretrained language model for adaptive clustering on contextualized relational features, and bootstraps the self-supervised signals by improving contextualized features in relation classification. Experimental results on three datasets show the effectiveness and robustness of SelfORE on open-domain Relation Extraction when comparing with competitive baselines.
pdf
bib
abs
Denoising Relation Extraction from Document-level Distant Supervision
Chaojun Xiao
|
Yuan Yao
|
Ruobing Xie
|
Xu Han
|
Zhiyuan Liu
|
Maosong Sun
|
Fen Lin
|
Leyu Lin
Distant supervision (DS) has been widely adopted to generate auto-labeled data for sentence-level relation extraction (RE) and achieved great results. However, the existing success of DS cannot be directly transferred to more challenging document-level relation extraction (DocRE), as the inevitable noise caused by DS may be even multiplied in documents and significantly harm the performance of RE. To alleviate this issue, we propose a novel pre-trained model for DocRE, which de-emphasize noisy DS data via multiple pre-training tasks. The experimental results on the large-scale DocRE benchmark show that our model can capture useful information from noisy data and achieve promising results.
pdf
bib
abs
Let’s Stop Incorrect Comparisons in End-to-end Relation Extraction!
Bruno Taillé
|
Vincent Guigue
|
Geoffrey Scoutheeten
|
Patrick Gallinari
Despite efforts to distinguish three different evaluation setups (Bekoulis et al., 2018), numerous end-to-end Relation Extraction (RE) articles present unreliable performance comparison to previous work. In this paper, we first identify several patterns of invalid comparisons in published papers and describe them to avoid their propagation. We then propose a small empirical study to quantify the most common mistake’s impact and evaluate it leads to overestimating the final RE performance by around 5% on ACE05. We also seize this opportunity to study the unexplored ablations of two recent developments: the use of language model pretraining (specifically BERT) and span-level NER. This meta-analysis emphasizes the need for rigor in the report of both the evaluation setting and the dataset statistics. We finally call for unifying the evaluation setting in end-to-end RE.
pdf
bib
abs
Exposing Shallow Heuristics of Relation Extraction Models with Challenge Data
Shachar Rosenman
|
Alon Jacovi
|
Yoav Goldberg
The process of collecting and annotating training data may introduce distribution artifacts which may limit the ability of models to learn correct generalization behavior. We identify failure modes of SOTA relation extraction (RE) models trained on TACRED, which we attribute to limitations in the data annotation process. We collect and annotate a challenge-set we call Challenging RE (CRE), based on naturally occurring corpus examples, to benchmark this behavior. Our experiments with four state-of-the-art RE models show that they have indeed adopted shallow heuristics that do not generalize to the challenge-set data. Further, we find that alternative question answering modeling performs significantly better than the SOTA models on the challenge-set, despite worse overall TACRED performance. By adding some of the challenge data as training examples, the performance of the model improves. Finally, we provide concrete suggestion on how to improve RE data collection to alleviate this behavior.
pdf
bib
abs
Global-to-Local Neural Networks for Document-Level Relation Extraction
Difeng Wang
|
Wei Hu
|
Ermei Cao
|
Weijian Sun
Relation extraction (RE) aims to identify the semantic relations between named entities in text. Recent years have witnessed it raised to the document level, which requires complex reasoning with entities and mentions throughout an entire document. In this paper, we propose a novel model to document-level RE, by encoding the document information in terms of entity global and local representations as well as context relation representations. Entity global representations model the semantic information of all entities in the document, entity local representations aggregate the contextual information of multiple mentions of specific entities, and context relation representations encode the topic information of other relations. Experimental results demonstrate that our model achieves superior performance on two public datasets for document-level RE. It is particularly effective in extracting relations between entities of long distance and having multiple mentions.
pdf
bib
abs
Recurrent Interaction Network for Jointly Extracting Entities and Classifying Relations
Kai Sun
|
Richong Zhang
|
Samuel Mensah
|
Yongyi Mao
|
Xudong Liu
The idea of using multi-task learning approaches to address the joint extraction of entity and relation is motivated by the relatedness between the entity recognition task and the relation classification task. Existing methods using multi-task learning techniques to address the problem learn interactions among the two tasks through a shared network, where the shared information is passed into the task-specific networks for prediction. However, such an approach hinders the model from learning explicit interactions between the two tasks to improve the performance on the individual tasks. As a solution, we design a multi-task learning model which we refer to as recurrent interaction network which allows the learning of interactions dynamically, to effectively model task-specific features for classification. Empirical studies on two real-world datasets confirm the superiority of the proposed model.
pdf
bib
abs
Temporal Knowledge Base Completion: New Algorithms and Evaluation Protocols
Prachi Jain
|
Sushant Rathi
|
Mausam
|
Soumen Chakrabarti
Research on temporal knowledge bases, which associate a relational fact (s,r,o) with a validity time period (or time instant), is in its early days. Our work considers predicting missing entities (link prediction) and missing time intervals (time prediction) as joint Temporal Knowledge Base Completion (TKBC) tasks, and presents TIMEPLEX, a novel TKBC method, in which entities, relations and, time are all embedded in a uniform, compatible space. TIMEPLEX exploits the recurrent nature of some facts/events and temporal interactions between pairs of relations, yielding state-of-the-art results on both prediction tasks. We also find that existing TKBC models heavily overestimate link prediction performance due to imperfect evaluation mechanisms. In response, we propose improved TKBC evaluation protocols for both link and time prediction tasks, dealing with subtle issues that arise from the partial overlap of time intervals in gold instances and system predictions.
pdf
bib
abs
OpenIE6: Iterative Grid Labeling and Coordination Analysis for Open Information Extraction
Keshav Kolluru
|
Vaibhav Adlakha
|
Samarth Aggarwal
|
Mausam
|
Soumen Chakrabarti
A recent state-of-the-art neural open information extraction (OpenIE) system generates extractions iteratively, requiring repeated encoding of partial outputs. This comes at a significant computational cost. On the other hand,sequence labeling approaches for OpenIE are much faster, but worse in extraction quality. In this paper, we bridge this trade-off by presenting an iterative labeling-based system that establishes a new state of the art for OpenIE, while extracting 10x faster. This is achieved through a novel Iterative Grid Labeling (IGL) architecture, which treats OpenIE as a 2-D grid labeling task. We improve its performance further by applying coverage (soft) constraints on the grid at training time. Moreover, on observing that the best OpenIE systems falter at handling coordination structures, our OpenIE system also incorporates a new coordination analyzer built with the same IGL architecture. This IGL based coordination analyzer helps our OpenIE system handle complicated coordination structures, while also establishing a new state of the art on the task of coordination analysis, with a 12.3 pts improvement in F1 over previous analyzers. Our OpenIE system - OpenIE6 - beats the previous systems by as much as 4 pts in F1, while being much faster.
pdf
bib
abs
Public Sentiment Drift Analysis Based on Hierarchical Variational Auto-encoder
Wenyue Zhang
|
Xiaoli Li
|
Yang Li
|
Suge Wang
|
Deyu Li
|
Jian Liao
|
Jianxing Zheng
Detecting public sentiment drift is a challenging task due to sentiment change over time. Existing methods first build a classification model using historical data and subsequently detect drift if the model performs much worse on new data. In this paper, we focus on distribution learning by proposing a novel Hierarchical Variational Auto-Encoder (HVAE) model to learn better distribution representation, and design a new drift measure to directly evaluate distribution changes between historical data and new data. Our experimental results demonstrate that our proposed model achieves better results than three existing state-of-the-art methods.
pdf
bib
abs
Point to the Expression: Solving Algebraic Word Problems using the Expression-Pointer Transformer Model
Bugeun Kim
|
Kyung Seo Ki
|
Donggeon Lee
|
Gahgene Gweon
Solving algebraic word problems has recently emerged as an important natural language processing task. To solve algebraic word problems, recent studies suggested neural models that generate solution equations by using ‘Op (operator/operand)’ tokens as a unit of input/output. However, such a neural model suffered two issues: expression fragmentation and operand-context separation. To address each of these two issues, we propose a pure neural model, Expression-Pointer Transformer (EPT), which uses (1) ‘Expression’ token and (2) operand-context pointers when generating solution equations. The performance of the EPT model is tested on three datasets: ALG514, DRAW-1K, and MAWPS. Compared to the state-of-the-art (SoTA) models, the EPT model achieved a comparable performance accuracy in each of the three datasets; 81.3% on ALG514, 59.5% on DRAW-1K, and 84.5% on MAWPS. The contribution of this paper is two-fold; (1) We propose a pure neural model, EPT, which can address the expression fragmentation and the operand-context separation. (2) The fully automatic EPT model, which does not use hand-crafted features, yields comparable performance to existing models using hand-crafted features, and achieves better performance than existing pure neural models by at most 40%.
pdf
bib
abs
Semantically-Aligned Universal Tree-Structured Solver for Math Word Problems
Jinghui Qin
|
Lihui Lin
|
Xiaodan Liang
|
Rumin Zhang
|
Liang Lin
A practical automatic textual math word problems (MWPs) solver should be able to solve various textual MWPs while most existing works only focused on one-unknown linear MWPs. Herein, we propose a simple but efficient method called Universal Expression Tree (UET) to make the first attempt to represent the equations of various MWPs uniformly. Then a semantically-aligned universal tree-structured solver (SAU-Solver) based on an encoder-decoder framework is proposed to resolve multiple types of MWPs in a unified model, benefiting from our UET representation. Our SAU-Solver generates a universal expression tree explicitly by deciding which symbol to generate according to the generated symbols’ semantic meanings like human solving MWPs. Besides, our SAU-Solver also includes a novel subtree-level semanticallyaligned regularization to further enforce the semantic constraints and rationality of the generated expression tree by aligning with the contextual information. Finally, to validate the universality of our solver and extend the research boundary of MWPs, we introduce a new challenging Hybrid Math Word Problems dataset (HMWP), consisting of three types of MWPs. Experimental results on several MWPs datasets show that our model can solve universal types of MWPs and outperforms several state-of-the-art models.
pdf
bib
abs
Neural Topic Modeling by Incorporating Document Relationship Graph
Deyu Zhou
|
Xuemeng Hu
|
Rui Wang
Graph Neural Networks (GNNs) that capture the relationships between graph nodes via message passing have been a hot research direction in the natural language processing community. In this paper, we propose Graph Topic Model (GTM), a GNN based neural topic model that represents a corpus as a document relationship graph. Documents and words in the corpus become nodes in the graph and are connected based on document-word co-occurrences. By introducing the graph structure, the relationships between documents are established through their shared words and thus the topical representation of a document is enriched by aggregating information from its neighboring nodes using graph convolution. Extensive experiments on three datasets were conducted and the results demonstrate the effectiveness of the proposed approach.
pdf
bib
abs
Routing Enforced Generative Model for Recipe Generation
Zhiwei Yu
|
Hongyu Zang
|
Xiaojun Wan
One of the most challenging part of recipe generation is to deal with the complex restrictions among the input ingredients. Previous researches simplify the problem by treating the inputs independently and generating recipes containing as much information as possible. In this work, we propose a routing method to dive into the content selection under the internal restrictions. The routing enforced generative model (RGM) can generate appropriate recipes according to the given ingredients and user preferences. Our model yields new state-of-the-art results on the recipe generation task with significant improvements on BLEU, F1 and human evaluation.
pdf
bib
abs
Assessing the Helpfulness of Learning Materials with Inference-Based Learner-Like Agent
Yun-Hsuan Jen
|
Chieh-Yang Huang
|
MeiHua Chen
|
Ting-Hao Huang
|
Lun-Wei Ku
Many English-as-a-second language learners have trouble using near-synonym words (e.g., small vs.little; briefly vs.shortly) correctly, and often look for example sentences to learn how two nearly synonymous terms differ. Prior work uses hand-crafted scores to recommend sentences but has difficulty in adopting such scores to all the near-synonyms as near-synonyms differ in various ways. We notice that the helpfulness of the learning material would reflect on the learners’ performance. Thus, we propose the inference-based learner-like agent to mimic learner behavior and identify good learning materials by examining the agent’s performance. To enable the agent to behave like a learner, we leverage entailment modeling’s capability of inferring answers from the provided materials. Experimental results show that the proposed agent is equipped with good learner-like behavior to achieve the best performance in both fill-in-the-blank (FITB) and good example sentence selection tasks. We further conduct a classroom user study with college ESL learners. The results of the user study show that the proposed agent can find out example sentences that help students learn more easily and efficiently. Compared to other models, the proposed agent improves the score of more than 17% of students after learning.
pdf
bib
abs
Selection and Generation: Learning towards Multi-Product Advertisement Post Generation
Zhangming Chan
|
Yuchi Zhang
|
Xiuying Chen
|
Shen Gao
|
Zhiqiang Zhang
|
Dongyan Zhao
|
Rui Yan
As the E-commerce thrives, high-quality online advertising copywriting has attracted more and more attention. Different from the advertising copywriting for a single product, an advertisement (AD) post includes an attractive topic that meets the customer needs and description copywriting about several products under its topic. A good AD post can highlight the characteristics of each product, thus helps customers make a good choice among candidate products. Hence, multi-product AD post generation is meaningful and important. We propose a novel end-to-end model named S-MG Net to generate the AD post. Targeted at such a challenging real-world problem, we split the AD post generation task into two subprocesses: (1) select a set of products via the SelectNet (Selection Network). (2) generate a post including selected products via the MGenNet (Multi-Generator Network). Concretely, SelectNet first captures the post topic and the relationship among the products to output the representative products. Then, MGenNet generates the description copywriting of each product. Experiments conducted on a large-scale real-world AD post dataset demonstrate that our proposed model achieves impressive performance in terms of both automatic metrics as well as human evaluations.
pdf
bib
abs
Form2Seq : A Framework for Higher-Order Form Structure Extraction
Milan Aggarwal
|
Hiresh Gupta
|
Mausoom Sarkar
|
Balaji Krishnamurthy
Document structure extraction has been a widely researched area for decades with recent works performing it as a semantic segmentation task over document images using fully-convolution networks. Such methods are limited by image resolution due to which they fail to disambiguate structures in dense regions which appear commonly in forms. To mitigate this, we propose Form2Seq, a novel sequence-to-sequence (Seq2Seq) inspired framework for structure extraction using text, with a specific focus on forms, which leverages relative spatial arrangement of structures. We discuss two tasks; 1) Classification of low-level constituent elements (TextBlock and empty fillable Widget) into ten types such as field captions, list items, and others; 2) Grouping lower-level elements into higher-order constructs, such as Text Fields, ChoiceFields and ChoiceGroups, used as information collection mechanism in forms. To achieve this, we arrange the constituent elements linearly in natural reading order, feed their spatial and textual representations to Seq2Seq framework, which sequentially outputs prediction of each element depending on the final task. We modify Seq2Seq for grouping task and discuss improvements obtained through cascaded end-to-end training of two tasks versus training in isolation. Experimental results show the effectiveness of our text-based approach achieving an accuracy of 90% on classification task and an F1 of 75.82, 86.01, 61.63 on groups discussed above respectively, outperforming segmentation baselines. Further we show our framework achieves state of the results for table structure recognition on ICDAR 2013 dataset.
pdf
bib
abs
Domain Adaptation of Thai Word Segmentation Models using Stacked Ensemble
Peerat Limkonchotiwat
|
Wannaphong Phatthiyaphaibun
|
Raheem Sarwar
|
Ekapol Chuangsuwanich
|
Sarana Nutanong
Like many Natural Language Processing tasks, Thai word segmentation is domain-dependent. Researchers have been relying on transfer learning to adapt an existing model to a new domain. However, this approach is inapplicable to cases where we can interact with only input and output layers of the models, also known as “black boxes”. We propose a filter-and-refine solution based on the stacked-ensemble learning paradigm to address this black-box limitation. We conducted extensive experimental studies comparing our method against state-of-the-art models and transfer learning. Experimental results show that our proposed solution is an effective domain adaptation method and has a similar performance as the transfer learning method.
pdf
bib
abs
DagoBERT: Generating Derivational Morphology with a Pretrained Language Model
Valentin Hofmann
|
Janet Pierrehumbert
|
Hinrich Schütze
Can pretrained language models (PLMs) generate derivationally complex words? We present the first study investigating this question, taking BERT as the example PLM. We examine BERT’s derivational capabilities in different settings, ranging from using the unmodified pretrained model to full finetuning. Our best model, DagoBERT (Derivationally and generatively optimized BERT), clearly outperforms the previous state of the art in derivation generation (DG). Furthermore, our experiments show that the input segmentation crucially impacts BERT’s derivational knowledge, suggesting that the performance of PLMs could be further improved if a morphologically informed vocabulary of units were used.
pdf
bib
abs
Attention Is All You Need for Chinese Word Segmentation
Sufeng Duan
|
Hai Zhao
Taking greedy decoding algorithm as it should be, this work focuses on further strengthening the model itself for Chinese word segmentation (CWS), which results in an even more fast and more accurate CWS model. Our model consists of an attention only stacked encoder and a light enough decoder for the greedy segmentation plus two highway connections for smoother training, in which the encoder is composed of a newly proposed Transformer variant, Gaussian-masked Directional (GD) Transformer, and a biaffine attention scorer. With the effective encoder design, our model only needs to take unigram features for scoring. Our model is evaluated on SIGHAN Bakeoff benchmark datasets. The experimental results show that with the highest segmentation speed, the proposed model achieves new state-of-the-art or comparable performance against strong baselines in terms of strict closed test setting.
pdf
bib
abs
A Joint Multiple Criteria Model in Transfer Learning for Cross-domain Chinese Word Segmentation
Kaiyu Huang
|
Degen Huang
|
Zhuang Liu
|
Fengran Mo
Word-level information is important in natural language processing (NLP), especially for the Chinese language due to its high linguistic complexity. Chinese word segmentation (CWS) is an essential task for Chinese downstream NLP tasks. Existing methods have already achieved a competitive performance for CWS on large-scale annotated corpora. However, the accuracy of the method will drop dramatically when it handles an unsegmented text with lots of out-of-vocabulary (OOV) words. In addition, there are many different segmentation criteria for addressing different requirements of downstream NLP tasks. Excessive amounts of models with saving different criteria will generate the explosive growth of the total parameters. To this end, we propose a joint multiple criteria model that shares all parameters to integrate different segmentation criteria into one model. Besides, we utilize a transfer learning method to improve the performance of OOV words. Our proposed method is evaluated by designing comprehensive experiments on multiple benchmark datasets (e.g., Bakeoff 2005, Bakeoff 2008 and SIGHAN 2010). Our method achieves the state-of-the-art performances on all datasets. Importantly, our method also shows a competitive practicability and generalization ability for the CWS task.
pdf
bib
abs
Alignment-free Cross-lingual Semantic Role Labeling
Rui Cai
|
Mirella Lapata
Cross-lingual semantic role labeling (SRL) aims at leveraging resources in a source language to minimize the effort required to construct annotations or models for a new target language. Recent approaches rely on word alignments, machine translation engines, or preprocessing tools such as parsers or taggers. We propose a cross-lingual SRL model which only requires annotations in a source language and access to raw text in the form of a parallel corpus. The backbone of our model is an LSTM-based semantic role labeler jointly trained with a semantic role compressor and multilingual word embeddings. The compressor collects useful information from the output of the semantic role labeler, filtering noisy and conflicting evidence. It lives in a multilingual embedding space and provides direct supervision for predicting semantic roles in the target language. Results on the Universal Proposition Bank and manually annotated datasets show that our method is highly effective, even against systems utilizing supervised features.
pdf
bib
abs
Leveraging Declarative Knowledge in Text and First-Order Logic for Fine-Grained Propaganda Detection
Ruize Wang
|
Duyu Tang
|
Nan Duan
|
Wanjun Zhong
|
Zhongyu Wei
|
Xuanjing Huang
|
Daxin Jiang
|
Ming Zhou
We study the detection of propagandistic text fragments in news articles. Instead of merely learning from input-output datapoints in training data, we introduce an approach to inject declarative knowledge of fine-grained propaganda techniques. Specifically, we leverage the declarative knowledge expressed in both first-order logic and natural language. The former refers to the logical consistency between coarse- and fine-grained predictions, which is used to regularize the training process with propositional Boolean expressions. The latter refers to the literal definition of each propaganda technique, which is utilized to get class representations for regularizing the model parameters. We conduct experiments on Propaganda Techniques Corpus, a large manually annotated dataset for fine-grained propaganda detection. Experiments show that our method achieves superior performance, demonstrating that leveraging declarative knowledge can help the model to make more accurate predictions.
pdf
bib
abs
X-SRL: A Parallel Cross-Lingual Semantic Role Labeling Dataset
Angel Daza
|
Anette Frank
Even though SRL is researched for many languages, major improvements have mostly been obtained for English, for which more resources are available. In fact, existing multilingual SRL datasets contain disparate annotation styles or come from different domains, hampering generalization in multilingual learning. In this work we propose a method to automatically construct an SRL corpus that is parallel in four languages: English, French, German, Spanish, with unified predicate and role annotations that are fully comparable across languages. We apply high-quality machine translation to the English CoNLL-09 dataset and use multilingual BERT to project its high-quality annotations to the target languages. We include human-validated test sets that we use to measure the projection quality, and show that projection is denser and more precise than a strong baseline. Finally, we train different SOTA models on our novel corpus for mono- and multilingual SRL, showing that the multilingual annotations improve performance especially for the weaker languages.
pdf
bib
abs
Graph Convolutions over Constituent Trees for Syntax-Aware Semantic Role Labeling
Diego Marcheggiani
|
Ivan Titov
Semantic role labeling (SRL) is the task of identifying predicates and labeling argument spans with semantic roles. Even though most semantic-role formalisms are built upon constituent syntax, and only syntactic constituents can be labeled as arguments (e.g., FrameNet and PropBank), all the recent work on syntax-aware SRL relies on dependency representations of syntax. In contrast, we show how graph convolutional networks (GCNs) can be used to encode constituent structures and inform an SRL system. Nodes in our SpanGCN correspond to constituents. The computation is done in 3 stages. First, initial node representations are produced by ‘composing’ word representations of the first and last words in the constituent. Second, graph convolutions relying on the constituent tree are performed, yielding syntactically-informed constituent representations. Finally, the constituent representations are ‘decomposed’ back into word representations, which are used as input to the SRL classifier. We evaluate SpanGCN against alternatives, including a model using GCNs over dependency trees, and show its effectiveness on standard English SRL benchmarks CoNLL-2005, CoNLL-2012, and FrameNet.
pdf
bib
abs
Fast semantic parsing with well-typedness guarantees
Matthias Lindemann
|
Jonas Groschwitz
|
Alexander Koller
AM dependency parsing is a linguistically principled method for neural semantic parsing with high accuracy across multiple graphbanks. It relies on a type system that models semantic valency but makes existing parsers slow. We describe an A* parser and a transition-based parser for AM dependency parsing which guarantee well-typedness and improve parsing speed by up to 3 orders of magnitude, while maintaining or improving accuracy.
pdf
bib
abs
Improving Out-of-Scope Detection in Intent Classification by Using Embeddings of the Word Graph Space of the Classes
Paulo Cavalin
|
Victor Henrique Alves Ribeiro
|
Ana Appel
|
Claudio Pinhanez
This paper explores how intent classification can be improved by representing the class labels not as a discrete set of symbols but as a space where the word graphs associated to each class are mapped using typical graph embedding techniques. The approach, inspired by a previous algorithm used for an inverse dictionary task, allows the classification algorithm to take in account inter-class similarities provided by the repeated occurrence of some words in the training examples of the different classes. The classification is carried out by mapping text embeddings to the word graph embeddings of the classes. Focusing solely on improving the representation of the class label set, we show in experiments conducted in both private and public intent classification datasets, that better detection of out-of-scope examples (OOS) is achieved and, as a consequence, that the overall accuracy of intent classification is also improved. In particular, using the recently-released Larson dataset, an error of about 9.9% has been achieved for OOS detection, beating the previous state-of-the-art result by more than 31 percentage points.
pdf
bib
abs
Supervised Seeded Iterated Learning for Interactive Language Learning
Yuchen Lu
|
Soumye Singhal
|
Florian Strub
|
Olivier Pietquin
|
Aaron Courville
Language drift has been one of the major obstacles to train language models through interaction. When word-based conversational agents are trained towards completing a task, they tend to invent their language rather than leveraging natural language. In recent literature, two general methods partially counter this phenomenon: Supervised Selfplay (S2P) and Seeded Iterated Learning (SIL). While S2P jointly trains interactive and supervised losses to counter the drift, SIL changes the training dynamics to prevent language drift from occurring. In this paper, we first highlight their respective weaknesses, i.e., late-stage training collapses and higher negative likelihood when evaluated on human corpus. Given these observations, we introduce Supervised Seeded Iterated Learning (SSIL) to combine both methods to minimize their respective weaknesses. We then show the effectiveness of in the language-drift translation game.
pdf
bib
abs
Spot The Bot: A Robust and Efficient Framework for the Evaluation of Conversational Dialogue Systems
Jan Deriu
|
Don Tuggener
|
Pius von Däniken
|
Jon Ander Campos
|
Alvaro Rodrigo
|
Thiziri Belkacem
|
Aitor Soroa
|
Eneko Agirre
|
Mark Cieliebak
The lack of time efficient and reliable evalu-ation methods is hampering the development of conversational dialogue systems (chat bots). Evaluations that require humans to converse with chat bots are time and cost intensive, put high cognitive demands on the human judges, and tend to yield low quality results. In this work, we introduce Spot The Bot, a cost-efficient and robust evaluation framework that replaces human-bot conversations with conversations between bots. Human judges then only annotate for each entity in a conversation whether they think it is human or not (assuming there are humans participants in these conversations). These annotations then allow us to rank chat bots regarding their ability to mimic conversational behaviour of humans. Since we expect that all bots are eventually recognized as such, we incorporate a metric that measures which chat bot is able to uphold human-like be-havior the longest, i.e.Survival Analysis. This metric has the ability to correlate a bot’s performance to certain of its characteristics (e.g.fluency or sensibleness), yielding interpretable results. The comparably low cost of our frame-work allows for frequent evaluations of chatbots during their evaluation cycle. We empirically validate our claims by applying Spot The Bot to three domains, evaluating several state-of-the-art chat bots, and drawing comparisonsto related work. The framework is released asa ready-to-use tool.
pdf
bib
abs
Human-centric dialog training via offline reinforcement learning
Natasha Jaques
|
Judy Hanwen Shen
|
Asma Ghandeharioun
|
Craig Ferguson
|
Agata Lapedriza
|
Noah Jones
|
Shixiang Gu
|
Rosalind Picard
How can we train a dialog model to produce better conversations by learning from human feedback, without the risk of humans teaching it harmful chat behaviors? We start by hosting models online, and gather human feedback from real-time, open-ended conversations, which we then use to train and improve the models using offline reinforcement learning (RL). We identify implicit conversational cues including language similarity, elicitation of laughter, sentiment, and more, which indicate positive human feedback, and embed these in multiple reward functions. A well-known challenge is that learning an RL policy in an offline setting usually fails due to the lack of ability to explore and the tendency to make over-optimistic estimates of future reward. These problems become even harder when using RL for language models, which can easily have a 20,000 action vocabulary and many possible reward functions. We solve the challenge by developing a novel class of offline RL algorithms. These algorithms use KL-control to penalize divergence from a pre-trained prior language model, and use a new strategy to make the algorithm pessimistic, instead of optimistic, in the face of uncertainty. We test the resulting dialog model with ratings from 80 users in an open-domain setting and find it achieves significant improvements over existing deep offline RL approaches. The novel offline RL method is viable for improving any existing generative dialog model using a static dataset of human feedback.
pdf
bib
abs
Speakers Fill Lexical Semantic Gaps with Context
Tiago Pimentel
|
Rowan Hall Maudslay
|
Damian Blasi
|
Ryan Cotterell
Lexical ambiguity is widespread in language, allowing for the reuse of economical word forms and therefore making language more efficient. If ambiguous words cannot be disambiguated from context, however, this gain in efficiency might make language less clear—resulting in frequent miscommunication. For a language to be clear and efficiently encoded, we posit that the lexical ambiguity of a word type should correlate with how much information context provides about it, on average. To investigate whether this is the case, we operationalise the lexical ambiguity of a word as the entropy of meanings it can take, and provide two ways to estimate this—one which requires human annotation (using WordNet), and one which does not (using BERT), making it readily applicable to a large number of languages. We validate these measures by showing that, on six high-resource languages, there are significant Pearson correlations between our BERT-based estimate of ambiguity and the number of synonyms a word has in WordNet (e.g. 𝜌 = 0.40 in English). We then test our main hypothesis—that a word’s lexical ambiguity should negatively correlate with its contextual uncertainty—and find significant correlations on all 18 typologically diverse languages we analyse. This suggests that, in the presence of ambiguity, speakers compensate by making contexts more informative.
pdf
bib
abs
Investigating Cross-Linguistic Adjective Ordering Tendencies with a Latent-Variable Model
Jun Yen Leung
|
Guy Emerson
|
Ryan Cotterell
Across languages, multiple consecutive adjectives modifying a noun (e.g. “the big red dog”) follow certain unmarked ordering rules. While explanatory accounts have been put forward, much of the work done in this area has relied primarily on the intuitive judgment of native speakers, rather than on corpus data. We present the first purely corpus-driven model of multi-lingual adjective ordering in the form of a latent-variable model that can accurately order adjectives across 24 different languages, even when the training and testing languages are different. We utilize this novel statistical model to provide strong converging evidence for the existence of universal, cross-linguistic, hierarchical adjective ordering tendencies.
pdf
bib
abs
Surprisal Predicts Code-Switching in Chinese-English Bilingual Text
Jesús Calvillo
|
Le Fang
|
Jeremy Cole
|
David Reitter
Why do bilinguals switch languages within a sentence? The present observational study asks whether word surprisal and word entropy predict code-switching in bilingual written conversation. We describe and model a new dataset of Chinese-English text with 1476 clean code-switched sentences, translated back into Chinese. The model includes known control variables together with word surprisal and word entropy. We found that word surprisal, but not entropy, is a significant predictor that explains code-switching above and beyond other well-known predictors. We also found sentence length to be a significant predictor, which has been related to sentence complexity. We propose high cognitive effort as a reason for code-switching, as it leaves fewer resources for inhibition of the alternative language. We also corroborate previous findings, but this time using a computational model of surprisal, a new language pair, and doing so for written language.
pdf
bib
abs
Word Frequency Does Not Predict Grammatical Knowledge in Language Models
Charles Yu
|
Ryan Sie
|
Nicolas Tedeschi
|
Leon Bergen
Neural language models learn, to varying degrees of accuracy, the grammatical properties of natural languages. In this work, we investigate whether there are systematic sources of variation in the language models’ accuracy. Focusing on subject-verb agreement and reflexive anaphora, we find that certain nouns are systematically understood better than others, an effect which is robust across grammatical tasks and different language models. Surprisingly, we find that across four orders of magnitude, corpus frequency is unrelated to a noun’s performance on grammatical tasks. Finally, we find that a novel noun’s grammatical properties can be few-shot learned from various types of training data. The results present a paradox: there should be less variation in grammatical performance than is actually observed.
pdf
bib
abs
Improving Word Sense Disambiguation with Translations
Yixing Luan
|
Bradley Hauer
|
Lili Mou
|
Grzegorz Kondrak
It has been conjectured that multilingual information can help monolingual word sense disambiguation (WSD). However, existing WSD systems rarely consider multilingual information, and no effective method has been proposed for improving WSD by generating translations. In this paper, we present a novel approach that improves the performance of a base WSD system using machine translation. Since our approach is language independent, we perform WSD experiments on several languages. The results demonstrate that our methods can consistently improve the performance of WSD systems, and obtain state-ofthe-art results in both English and multilingual WSD. To facilitate the use of lexical translation information, we also propose BABALIGN, an precise bitext alignment algorithm which is guided by multilingual lexical correspondences from BabelNet.
pdf
bib
abs
Towards Better Context-aware Lexical Semantics:Adjusting Contextualized Representations through Static Anchors
Qianchu Liu
|
Diana McCarthy
|
Anna Korhonen
One of the most powerful features of contextualized models is their dynamic embeddings for words in context, leading to state-of-the-art representations for context-aware lexical semantics. In this paper, we present a post-processing technique that enhances these representations by learning a transformation through static anchors. Our method requires only another pre-trained model and no labeled data is needed. We show consistent improvement in a range of benchmark tasks that test contextual variations of meaning both across different usages of a word and across different words as they are used in context. We demonstrate that while the original contextual representations can be improved by another embedding space from both contextualized and static models, the static embeddings, which have lower computational requirements, provide the most gains.
pdf
bib
abs
Compositional Demographic Word Embeddings
Charles Welch
|
Jonathan K. Kummerfeld
|
Verónica Pérez-Rosas
|
Rada Mihalcea
Word embeddings are usually derived from corpora containing text from many individuals, thus leading to general purpose representations rather than individually personalized representations. While personalized embeddings can be useful to improve language model performance and other language processing tasks, they can only be computed for people with a large amount of longitudinal data, which is not the case for new users. We propose a new form of personalized word embeddings that use demographic-specific word representations derived compositionally from full or partial demographic information for a user (i.e., gender, age, location, religion). We show that the resulting demographic-aware word representations outperform generic word representations on two tasks for English: language modeling and word associations. We further explore the trade-off between the number of available attributes and their relative effectiveness and discuss the ethical implications of using them.
pdf
bib
abs
Are “Undocumented Workers” the Same as “Illegal Aliens”? Disentangling Denotation and Connotation in Vector Spaces
Albert Webson
|
Zhizhong Chen
|
Carsten Eickhoff
|
Ellie Pavlick
In politics, neologisms are frequently invented for partisan objectives. For example, “undocumented workers” and “illegal aliens” refer to the same group of people (i.e., they have the same denotation), but they carry clearly different connotations. Examples like these have traditionally posed a challenge to reference-based semantic theories and led to increasing acceptance of alternative theories (e.g., Two-Factor Semantics) among philosophers and cognitive scientists. In NLP, however, popular pretrained models encode both denotation and connotation as one entangled representation. In this study, we propose an adversarial nerual netowrk that decomposes a pretrained representation as independent denotation and connotation representations. For intrinsic interpretability, we show that words with the same denotation but different connotations (e.g., “immigrants” vs. “aliens”, “estate tax” vs. “death tax”) move closer to each other in denotation space while moving further apart in connotation space. For extrinsic application, we train an information retrieval system with our disentangled representations and show that the denotation vectors improve the viewpoint diversity of document rankings.
pdf
bib
abs
Multi-View Sequence-to-Sequence Models with Conversational Structure for Abstractive Dialogue Summarization
Jiaao Chen
|
Diyi Yang
Text summarization is one of the most challenging and interesting problems in NLP. Although much attention has been paid to summarizing structured text like news reports or encyclopedia articles, summarizing conversations—an essential part of human-human/machine interaction where most important pieces of information are scattered across various utterances of different speakers—remains relatively under-investigated. This work proposes a multi-view sequence-to-sequence model by first extracting conversational structures of unstructured daily chats from different views to represent conversations and then utilizing a multi-view decoder to incorporate different views to generate dialogue summaries. Experiments on a large-scale dialogue summarization corpus demonstrated that our methods significantly outperformed previous state-of-the-art models via both automatic evaluations and human judgment. We also discussed specific challenges that current approaches faced with this task. We have publicly released our code at
https://github.com/GT-SALT/Multi-View-Seq2Seq.
pdf
bib
abs
Few-Shot Learning for Opinion Summarization
Arthur Bražinskas
|
Mirella Lapata
|
Ivan Titov
Opinion summarization is the automatic creation of text reflecting subjective information expressed in multiple documents, such as user reviews of a product. The task is practically important and has attracted a lot of attention. However, due to the high cost of summary production, datasets large enough for training supervised models are lacking. Instead, the task has been traditionally approached with extractive methods that learn to select text fragments in an unsupervised or weakly-supervised way. Recently, it has been shown that abstractive summaries, potentially more fluent and better at reflecting conflicting information, can also be produced in an unsupervised fashion. However, these models, not being exposed to actual summaries, fail to capture their essential properties. In this work, we show that even a handful of summaries is sufficient to bootstrap generation of the summary text with all expected properties, such as writing style, informativeness, fluency, and sentiment preservation. We start by training a conditional Transformer language model to generate a new product review given other available reviews of the product. The model is also conditioned on review properties that are directly related to summaries; the properties are derived from reviews with no manual effort. In the second stage, we fine-tune a plug-in module that learns to predict property values on a handful of summaries. This lets us switch the generator to the summarization mode. We show on Amazon and Yelp datasets that our approach substantially outperforms previous extractive and abstractive methods in automatic and human evaluation.
pdf
bib
abs
Learning to Fuse Sentences with Transformers for Summarization
Logan Lebanoff
|
Franck Dernoncourt
|
Doo Soon Kim
|
Lidan Wang
|
Walter Chang
|
Fei Liu
The ability to fuse sentences is highly attractive for summarization systems because it is an essential step to produce succinct abstracts. However, to date, summarizers can fail on fusing sentences. They tend to produce few summary sentences by fusion or generate incorrect fusions that lead the summary to fail to retain the original meaning. In this paper, we explore the ability of Transformers to fuse sentences and propose novel algorithms to enhance their ability to perform sentence fusion by leveraging the knowledge of points of correspondence between sentences. Through extensive experiments, we investigate the effects of different design choices on Transformer’s performance. Our findings highlight the importance of modeling points of correspondence between sentences for effective sentence fusion.
pdf
bib
abs
Stepwise Extractive Summarization and Planning with Structured Transformers
Shashi Narayan
|
Joshua Maynez
|
Jakub Adamek
|
Daniele Pighin
|
Blaz Bratanic
|
Ryan McDonald
We propose encoder-centric stepwise models for extractive summarization using structured transformers – HiBERT and Extended Transformers. We enable stepwise summarization by injecting the previously generated summary into the structured transformer as an auxiliary sub-structure. Our models are not only efficient in modeling the structure of long inputs, but they also do not rely on task-specific redundancy-aware modeling, making them a general purpose extractive content planner for different tasks. When evaluated on CNN/DailyMail extractive summarization, stepwise models achieve state-of-the-art performance in terms of Rouge without any redundancy aware modeling or sentence filtering. This also holds true for Rotowire table-to-text generation, where our models surpass previously reported metrics for content selection, planning and ordering, highlighting the strength of stepwise modeling. Amongst the two structured transformers we test, stepwise Extended Transformers provides the best performance across both datasets and sets a new standard for these challenges.
pdf
bib
abs
CLIRMatrix: A massively large collection of bilingual and multilingual datasets for Cross-Lingual Information Retrieval
Shuo Sun
|
Kevin Duh
We present CLIRMatrix, a massively large collection of bilingual and multilingual datasets for Cross-Lingual Information Retrieval extracted automatically from Wikipedia. CLIRMatrix comprises (1) BI-139, a bilingual dataset of queries in one language matched with relevant documents in another language for 139x138=19,182 language pairs, and (2) MULTI-8, a multilingual dataset of queries and documents jointly aligned in 8 different languages. In total, we mined 49 million unique queries and 34 billion (query, document, label) triplets, making it the largest and most comprehensive CLIR dataset to date. This collection is intended to support research in end-to-end neural information retrieval and is publicly available at [url]. We provide baseline neural model results on BI-139, and evaluate MULTI-8 in both single-language retrieval and mix-language retrieval settings.
pdf
bib
abs
SLEDGE-Z: A Zero-Shot Baseline for COVID-19 Literature Search
Sean MacAvaney
|
Arman Cohan
|
Nazli Goharian
With worldwide concerns surrounding the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), there is a rapidly growing body of scientific literature on the virus. Clinicians, researchers, and policy-makers need to be able to search these articles effectively. In this work, we present a zero-shot ranking algorithm that adapts to COVID-related scientific literature. Our approach filters training data from another collection down to medical-related queries, uses a neural re-ranking model pre-trained on scientific text (SciBERT), and filters the target document collection. This approach ranks top among zero-shot methods on the TREC COVID Round 1 leaderboard, and exhibits a P@5 of 0.80 and an nDCG@10 of 0.68 when evaluated on both Round 1 and 2 judgments. Despite not relying on TREC-COVID data, our method outperforms models that do. As one of the first search methods to thoroughly evaluate COVID-19 search, we hope that this serves as a strong baseline and helps in the global crisis.
pdf
bib
abs
Modularized Transfomer-based Ranking Framework
Luyu Gao
|
Zhuyun Dai
|
Jamie Callan
Recent innovations in Transformer-based ranking models have advanced the state-of-the-art in information retrieval. However, these Transformers are computationally expensive, and their opaque hidden states make it hard to understand the ranking process. In this work, we modularize the Transformer ranker into separate modules for text representation and interaction. We show how this design enables substantially faster ranking using offline pre-computed representations and light-weight online interactions. The modular design is also easier to interpret and sheds light on the ranking process in Transformer rankers.
pdf
bib
abs
Ad-hoc Document Retrieval using Weak-Supervision with BERT and GPT2
Yosi Mass
|
Haggai Roitman
We describe a weakly-supervised method for training deep learning models for the task of ad-hoc document retrieval. Our method is based on generative and discriminative models that are trained using weak-supervision just from the documents in the corpus. We present an end-to-end retrieval system that starts with traditional information retrieval methods, followed by two deep learning re-rankers. We evaluate our method on three different datasets: a COVID-19 related scientific literature dataset and two news datasets. We show that our method outperforms state-of-the-art methods; this without the need for the expensive process of manually labeling data.
pdf
bib
abs
Adversarial Semantic Collisions
Congzheng Song
|
Alexander Rush
|
Vitaly Shmatikov
We study
semantic collisions: texts that are semantically unrelated but judged as similar by NLP models. We develop gradient-based approaches for generating semantic collisions and demonstrate that state-of-the-art models for many tasks which rely on analyzing the meaning and similarity of texts—including paraphrase identification, document retrieval, response suggestion, and extractive summarization—are vulnerable to semantic collisions. For example, given a target query, inserting a crafted collision into an irrelevant document can shift its retrieval rank from 1000 to top 3. We show how to generate semantic collisions that evade perplexity-based filtering and discuss other potential mitigations. Our code is available at
https://github.com/csong27/collision-bert.
pdf
bib
abs
Learning Explainable Linguistic Expressions with Neural Inductive Logic Programming for Sentence Classification
Prithviraj Sen
|
Marina Danilevsky
|
Yunyao Li
|
Siddhartha Brahma
|
Matthias Boehm
|
Laura Chiticariu
|
Rajasekar Krishnamurthy
Interpretability of predictive models is becoming increasingly important with growing adoption in the real-world. We present RuleNN, a neural network architecture for learning transparent models for sentence classification. The models are in the form of rules expressed in first-order logic, a dialect with well-defined, human-understandable semantics. More precisely, RuleNN learns linguistic expressions (LE) built on top of predicates extracted using shallow natural language understanding. Our experimental results show that RuleNN outperforms statistical relational learning and other neuro-symbolic methods, and performs comparably with black-box recurrent neural networks. Our user studies confirm that the learned LEs are explainable and capture domain semantics. Moreover, allowing domain experts to modify LEs and instill more domain knowledge leads to human-machine co-creation of models with better performance.
pdf
bib
abs
AutoPrompt: Eliciting Knowledge from Language Models with Automatically Generated Prompts
Taylor Shin
|
Yasaman Razeghi
|
Robert L. Logan IV
|
Eric Wallace
|
Sameer Singh
The remarkable success of pretrained language models has motivated the study of what kinds of knowledge these models learn during pretraining. Reformulating tasks as fill-in-the-blanks problems (e.g., cloze tests) is a natural approach for gauging such knowledge, however, its usage is limited by the manual effort and guesswork required to write suitable prompts. To address this, we develop AutoPrompt, an automated method to create prompts for a diverse set of tasks, based on a gradient-guided search. Using AutoPrompt, we show that masked language models (MLMs) have an inherent capability to perform sentiment analysis and natural language inference without additional parameters or finetuning, sometimes achieving performance on par with recent state-of-the-art supervised models. We also show that our prompts elicit more accurate factual knowledge from MLMs than the manually created prompts on the LAMA benchmark, and that MLMs can be used as relation extractors more effectively than supervised relation extraction models. These results demonstrate that automatically generated prompts are a viable parameter-free alternative to existing probing methods, and as pretrained LMs become more sophisticated and capable, potentially a replacement for finetuning.
pdf
bib
abs
Learning Variational Word Masks to Improve the Interpretability of Neural Text Classifiers
Hanjie Chen
|
Yangfeng Ji
To build an interpretable neural text classifier, most of the prior work has focused on designing inherently interpretable models or finding faithful explanations. A new line of work on improving model interpretability has just started, and many existing methods require either prior information or human annotations as additional inputs in training. To address this limitation, we propose the variational word mask (VMASK) method to automatically learn task-specific important words and reduce irrelevant information on classification, which ultimately improves the interpretability of model predictions. The proposed method is evaluated with three neural text classifiers (CNN, LSTM, and BERT) on seven benchmark text classification datasets. Experiments show the effectiveness of VMASK in improving both model prediction accuracy and interpretability.
pdf
bib
abs
Sparse Text Generation
Pedro Henrique Martins
|
Zita Marinho
|
André F. T. Martins
Current state-of-the-art text generators build on powerful language models such as GPT-2, achieving impressive performance. However, to avoid degenerate text, they require sampling from a modified softmax, via temperature parameters or ad-hoc truncation techniques, as in top-k or nucleus sampling. This creates a mismatch between training and testing conditions. In this paper, we use the recently introduced entmax transformation to train and sample from a natively sparse language model, avoiding this mismatch. The result is a text generator with favorable performance in terms of fluency and consistency, fewer repetitions, and n-gram diversity closer to human text. In order to evaluate our model, we propose three new metrics for comparing sparse or truncated distributions: 𝜖-perplexity, sparsemax score, and Jensen-Shannon divergence. Human-evaluated experiments in story completion and dialogue generation show that entmax sampling leads to more engaging and coherent stories and conversations.
pdf
bib
abs
PlotMachines: Outline-Conditioned Generation with Dynamic Plot State Tracking
Hannah Rashkin
|
Asli Celikyilmaz
|
Yejin Choi
|
Jianfeng Gao
We propose the task of outline-conditioned story generation: given an outline as a set of phrases that describe key characters and events to appear in a story, the task is to generate a coherent narrative that is consistent with the provided outline. This task is challenging as the input only provides a rough sketch of the plot, and thus, models need to generate a story by interweaving the key points provided in the outline. This requires the model to keep track of the dynamic states of the latent plot, conditioning on the input outline while generating the full story. We present PlotMachines, a neural narrative model that learns to transform an outline into a coherent story by tracking the dynamic plot states. In addition, we enrich PlotMachines with high-level discourse structure so that the model can learn different writing styles corresponding to different parts of the narrative. Comprehensive experiments over three fiction and non-fiction datasets demonstrate that large-scale language models, such as GPT-2 and Grover, despite their impressive generation performance, are not sufficient in generating coherent narratives for the given outline, and dynamic plot state tracking is important for composing narratives with tighter, more consistent plots.
pdf
bib
abs
Do sequence-to-sequence VAEs learn global features of sentences?
Tom Bosc
|
Pascal Vincent
Autoregressive language models are powerful and relatively easy to train. However, these models are usually trained without explicit conditioning labels and do not offer easy ways to control global aspects such as sentiment or topic during generation. Bowman & al. 2016 adapted the Variational Autoencoder (VAE) for natural language with the sequence-to-sequence architecture and claimed that the latent vector was able to capture such global features in an unsupervised manner. We question this claim. We measure which words benefit most from the latent information by decomposing the reconstruction loss per position in the sentence. Using this method, we find that VAEs are prone to memorizing the first words and the sentence length, producing local features of limited usefulness. To alleviate this, we investigate alternative architectures based on bag-of-words assumptions and language model pretraining. These variants learn latent variables that are more global, i.e., more predictive of topic or sentiment labels. Moreover, using reconstructions, we observe that they decrease memorization: the first word and the sentence length are not recovered as accurately than with the baselines, consequently yielding more diverse reconstructions.
pdf
bib
abs
Content Planning for Neural Story Generation with Aristotelian Rescoring
Seraphina Goldfarb-Tarrant
|
Tuhin Chakrabarty
|
Ralph Weischedel
|
Nanyun Peng
Long-form narrative text generated from large language models manages a fluent impersonation of human writing, but only at the local sentence level, and lacks structure or global cohesion. We posit that many of the problems of story generation can be addressed via high-quality content planning, and present a system that focuses on how to learn good plot structures to guide story generation. We utilize a plot-generation language model along with an ensemble of rescoring models that each implement an aspect of good story-writing as detailed in Aristotle’s Poetics. We find that stories written with our more principled plot-structure are both more relevant to a given prompt and higher quality than baselines that do not content plan, or that plan in an unprincipled way.
pdf
bib
abs
Generating Dialogue Responses from a Semantic Latent Space
Wei-Jen Ko
|
Avik Ray
|
Yilin Shen
|
Hongxia Jin
Existing open-domain dialogue generation models are usually trained to mimic the gold response in the training set using cross-entropy loss on the vocabulary. However, a good response does not need to resemble the gold response, since there are multiple possible responses to a given prompt. In this work, we hypothesize that the current models are unable to integrate information from multiple semantically similar valid responses of a prompt, resulting in the generation of generic and uninformative responses. To address this issue, we propose an alternative to the end-to-end classification on vocabulary. We learn the pair relationship between the prompts and responses as a regression task on a latent space instead. In our novel dialog generation model, the representations of semantically related sentences are close to each other on the latent space. Human evaluation showed that learning the task on a continuous space can generate responses that are both relevant and informative.
pdf
bib
abs
Refer, Reuse, Reduce: Generating Subsequent References in Visual and Conversational Contexts
Ece Takmaz
|
Mario Giulianelli
|
Sandro Pezzelle
|
Arabella Sinclair
|
Raquel Fernández
Dialogue participants often refer to entities or situations repeatedly within a conversation, which contributes to its cohesiveness. Subsequent references exploit the common ground accumulated by the interlocutors and hence have several interesting properties, namely, they tend to be shorter and reuse expressions that were effective in previous mentions. In this paper, we tackle the generation of first and subsequent references in visually grounded dialogue. We propose a generation model that produces referring utterances grounded in both the visual and the conversational context. To assess the referring effectiveness of its output, we also implement a reference resolution system. Our experiments and analyses show that the model produces better, more effective referring utterances than a model not grounded in the dialogue context, and generates subsequent references that exhibit linguistic patterns akin to humans.
pdf
bib
abs
Visually Grounded Compound PCFGs
Yanpeng Zhao
|
Ivan Titov
Exploiting visual groundings for language understanding has recently been drawing much attention. In this work, we study visually grounded grammar induction and learn a constituency parser from both unlabeled text and its visual groundings. Existing work on this task (Shi et al., 2019) optimizes a parser via Reinforce and derives the learning signal only from the alignment of images and sentences. While their model is relatively accurate overall, its error distribution is very uneven, with low performance on certain constituents types (e.g., 26.2% recall on verb phrases, VPs) and high on others (e.g., 79.6% recall on noun phrases, NPs). This is not surprising as the learning signal is likely insufficient for deriving all aspects of phrase-structure syntax and gradient estimates are noisy. We show that using an extension of probabilistic context-free grammar model we can do fully-differentiable end-to-end visually grounded learning. Additionally, this enables us to complement the image-text alignment loss with a language modeling objective. On the MSCOCO test captions, our model establishes a new state of the art, outperforming its non-grounded version and, thus, confirming the effectiveness of visual groundings in constituency grammar induction. It also substantially outperforms the previous grounded model, with largest improvements on more ‘abstract’ categories (e.g., +55.1% recall on VPs).
pdf
bib
abs
ALICE: Active Learning with Contrastive Natural Language Explanations
Weixin Liang
|
James Zou
|
Zhou Yu
Training a supervised neural network classifier typically requires many annotated training samples. Collecting and annotating a large number of data points are costly and sometimes even infeasible. Traditional annotation process uses a low-bandwidth human-machine communication interface: classification labels, each of which only provides a few bits of information. We propose Active Learning with Contrastive Explanations (ALICE), an expert-in-the-loop training framework that utilizes contrastive natural language explanations to improve data efficiency in learning. AL-ICE learns to first use active learning to select the most informative pairs of label classes to elicit contrastive natural language explanations from experts. Then it extracts knowledge from these explanations using a semantic parser. Finally, it incorporates the extracted knowledge through dynamically changing the learning model’s structure. We applied ALICEin two visual recognition tasks, bird species classification and social relationship classification. We found by incorporating contrastive explanations, our models outperform baseline models that are trained with 40-100% more training data. We found that adding1expla-nation leads to similar performance gain as adding 13-30 labeled training data points.
pdf
bib
abs
Room-Across-Room: Multilingual Vision-and-Language Navigation with Dense Spatiotemporal Grounding
Alexander Ku
|
Peter Anderson
|
Roma Patel
|
Eugene Ie
|
Jason Baldridge
We introduce Room-Across-Room (RxR), a new Vision-and-Language Navigation (VLN) dataset. RxR is multilingual (English, Hindi, and Telugu) and larger (more paths and instructions) than other VLN datasets. It emphasizes the role of language in VLN by addressing known biases in paths and eliciting more references to visible entities. Furthermore, each word in an instruction is time-aligned to the virtual poses of instruction creators and validators. We establish baseline scores for monolingual and multilingual settings and multitask learning when including Room-to-Room annotations (Anderson et al., 2018). We also provide results for a model that learns from synchronized pose traces by focusing only on portions of the panorama attended to in human demonstrations. The size, scope and detail of RxR dramatically expands the frontier for research on embodied language agents in photorealistic simulated environments.
pdf
bib
abs
SSCR: Iterative Language-Based Image Editing via Self-Supervised Counterfactual Reasoning
Tsu-Jui Fu
|
Xin Wang
|
Scott Grafton
|
Miguel Eckstein
|
William Yang Wang
Iterative Language-Based Image Editing (ILBIE) tasks follow iterative instructions to edit images step by step. Data scarcity is a significant issue for ILBIE as it is challenging to collect large-scale examples of images before and after instruction-based changes. Yet, humans still accomplish these editing tasks even when presented with an unfamiliar image-instruction pair. Such ability results from counterfactual thinking, the ability to think about possible alternatives to events that have happened already. In this paper, we introduce a Self-Supervised Counterfactual Reasoning (SSCR) framework that incorporates counterfactual thinking to overcome data scarcity. SSCR allows the model to consider out-of-distribution instructions paired with previous images. With the help of cross-task consistency (CTC), we train these counterfactual instructions in a self-supervised scenario. Extensive results show that SSCR improves the correctness of ILBIE in terms of both object identity and position, establishing a new state of the art (SOTA) on two IBLIE datasets (i-CLEVR and CoDraw). Even with only 50% of the training data, SSCR achieves a comparable result to using complete data.
pdf
bib
abs
Identifying Elements Essential for BERT’s Multilinguality
Philipp Dufter
|
Hinrich Schütze
It has been shown that multilingual BERT (mBERT) yields high quality multilingual representations and enables effective zero-shot transfer. This is surprising given that mBERT does not use any crosslingual signal during training. While recent literature has studied this phenomenon, the reasons for the multilinguality are still somewhat obscure. We aim to identify architectural properties of BERT and linguistic properties of languages that are necessary for BERT to become multilingual. To allow for fast experimentation we propose an efficient setup with small BERT models trained on a mix of synthetic and natural data. Overall, we identify four architectural and two linguistic elements that influence multilinguality. Based on our insights, we experiment with a multilingual pretraining setup that modifies the masking strategy using VecMap, i.e., unsupervised embedding alignment. Experiments on XNLI with three languages indicate that our findings transfer from our small setup to larger scale settings.
pdf
bib
abs
On Negative Interference in Multilingual Models: Findings and A Meta-Learning Treatment
Zirui Wang
|
Zachary C. Lipton
|
Yulia Tsvetkov
Modern multilingual models are trained on concatenated text from multiple languages in hopes of conferring benefits to each (positive transfer), with the most pronounced benefits accruing to low-resource languages. However, recent work has shown that this approach can degrade performance on high-resource languages, a phenomenon known as negative interference. In this paper, we present the first systematic study of negative interference. We show that, contrary to previous belief, negative interference also impacts low-resource languages. While parameters are maximally shared to learn language-universal structures, we demonstrate that language-specific parameters do exist in multilingual models and they are a potential cause of negative interference. Motivated by these observations, we also present a meta-learning algorithm that obtains better cross-lingual transferability and alleviates negative interference, by adding language-specific layers as meta-parameters and training them in a manner that explicitly improves shared layers’ generalization on all languages. Overall, our results show that negative interference is more common than previously known, suggesting new directions for improving multilingual representations.
pdf
bib
abs
Pre-tokenization of Multi-word Expressions in Cross-lingual Word Embeddings
Naoki Otani
|
Satoru Ozaki
|
Xingyuan Zhao
|
Yucen Li
|
Micaelah St Johns
|
Lori Levin
Cross-lingual word embedding (CWE) algorithms represent words in multiple languages in a unified vector space. Multi-Word Expressions (MWE) are common in every language. When training word embeddings, each component word of an MWE gets its own separate embedding, and thus, MWEs are not translated by CWEs. We propose a simple method for word translation of MWEs to and from English in ten languages: we first compile lists of MWEs in each language and then tokenize the MWEs as single tokens before training word embeddings. CWEs are trained on a word-translation task using the dictionaries that only contain single words. In order to evaluate MWE translation, we created bilingual word lists from multilingual WordNet that include single-token words and MWEs, and most importantly, include MWEs that correspond to single words in another language. We release these dictionaries to the research community. We show that the pre-tokenization of MWEs as single tokens performs better than averaging the embeddings of the individual tokens of the MWE. We can translate MWEs at a top-10 precision of 30-60%. The tokenization of MWEs makes the occurrences of single words in a training corpus more sparse, but we show that it does not pose negative impacts on single-word translations.
pdf
bib
abs
Monolingual Adapters for Zero-Shot Neural Machine Translation
Jerin Philip
|
Alexandre Berard
|
Matthias Gallé
|
Laurent Besacier
We propose a novel adapter layer formalism for adapting multilingual models. They are more parameter-efficient than existing adapter layers while obtaining as good or better performance. The layers are specific to one language (as opposed to bilingual adapters) allowing to compose them and generalize to unseen language-pairs. In this zero-shot setting, they obtain a median improvement of +2.77 BLEU points over a strong 20-language multilingual Transformer baseline trained on TED talks.
pdf
bib
abs
Do Explicit Alignments Robustly Improve Multilingual Encoders?
Shijie Wu
|
Mark Dredze
Multilingual BERT (mBERT), XLM-RoBERTa (XLMR) and other unsupervised multilingual encoders can effectively learn cross-lingual representation. Explicit alignment objectives based on bitexts like Europarl or MultiUN have been shown to further improve these representations. However, word-level alignments are often suboptimal and such bitexts are unavailable for many languages. In this paper, we propose a new contrastive alignment objective that can better utilize such signal, and examine whether these previous alignment methods can be adapted to noisier sources of aligned data: a randomly sampled 1 million pair subset of the OPUS collection. Additionally, rather than report results on a single dataset with a single model run, we report the mean and standard derivation of multiple runs with different seeds, on four datasets and tasks. Our more extensive analysis finds that, while our new objective outperforms previous work, overall these methods do not improve performance with a more robust evaluation framework. Furthermore, the gains from using a better underlying model eclipse any benefits from alignment training. These negative results dictate more care in evaluating these methods and suggest limitations in applying explicit alignment objectives.
pdf
bib
abs
From Zero to Hero: On the Limitations of Zero-Shot Language Transfer with Multilingual Transformers
Anne Lauscher
|
Vinit Ravishankar
|
Ivan Vulić
|
Goran Glavaš
Massively multilingual transformers (MMTs) pretrained via language modeling (e.g., mBERT, XLM-R) have become a default paradigm for zero-shot language transfer in NLP, offering unmatched transfer performance. Current evaluations, however, verify their efficacy in transfers (a) to languages with sufficiently large pretraining corpora, and (b) between close languages. In this work, we analyze the limitations of downstream language transfer with MMTs, showing that, much like cross-lingual word embeddings, they are substantially less effective in resource-lean scenarios and for distant languages. Our experiments, encompassing three lower-level tasks (POS tagging, dependency parsing, NER) and two high-level tasks (NLI, QA), empirically correlate transfer performance with linguistic proximity between source and target languages, but also with the size of target language corpora used in MMT pretraining. Most importantly, we demonstrate that the inexpensive few-shot transfer (i.e., additional fine-tuning on a few target-language instances) is surprisingly effective across the board, warranting more research efforts reaching beyond the limiting zero-shot conditions.
pdf
bib
abs
Distilling Multiple Domains for Neural Machine Translation
Anna Currey
|
Prashant Mathur
|
Georgiana Dinu
Neural machine translation achieves impressive results in high-resource conditions, but performance often suffers when the input domain is low-resource. The standard practice of adapting a separate model for each domain of interest does not scale well in practice from both a quality perspective (brittleness under domain shift) as well as a cost perspective (added maintenance and inference complexity). In this paper, we propose a framework for training a single multi-domain neural machine translation model that is able to translate several domains without increasing inference time or memory usage. We show that this model can improve translation on both high- and low-resource domains over strong multi-domain baselines. In addition, our proposed model is effective when domain labels are unknown during training, as well as robust under noisy data conditions.
pdf
bib
abs
Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation
Nils Reimers
|
Iryna Gurevych
We present an easy and efficient method to extend existing sentence embedding models to new languages. This allows to create multilingual versions from previously monolingual models. The training is based on the idea that a translated sentence should be mapped to the same location in the vector space as the original sentence. We use the original (monolingual) model to generate sentence embeddings for the source language and then train a new system on translated sentences to mimic the original model. Compared to other methods for training multilingual sentence embeddings, this approach has several advantages: It is easy to extend existing models with relatively few samples to new languages, it is easier to ensure desired properties for the vector space, and the hardware requirements for training are lower. We demonstrate the effectiveness of our approach for 50+ languages from various language families. Code to extend sentence embeddings models to more than 400 languages is publicly available.
pdf
bib
abs
A Streaming Approach For Efficient Batched Beam Search
Kevin Yang
|
Violet Yao
|
John DeNero
|
Dan Klein
We propose an efficient batching strategy for variable-length decoding on GPU architectures. During decoding, when candidates terminate or are pruned according to heuristics, our streaming approach periodically “refills” the batch before proceeding with a selected subset of candidates. We apply our method to variable-width beam search on a state-of-the-art machine translation model. Our method decreases runtime by up to 71% compared to a fixed-width beam search baseline and 17% compared to a variable-width baseline, while matching baselines’ BLEU. Finally, experiments show that our method can speed up decoding in other domains, such as semantic and syntactic parsing.
pdf
bib
abs
Improving Multilingual Models with Language-Clustered Vocabularies
Hyung Won Chung
|
Dan Garrette
|
Kiat Chuan Tan
|
Jason Riesa
State-of-the-art multilingual models depend on vocabularies that cover all of the languages the model will expect to see at inference time, but the standard methods for generating those vocabularies are not ideal for massively multilingual applications. In this work, we introduce a novel procedure for multilingual vocabulary generation that combines the separately trained vocabularies of several automatically derived language clusters, thus balancing the trade-off between cross-lingual subword sharing and language-specific vocabularies. Our experiments show improvements across languages on key multilingual benchmark tasks TyDi QA (+2.9 F1), XNLI (+2.1%), and WikiAnn NER (+2.8 F1) and factor of 8 reduction in out-of-vocabulary rate, all without increasing the size of the model or data.
pdf
bib
abs
Zero-Shot Cross-Lingual Transfer with Meta Learning
Farhad Nooralahzadeh
|
Giannis Bekoulis
|
Johannes Bjerva
|
Isabelle Augenstein
Learning what to share between tasks has become a topic of great importance, as strategic sharing of knowledge has been shown to improve downstream task performance. This is particularly important for multilingual applications, as most languages in the world are under-resourced. Here, we consider the setting of training models on multiple different languages at the same time, when little or no data is available for languages other than English. We show that this challenging setup can be approached using meta-learning: in addition to training a source language model, another model learns to select which training instances are the most beneficial to the first. We experiment using standard supervised, zero-shot cross-lingual, as well as few-shot cross-lingual settings for different natural language understanding tasks (natural language inference, question answering). Our extensive experimental setup demonstrates the consistent effectiveness of meta-learning for a total of 15 languages. We improve upon the state-of-the-art for zero-shot and few-shot NLI (on MultiNLI and XNLI) and QA (on the MLQA dataset). A comprehensive error analysis indicates that the correlation of typological features between languages can partly explain when parameter sharing learned via meta-learning is beneficial.
pdf
bib
abs
The Multilingual Amazon Reviews Corpus
Phillip Keung
|
Yichao Lu
|
György Szarvas
|
Noah A. Smith
We present the Multilingual Amazon Reviews Corpus (MARC), a large-scale collection of Amazon reviews for multilingual text classification. The corpus contains reviews in English, Japanese, German, French, Spanish, and Chinese, which were collected between 2015 and 2019. Each record in the dataset contains the review text, the review title, the star rating, an anonymized reviewer ID, an anonymized product ID, and the coarse-grained product category (e.g., ‘books’, ‘appliances’, etc.) The corpus is balanced across the 5 possible star ratings, so each rating constitutes 20% of the reviews in each language. For each language, there are 200,000, 5,000, and 5,000 reviews in the training, development, and test sets, respectively. We report baseline results for supervised text classification and zero-shot cross-lingual transfer learning by fine-tuning a multilingual BERT model on reviews data. We propose the use of mean absolute error (MAE) instead of classification accuracy for this task, since MAE accounts for the ordinal nature of the ratings.
pdf
bib
abs
GLUCOSE: GeneraLized and COntextualized Story Explanations
Nasrin Mostafazadeh
|
Aditya Kalyanpur
|
Lori Moon
|
David Buchanan
|
Lauren Berkowitz
|
Or Biran
|
Jennifer Chu-Carroll
When humans read or listen, they make implicit commonsense inferences that frame their understanding of what happened and why. As a step toward AI systems that can build similar mental models, we introduce GLUCOSE, a large-scale dataset of implicit commonsense causal knowledge, encoded as causal mini-theories about the world, each grounded in a narrative context. To construct GLUCOSE, we drew on cognitive psychology to identify ten dimensions of causal explanation, focusing on events, states, motivations, and emotions. Each GLUCOSE entry includes a story-specific causal statement paired with an inference rule generalized from the statement. This paper details two concrete contributions. First, we present our platform for effectively crowdsourcing GLUCOSE data at scale, which uses semi-structured templates to elicit causal explanations. Using this platform, we collected a total of ~670K specific statements and general rules that capture implicit commonsense knowledge about everyday situations. Second, we show that existing knowledge resources and pretrained language models do not include or readily predict GLUCOSE’s rich inferential content. However, when state-of-the-art neural models are trained on this knowledge, they can start to make commonsense inferences on unseen stories that match humans’ mental models.
pdf
bib
abs
Character-level Representations Improve DRS-based Semantic Parsing Even in the Age of BERT
Rik van Noord
|
Antonio Toral
|
Johan Bos
We combine character-level and contextual language model representations to improve performance on Discourse Representation Structure parsing. Character representations can easily be added in a sequence-to-sequence model in either one encoder or as a fully separate encoder, with improvements that are robust to different language models, languages and data sets. For English, these improvements are larger than adding individual sources of linguistic information or adding non-contextual embeddings. A new method of analysis based on semantic tags demonstrates that the character-level representations improve performance across a subset of selected semantic phenomena.
pdf
bib
abs
Infusing Disease Knowledge into BERT for Health Question Answering, Medical Inference and Disease Name Recognition
Yun He
|
Ziwei Zhu
|
Yin Zhang
|
Qin Chen
|
James Caverlee
Knowledge of a disease includes information of various aspects of the disease, such as signs and symptoms, diagnosis and treatment. This disease knowledge is critical for many health-related and biomedical tasks, including consumer health question answering, medical language inference and disease name recognition. While pre-trained language models like BERT have shown success in capturing syntactic, semantic, and world knowledge from text, we find they can be further complemented by specific information like knowledge of symptoms, diagnoses, treatments, and other disease aspects. Hence, we integrate BERT with disease knowledge for improving these important tasks. Specifically, we propose a new disease knowledge infusion training procedure and evaluate it on a suite of BERT models including BERT, BioBERT, SciBERT, ClinicalBERT, BlueBERT, and ALBERT. Experiments over the three tasks show that these models can be enhanced in nearly all cases, demonstrating the viability of disease knowledge infusion. For example, accuracy of BioBERT on consumer health question answering is improved from 68.29% to 72.09%, while new SOTA results are observed in two datasets. We make our data and code freely available.
pdf
bib
abs
Unsupervised Commonsense Question Answering with Self-Talk
Vered Shwartz
|
Peter West
|
Ronan Le Bras
|
Chandra Bhagavatula
|
Yejin Choi
Natural language understanding involves reading between the lines with implicit background knowledge. Current systems either rely on pre-trained language models as the sole implicit source of world knowledge, or resort to external knowledge bases (KBs) to incorporate additional relevant knowledge. We propose an unsupervised framework based on self-talk as a novel alternative to multiple-choice commonsense tasks. Inspired by inquiry-based discovery learning (Bruner, 1961), our approach inquires language models with a number of information seeking questions such as “what is the definition of...” to discover additional background knowledge. Empirical results demonstrate that the self-talk procedure substantially improves the performance of zero-shot language model baselines on four out of six commonsense benchmarks, and competes with models that obtain knowledge from external KBs. While our approach improves performance on several benchmarks, the self-talk induced knowledge even when leading to correct answers is not always seen as helpful by human judges, raising interesting questions about the inner-workings of pre-trained language models for commonsense reasoning.
pdf
bib
abs
Reasoning about Goals, Steps, and Temporal Ordering with WikiHow
Li Zhang
|
Qing Lyu
|
Chris Callison-Burch
We propose a suite of reasoning tasks on two types of relations between procedural events: goal-step relations (“learn poses” is a step in the larger goal of “doing yoga”) and step-step temporal relations (“buy a yoga mat” typically precedes “learn poses”). We introduce a dataset targeting these two relations based on wikiHow, a website of instructional how-to articles. Our human-validated test set serves as a reliable benchmark for common-sense inference, with a gap of about 10% to 20% between the performance of state-of-the-art transformer models and human performance. Our automatically-generated training set allows models to effectively transfer to out-of-domain tasks requiring knowledge of procedural events, with greatly improved performances on SWAG, Snips, and Story Cloze Test in zero- and few-shot settings.
pdf
bib
abs
Structural Supervision Improves Few-Shot Learning and Syntactic Generalization in Neural Language Models
Ethan Wilcox
|
Peng Qian
|
Richard Futrell
|
Ryosuke Kohita
|
Roger Levy
|
Miguel Ballesteros
Humans can learn structural properties about a word from minimal experience, and deploy their learned syntactic representations uniformly in different grammatical contexts. We assess the ability of modern neural language models to reproduce this behavior in English and evaluate the effect of structural supervision on learning outcomes. First, we assess few-shot learning capabilities by developing controlled experiments that probe models’ syntactic nominal number and verbal argument structure generalizations for tokens seen as few as two times during training. Second, we assess invariance properties of learned representation: the ability of a model to transfer syntactic generalizations from a base context (e.g., a simple declarative active-voice sentence) to a transformed context (e.g., an interrogative sentence). We test four models trained on the same dataset: an n-gram baseline, an LSTM, and two LSTM-variants trained with explicit structural supervision. We find that in most cases, the neural models are able to induce the proper syntactic generalizations after minimal exposure, often from just two examples during training, and that the two structurally supervised models generalize more accurately than the LSTM model. All neural models are able to leverage information learned in base contexts to drive expectations in transformed contexts, indicating that they have learned some invariance properties of syntax.
pdf
bib
abs
Investigating representations of verb bias in neural language models
Robert Hawkins
|
Takateru Yamakoshi
|
Thomas Griffiths
|
Adele Goldberg
Languages typically provide more than one grammatical construction to express certain types of messages. A speaker’s choice of construction is known to depend on multiple factors, including the choice of main verb – a phenomenon known as verb bias. Here we introduce DAIS, a large benchmark dataset containing 50K human judgments for 5K distinct sentence pairs in the English dative alternation. This dataset includes 200 unique verbs and systematically varies the definiteness and length of arguments. We use this dataset, as well as an existing corpus of naturally occurring data, to evaluate how well recent neural language models capture human preferences. Results show that larger models perform better than smaller models, and transformer architectures (e.g. GPT-2) tend to out-perform recurrent architectures (e.g. LSTMs) even under comparable parameter and training settings. Additional analyses of internal feature representations suggest that transformers may better integrate specific lexical information with grammatical constructions.
pdf
bib
abs
Generating Image Descriptions via Sequential Cross-Modal Alignment Guided by Human Gaze
Ece Takmaz
|
Sandro Pezzelle
|
Lisa Beinborn
|
Raquel Fernández
When speakers describe an image, they tend to look at objects before mentioning them. In this paper, we investigate such sequential cross-modal alignment by modelling the image description generation process computationally. We take as our starting point a state-of-the-art image captioning system and develop several model variants that exploit information from human gaze patterns recorded during language production. In particular, we propose the first approach to image description generation where visual processing is modelled sequentially. Our experiments and analyses confirm that better descriptions can be obtained by exploiting gaze-driven attention and shed light on human cognitive processes by comparing different ways of aligning the gaze modality with language production. We find that processing gaze data sequentially leads to descriptions that are better aligned to those produced by speakers, more diverse, and more natural—particularly when gaze is encoded with a dedicated recurrent component.
pdf
bib
abs
Optimus: Organizing Sentences via Pre-trained Modeling of a Latent Space
Chunyuan Li
|
Xiang Gao
|
Yuan Li
|
Baolin Peng
|
Xiujun Li
|
Yizhe Zhang
|
Jianfeng Gao
When trained effectively, the Variational Autoencoder (VAE) can be both a powerful generative model and an effective representation learning framework for natural language. In this paper, we propose the first large-scale language VAE model Optimus (Organizing sentences via Pre-Trained Modeling of a Universal Space). A universal latent embedding space for sentences is first pre-trained on large text corpus, and then fine-tuned for various language generation and understanding tasks. Compared with GPT-2, Optimus enables guided language generation from an abstract level using the latent vectors. Compared with BERT, Optimus can generalize better on low-resource language understanding tasks due to the smooth latent space structure. Extensive experimental results on a wide range of language tasks demonstrate the effectiveness of Optimus. It achieves new state-of-the-art on VAE language modeling benchmarks.
pdf
bib
abs
BioMegatron: Larger Biomedical Domain Language Model
Hoo-Chang Shin
|
Yang Zhang
|
Evelina Bakhturina
|
Raul Puri
|
Mostofa Patwary
|
Mohammad Shoeybi
|
Raghav Mani
There has been an influx of biomedical domain-specific language models, showing language models pre-trained on biomedical text perform better on biomedical domain benchmarks than those trained on general domain text corpora such as Wikipedia and Books. Yet, most works do not study the factors affecting each domain language application deeply. Additionally, the study of model size on domain-specific models has been mostly missing. We empirically study and evaluate several factors that can affect performance on domain language applications, such as the sub-word vocabulary set, model size, pre-training corpus, and domain transfer. We show consistent improvements on benchmarks with our larger BioMegatron model trained on a larger domain corpus, contributing to our understanding of domain language model applications. We demonstrate noticeable improvements over the previous state-of-the-art (SOTA) on standard biomedical NLP benchmarks of question answering, named entity recognition, and relation extraction. Code and checkpoints to reproduce our experiments are available at [github.com/NVIDIA/NeMo].
pdf
bib
abs
Text Segmentation by Cross Segment Attention
Michal Lukasik
|
Boris Dadachev
|
Kishore Papineni
|
Gonçalo Simões
Document and discourse segmentation are two fundamental NLP tasks pertaining to breaking up text into constituents, which are commonly used to help downstream tasks such as information retrieval or text summarization. In this work, we propose three transformer-based architectures and provide comprehensive comparisons with previously proposed approaches on three standard datasets. We establish a new state-of-the-art, reducing in particular the error rates by a large margin in all cases. We further analyze model sizes and find that we can build models with many fewer parameters while keeping good performance, thus facilitating real-world applications.
pdf
bib
abs
RussianSuperGLUE: A Russian Language Understanding Evaluation Benchmark
Tatiana Shavrina
|
Alena Fenogenova
|
Emelyanov Anton
|
Denis Shevelev
|
Ekaterina Artemova
|
Valentin Malykh
|
Vladislav Mikhailov
|
Maria Tikhonova
|
Andrey Chertok
|
Andrey Evlampiev
In this paper, we introduce an advanced Russian general language understanding evaluation benchmark – Russian SuperGLUE. Recent advances in the field of universal language models and transformers require the development of a methodology for their broad diagnostics and testing for general intellectual skills - detection of natural language inference, commonsense reasoning, ability to perform simple logical operations regardless of text subject or lexicon. For the first time, a benchmark of nine tasks, collected and organized analogically to the SuperGLUE methodology, was developed from scratch for the Russian language. We also provide baselines, human level evaluation, open-source framework for evaluating models, and an overall leaderboard of transformer models for the Russian language. Besides, we present the first results of comparing multilingual models in the translated diagnostic test set and offer the first steps to further expanding or assessing State-of-the-art models independently of language.
pdf
bib
abs
An Empirical Study of Pre-trained Transformers for Arabic Information Extraction
Wuwei Lan
|
Yang Chen
|
Wei Xu
|
Alan Ritter
Multilingual pre-trained Transformers, such as mBERT (Devlin et al., 2019) and XLM-RoBERTa (Conneau et al., 2020a), have been shown to enable effective cross-lingual zero-shot transfer. However, their performance on Arabic information extraction (IE) tasks is not very well studied. In this paper, we pre-train a customized bilingual BERT, dubbed GigaBERT, that is designed specifically for Arabic NLP and English-to-Arabic zero-shot transfer learning. We study GigaBERT’s effectiveness on zero-short transfer across four IE tasks: named entity recognition, part-of-speech tagging, argument role labeling, and relation extraction. Our best model significantly outperforms mBERT, XLM-RoBERTa, and AraBERT (Antoun et al., 2020) in both the supervised and zero-shot transfer settings. We have made our pre-trained models publicly available at:
https://github.com/lanwuwei/GigaBERT.
pdf
bib
abs
TNT: Text Normalization based Pre-training of Transformers for Content Moderation
Fei Tan
|
Yifan Hu
|
Changwei Hu
|
Keqian Li
|
Kevin Yen
In this work, we present a new language pre-training model TNT (Text Normalization based pre-training of Transformers) for content moderation. Inspired by the masking strategy and text normalization, TNT is developed to learn language representation by training transformers to reconstruct text from four operation types typically seen in text manipulation: substitution, transposition, deletion, and insertion. Furthermore, the normalization involves the prediction of both operation types and token labels, enabling TNT to learn from more challenging tasks than the standard task of masked word recovery. As a result, the experiments demonstrate that TNT outperforms strong baselines on the hate speech classification task. Additional text normalization experiments and case studies show that TNT is a new potential approach to misspelling correction.
pdf
bib
abs
Methods for Numeracy-Preserving Word Embeddings
Dhanasekar Sundararaman
|
Shijing Si
|
Vivek Subramanian
|
Guoyin Wang
|
Devamanyu Hazarika
|
Lawrence Carin
Word embedding models are typically able to capture the semantics of words via the distributional hypothesis, but fail to capture the numerical properties of numbers that appear in the text. This leads to problems with numerical reasoning involving tasks such as question answering. We propose a new methodology to assign and learn embeddings for numbers. Our approach creates Deterministic, Independent-of-Corpus Embeddings (the model is referred to as DICE) for numbers, such that their cosine similarity reflects the actual distance on the number line. DICE outperforms a wide range of pre-trained word embedding models across multiple examples of two tasks: (i) evaluating the ability to capture numeration and magnitude; and (ii) to perform list maximum, decoding, and addition. We further explore the utility of these embeddings in downstream tasks, by initializing numbers with our approach for the task of magnitude prediction. We also introduce a regularization approach to learn model-based embeddings of numbers in a contextual setting.
pdf
bib
abs
An Empirical Investigation of Contextualized Number Prediction
Taylor Berg-Kirkpatrick
|
Daniel Spokoyny
We conduct a large scale empirical investigation of contextualized number prediction in running text. Specifically, we consider two tasks: (1)masked number prediction– predict-ing a missing numerical value within a sentence, and (2)numerical anomaly detection–detecting an errorful numeric value within a sentence. We experiment with novel combinations of contextual encoders and output distributions over the real number line. Specifically, we introduce a suite of output distribution parameterizations that incorporate latent variables to add expressivity and better fit the natural distribution of numeric values in running text, and combine them with both recur-rent and transformer-based encoder architectures. We evaluate these models on two numeric datasets in the financial and scientific domain. Our findings show that output distributions that incorporate discrete latent variables and allow for multiple modes outperform simple flow-based counterparts on all datasets, yielding more accurate numerical pre-diction and anomaly detection. We also show that our models effectively utilize textual con-text and benefit from general-purpose unsupervised pretraining.
pdf
bib
abs
Modeling the Music Genre Perception across Language-Bound Cultures
Elena V. Epure
|
Guillaume Salha
|
Manuel Moussallam
|
Romain Hennequin
The music genre perception expressed through human annotations of artists or albums varies significantly across language-bound cultures. These variations cannot be modeled as mere translations since we also need to account for cultural differences in the music genre perception. In this work, we study the feasibility of obtaining relevant cross-lingual, culture-specific music genre annotations based only on language-specific semantic representations, namely distributed concept embeddings and ontologies. Our study, focused on six languages, shows that unsupervised cross-lingual music genre annotation is feasible with high accuracy, especially when combining both types of representations. This approach of studying music genres is the most extensive to date and has many implications in musicology and music information retrieval. Besides, we introduce a new, domain-dependent cross-lingual corpus to benchmark state of the art multilingual pre-trained embedding models.
pdf
bib
abs
Joint Estimation and Analysis of Risk Behavior Ratings in Movie Scripts
Victor Martinez
|
Krishna Somandepalli
|
Yalda Tehranian-Uhls
|
Shrikanth Narayanan
Exposure to violent, sexual, or substance-abuse content in media increases the willingness of children and adolescents to imitate similar behaviors. Computational methods that identify portrayals of risk behaviors from audio-visual cues are limited in their applicability to films in post-production, where modifications might be prohibitively expensive. To address this limitation, we propose a model that estimates content ratings based on the language use in movie scripts, making our solution available at the earlier stages of creative production. Our model significantly improves the state-of-the-art by adapting novel techniques to learn better movie representations from the semantic and sentiment aspects of a character’s language use, and by leveraging the co-occurrence of risk behaviors, following a multi-task approach. Additionally, we show how this approach can be useful to learn novel insights on the joint portrayal of these behaviors, and on the subtleties that filmmakers may otherwise not pick up on.
pdf
bib
abs
Keep it Surprisingly Simple: A Simple First Order Graph Based Parsing Model for Joint Morphosyntactic Parsing in Sanskrit
Amrith Krishna
|
Ashim Gupta
|
Deepak Garasangi
|
Pavankumar Satuluri
|
Pawan Goyal
Morphologically rich languages seem to benefit from joint processing of morphology and syntax, as compared to pipeline architectures. We propose a graph-based model for joint morphological parsing and dependency parsing in Sanskrit. Here, we extend the Energy based model framework (Krishna et al., 2020), proposed for several structured prediction tasks in Sanskrit, in 2 simple yet significant ways. First, the framework’s default input graph generation method is modified to generate a multigraph, which enables the use of an exact search inference. Second, we prune the input search space using a linguistically motivated approach, rooted in the traditional grammatical analysis of Sanskrit. Our experiments show that the morphological parsing from our joint model outperforms standalone morphological parsers. We report state of the art results in morphological parsing, and in dependency parsing, both in standalone (with gold morphological tags) and joint morphosyntactic parsing setting.
pdf
bib
abs
Unsupervised Parsing via Constituency Tests
Steven Cao
|
Nikita Kitaev
|
Dan Klein
We propose a method for unsupervised parsing based on the linguistic notion of a constituency test. One type of constituency test involves modifying the sentence via some transformation (e.g. replacing the span with a pronoun) and then judging the result (e.g. checking if it is grammatical). Motivated by this idea, we design an unsupervised parser by specifying a set of transformations and using an unsupervised neural acceptability model to make grammaticality decisions. To produce a tree given a sentence, we score each span by aggregating its constituency test judgments, and we choose the binary tree with the highest total score. While this approach already achieves performance in the range of current methods, we further improve accuracy by fine-tuning the grammaticality model through a refinement procedure, where we alternate between improving the estimated trees and improving the grammaticality model. The refined model achieves 62.8 F1 on the Penn Treebank test set, an absolute improvement of 7.6 points over the previously best published result.
pdf
bib
abs
Please Mind the Root: Decoding Arborescences for Dependency Parsing
Ran Zmigrod
|
Tim Vieira
|
Ryan Cotterell
The connection between dependency trees and spanning trees is exploited by the NLP community to train and to decode graph-based dependency parsers. However, the NLP literature has missed an important difference between the two structures: only one edge may emanate from the root in a dependency tree. We analyzed the output of state-of-the-art parsers on many languages from the Universal Dependency Treebank: although these parsers are often able to learn that trees which violate the constraint should be assigned lower probabilities, their ability to do so unsurprisingly de-grades as the size of the training set decreases. In fact, the worst constraint-violation rate we observe is 24%. Prior work has proposed an inefficient algorithm to enforce the constraint, which adds a factor of n to the decoding runtime. We adapt an algorithm due to Gabow and Tarjan (1984) to dependency parsing, which satisfies the constraint without compromising the original runtime.
pdf
bib
abs
Unsupervised Cross-Lingual Part-of-Speech Tagging for Truly Low-Resource Scenarios
Ramy Eskander
|
Smaranda Muresan
|
Michael Collins
We describe a fully unsupervised cross-lingual transfer approach for part-of-speech (POS) tagging under a truly low resource scenario. We assume access to parallel translations between the target language and one or more source languages for which POS taggers are available. We use the Bible as parallel data in our experiments: small size, out-of-domain and covering many diverse languages. Our approach innovates in three ways: 1) a robust approach of selecting training instances via cross-lingual annotation projection that exploits best practices of unsupervised type and token constraints, word-alignment confidence and density of projected POS, 2) a Bi-LSTM architecture that uses contextualized word embeddings, affix embeddings and hierarchical Brown clusters, and 3) an evaluation on 12 diverse languages in terms of language family and morphological typology. In spite of the use of limited and out-of-domain parallel data, our experiments demonstrate significant improvements in accuracy over previous work. In addition, we show that using multi-source information, either via projection or output combination, improves the performance for most target languages.
pdf
bib
abs
Unsupervised Parsing with S-DIORA: Single Tree Encoding for Deep Inside-Outside Recursive Autoencoders
Andrew Drozdov
|
Subendhu Rongali
|
Yi-Pei Chen
|
Tim O’Gorman
|
Mohit Iyyer
|
Andrew McCallum
The deep inside-outside recursive autoencoder (DIORA; Drozdov et al. 2019) is a self-supervised neural model that learns to induce syntactic tree structures for input sentences *without access to labeled training data*. In this paper, we discover that while DIORA exhaustively encodes all possible binary trees of a sentence with a soft dynamic program, its vector averaging approach is locally greedy and cannot recover from errors when computing the highest scoring parse tree in bottom-up chart parsing. To fix this issue, we introduce S-DIORA, an improved variant of DIORA that encodes a single tree rather than a softly-weighted mixture of trees by employing a hard argmax operation and a beam at each cell in the chart. Our experiments show that through *fine-tuning* a pre-trained DIORA with our new algorithm, we improve the state of the art in *unsupervised* constituency parsing on the English WSJ Penn Treebank by 2.2-6% F1, depending on the data used for fine-tuning.
pdf
bib
abs
Utility is in the Eye of the User: A Critique of NLP Leaderboards
Kawin Ethayarajh
|
Dan Jurafsky
Benchmarks such as GLUE have helped drive advances in NLP by incentivizing the creation of more accurate models. While this leaderboard paradigm has been remarkably successful, a historical focus on performance-based evaluation has been at the expense of other qualities that the NLP community values in models, such as compactness, fairness, and energy efficiency. In this opinion paper, we study the divergence between what is incentivized by leaderboards and what is useful in practice through the lens of microeconomic theory. We frame both the leaderboard and NLP practitioners as consumers and the benefit they get from a model as its utility to them. With this framing, we formalize how leaderboards – in their current form – can be poor proxies for the NLP community at large. For example, a highly inefficient model would provide less utility to practitioners but not to a leaderboard, since it is a cost that only the former must bear. To allow practitioners to better estimate a model’s utility to them, we advocate for more transparency on leaderboards, such as the reporting of statistics that are of practical concern (e.g., model size, energy efficiency, and inference latency).
pdf
bib
abs
An Empirical Investigation Towards Efficient Multi-Domain Language Model Pre-training
Kristjan Arumae
|
Qing Sun
|
Parminder Bhatia
Pre-training large language models has become a standard in the natural language processing community. Such models are pre-trained on generic data (e.g. BookCorpus and English Wikipedia) and often fine-tuned on tasks in the same domain. However, in order to achieve state-of-the-art performance on out of domain tasks such as clinical named entity recognition and relation extraction, additional in domain pre-training is required. In practice, staged multi-domain pre-training presents performance deterioration in the form of catastrophic forgetting (CF) when evaluated on a generic benchmark such as GLUE. In this paper we conduct an empirical investigation into known methods to mitigate CF. We find that elastic weight consolidation provides best overall scores yielding only a 0.33% drop in performance across seven generic tasks while remaining competitive in bio-medical tasks. Furthermore, we explore gradient and latent clustering based data selection techniques to improve coverage when using elastic weight consolidation and experience replay methods.
pdf
bib
abs
Analyzing Individual Neurons in Pre-trained Language Models
Nadir Durrani
|
Hassan Sajjad
|
Fahim Dalvi
|
Yonatan Belinkov
While a lot of analysis has been carried to demonstrate linguistic knowledge captured by the representations learned within deep NLP models, very little attention has been paid towards individual neurons. We carry outa neuron-level analysis using core linguistic tasks of predicting morphology, syntax and semantics, on pre-trained language models, with questions like: i) do individual neurons in pre-trained models capture linguistic information? ii) which parts of the network learn more about certain linguistic phenomena? iii) how distributed or focused is the information? and iv) how do various architectures differ in learning these properties? We found small subsets of neurons to predict linguistic tasks, with lower level tasks (such as morphology) localized in fewer neurons, compared to higher level task of predicting syntax. Our study also reveals interesting cross architectural comparisons. For example, we found neurons in XLNet to be more localized and disjoint when predicting properties compared to BERT and others, where they are more distributed and coupled.
pdf
bib
abs
Dissecting Span Identification Tasks with Performance Prediction
Sean Papay
|
Roman Klinger
|
Sebastian Padó
Span identification (in short, span ID) tasks such as chunking, NER, or code-switching detection, ask models to identify and classify relevant spans in a text. Despite being a staple of NLP, and sharing a common structure, there is little insight on how these tasks’ properties influence their difficulty, and thus little guidance on what model families work well on span ID tasks, and why. We analyze span ID tasks via performance prediction, estimating how well neural architectures do on different tasks. Our contributions are: (a) we identify key properties of span ID tasks that can inform performance prediction; (b) we carry out a large-scale experiment on English data, building a model to predict performance for unseen span ID tasks that can support architecture choices; (c), we investigate the parameters of the meta model, yielding new insights on how model and task properties interact to affect span ID performance. We find, e.g., that span frequency is especially important for LSTMs, and that CRFs help when spans are infrequent and boundaries non-distinctive.
pdf
bib
abs
Assessing Phrasal Representation and Composition in Transformers
Lang Yu
|
Allyson Ettinger
Deep transformer models have pushed performance on NLP tasks to new limits, suggesting sophisticated treatment of complex linguistic inputs, such as phrases. However, we have limited understanding of how these models handle representation of phrases, and whether this reflects sophisticated composition of phrase meaning like that done by humans. In this paper, we present systematic analysis of phrasal representations in state-of-the-art pre-trained transformers. We use tests leveraging human judgments of phrase similarity and meaning shift, and compare results before and after control of word overlap, to tease apart lexical effects versus composition effects. We find that phrase representation in these models relies heavily on word content, with little evidence of nuanced composition. We also identify variations in phrase representation quality across models, layers, and representation types, and make corresponding recommendations for usage of representations from these models.
pdf
bib
abs
Analyzing Redundancy in Pretrained Transformer Models
Fahim Dalvi
|
Hassan Sajjad
|
Nadir Durrani
|
Yonatan Belinkov
Transformer-based deep NLP models are trained using hundreds of millions of parameters, limiting their applicability in computationally constrained environments. In this paper, we study the cause of these limitations by defining a notion of Redundancy, which we categorize into two classes: General Redundancy and Task-specific Redundancy. We dissect two popular pretrained models, BERT and XLNet, studying how much redundancy they exhibit at a representation-level and at a more fine-grained neuron-level. Our analysis reveals interesting insights, such as i) 85% of the neurons across the network are redundant and ii) at least 92% of them can be removed when optimizing towards a downstream task. Based on our analysis, we present an efficient feature-based transfer learning procedure, which maintains 97% performance while using at-most 10% of the original neurons.
pdf
bib
abs
Be More with Less: Hypergraph Attention Networks for Inductive Text Classification
Kaize Ding
|
Jianling Wang
|
Jundong Li
|
Dingcheng Li
|
Huan Liu
Text classification is a critical research topic with broad applications in natural language processing. Recently, graph neural networks (GNNs) have received increasing attention in the research community and demonstrated their promising results on this canonical task. Despite the success, their performance could be largely jeopardized in practice since they are: (1) unable to capture high-order interaction between words; (2) inefficient to handle large datasets and new documents. To address those issues, in this paper, we propose a principled model – hypergraph attention networks (HyperGAT), which can obtain more expressive power with less computational consumption for text representation learning. Extensive experiments on various benchmark datasets demonstrate the efficacy of the proposed approach on the text classification task.
pdf
bib
abs
Entities as Experts: Sparse Memory Access with Entity Supervision
Thibault Févry
|
Livio Baldini Soares
|
Nicholas FitzGerald
|
Eunsol Choi
|
Tom Kwiatkowski
We focus on the problem of capturing declarative knowledge about entities in the learned parameters of a language model. We introduce a new model—Entities as Experts (EaE)—that can access distinct memories of the entities mentioned in a piece of text. Unlike previous efforts to integrate entity knowledge into sequence models, EaE’s entity representations are learned directly from text. We show that EaE’s learned representations capture sufficient knowledge to answer TriviaQA questions such as “Which Dr. Who villain has been played by Roger Delgado, Anthony Ainley, Eric Roberts?”, outperforming an encoder-generator Transformer model with 10x the parameters on this task. According to the Lama knowledge probes, EaE contains more factual knowledge than a similar sized Bert, as well as previous approaches that integrate external sources of entity knowledge. Because EaE associates parameters with specific entities, it only needs to access a fraction of its parameters at inference time, and we show that the correct identification and representation of entities is essential to EaE’s performance.
pdf
bib
abs
Does the Objective Matter? Comparing Training Objectives for Pronoun Resolution
Yordan Yordanov
|
Oana-Maria Camburu
|
Vid Kocijan
|
Thomas Lukasiewicz
Hard cases of pronoun resolution have been used as a long-standing benchmark for commonsense reasoning. In the recent literature, pre-trained language models have been used to obtain state-of-the-art results on pronoun resolution. Overall, four categories of training and evaluation objectives have been introduced. The variety of training datasets and pre-trained language models used in these works makes it unclear whether the choice of training objective is critical. In this work, we make a fair comparison of the performance and seed-wise stability of four models that represent the four categories of objectives. Our experiments show that the objective of sequence ranking performs the best in-domain, while the objective of semantic similarity between candidates and pronoun performs the best out-of-domain. We also observe a seed-wise instability of the model using sequence ranking, which is not the case when the other objectives are used.
pdf
bib
abs
On Losses for Modern Language Models
Stéphane Aroca-Ouellette
|
Frank Rudzicz
BERT set many state-of-the-art results over varied NLU benchmarks by pre-training over two tasks: masked language modelling (MLM) and next sentence prediction (NSP), the latter of which has been highly criticized. In this paper, we 1) clarify NSP’s effect on BERT pre-training, 2) explore fourteen possible auxiliary pre-training tasks, of which seven are novel to modern language models, and 3) investigate different ways to include multiple tasks into pre-training. We show that NSP is detrimental to training due to its context splitting and shallow semantic signal. We also identify six auxiliary pre-training tasks – sentence ordering, adjacent sentence prediction, TF prediction, TF-IDF prediction, a FastSent variant, and a Quick Thoughts variant – that outperform a pure MLM baseline. Finally, we demonstrate that using multiple tasks in a multi-task pre-training framework provides better results than using any single auxiliary task. Using these methods, we outperform BERTBase on the GLUE benchmark using fewer than a quarter of the training tokens.
pdf
bib
abs
We Can Detect Your Bias: Predicting the Political Ideology of News Articles
Ramy Baly
|
Giovanni Da San Martino
|
James Glass
|
Preslav Nakov
We explore the task of predicting the leading political ideology or bias of news articles. First, we collect and release a large dataset of 34,737 articles that were manually annotated for political ideology –left, center, or right–, which is well-balanced across both topics and media. We further use a challenging experimental setup where the test examples come from media that were not seen during training, which prevents the model from learning to detect the source of the target news article instead of predicting its political ideology. From a modeling perspective, we propose an adversarial media adaptation, as well as a specially adapted triplet loss. We further add background information about the source, and we show that it is quite helpful for improving article-level prediction. Our experimental results show very sizable improvements over using state-of-the-art pre-trained Transformers in this challenging setup.
pdf
bib
abs
Semantic Label Smoothing for Sequence to Sequence Problems
Michal Lukasik
|
Himanshu Jain
|
Aditya Menon
|
Seungyeon Kim
|
Srinadh Bhojanapalli
|
Felix Yu
|
Sanjiv Kumar
Label smoothing has been shown to be an effective regularization strategy in classification, that prevents overfitting and helps in label de-noising. However, extending such methods directly to seq2seq settings, such as Machine Translation, is challenging: the large target output space of such problems makes it intractable to apply label smoothing over all possible outputs. Most existing approaches for seq2seq settings either do token level smoothing, or smooth over sequences generated by randomly substituting tokens in the target sequence. Unlike these works, in this paper, we propose a technique that smooths over well formed relevant sequences that not only have sufficient n-gram overlap with the target sequence, but are also semantically similar. Our method shows a consistent and significant improvement over the state-of-the-art techniques on different datasets.
pdf
bib
abs
Training for Gibbs Sampling on Conditional Random Fields with Neural Scoring Factors
Sida Gao
|
Matthew R. Gormley
Most recent improvements in NLP come from changes to the neural network architectures modeling the text input. Yet, state-of-the-art models often rely on simple approaches to model the label space, e.g. bigram Conditional Random Fields (CRFs) in sequence tagging. More expressive graphical models are rarely used due to their prohibitive computational cost. In this work, we present an approach for efficiently training and decoding hybrids of graphical models and neural networks based on Gibbs sampling. Our approach is the natural adaptation of SampleRank (Wick et al., 2011) to neural models, and is widely applicable to tasks beyond sequence tagging. We apply our approach to named entity recognition and present a neural skip-chain CRF model, for which exact inference is impractical. The skip-chain model improves over a strong baseline on three languages from CoNLL-02/03. We obtain new state-of-the-art results on Dutch.
pdf
bib
abs
Multilevel Text Alignment with Cross-Document Attention
Xuhui Zhou
|
Nikolaos Pappas
|
Noah A. Smith
Text alignment finds application in tasks such as citation recommendation and plagiarism detection. Existing alignment methods operate at a single, predefined level and cannot learn to align texts at, for example, sentence and document levels. We propose a new learning approach that equips previously established hierarchical attention encoders for representing documents with a cross-document attention component, enabling structural comparisons across different levels (document-to-document and sentence-to-document). Our component is weakly supervised from document pairs and can align at multiple levels. Our evaluation on predicting document-to-document relationships and sentence-to-document relationships on the tasks of citation recommendation and plagiarism detection shows that our approach outperforms previously established hierarchical, attention encoders based on recurrent and transformer contextualization that are unaware of structural correspondence between documents.
pdf
bib
abs
Conversational Semantic Parsing
Armen Aghajanyan
|
Jean Maillard
|
Akshat Shrivastava
|
Keith Diedrick
|
Michael Haeger
|
Haoran Li
|
Yashar Mehdad
|
Veselin Stoyanov
|
Anuj Kumar
|
Mike Lewis
|
Sonal Gupta
The structured representation for semantic parsing in task-oriented assistant systems is geared towards simple understanding of one-turn queries. Due to the limitations of the representation, the session-based properties such as co-reference resolution and context carryover are processed downstream in a pipelined system. In this paper, we propose a semantic representation for such task-oriented conversational systems that can represent concepts such as co-reference and context carryover, enabling comprehensive understanding of queries in a session. We release a new session-based, compositional task-oriented parsing dataset of 20k sessions consisting of 60k utterances. Unlike Dialog State Tracking Challenges, the queries in the dataset have compositional forms. We propose a new family of Seq2Seq models for the session-based parsing above, which also set state-of-the-art in ATIS, SNIPS, TOP and DSTC2. Notably, we improve the best known results on DSTC2 by up to 5 points for slot-carryover.
pdf
bib
abs
Probing Task-Oriented Dialogue Representation from Language Models
Chien-Sheng Wu
|
Caiming Xiong
This paper investigates pre-trained language models to find out which model intrinsically carries the most informative representation for task-oriented dialogue tasks. We approach the problem from two aspects: supervised classifier probe and unsupervised mutual information probe. We fine-tune a feed-forward layer as the classifier probe on top of a fixed pre-trained language model with annotated labels in a supervised way. Meanwhile, we propose an unsupervised mutual information probe to evaluate the mutual dependence between a real clustering and a representation clustering. The goals of this empirical paper are to 1) investigate probing techniques, especially from the unsupervised mutual information aspect, 2) provide guidelines of pre-trained language model selection for the dialogue research community, 3) find insights of pre-training factors for dialogue application that may be the key to success.
pdf
bib
abs
End-to-End Slot Alignment and Recognition for Cross-Lingual NLU
Weijia Xu
|
Batool Haider
|
Saab Mansour
Natural language understanding (NLU) in the context of goal-oriented dialog systems typically includes intent classification and slot labeling tasks. Existing methods to expand an NLU system to new languages use machine translation with slot label projection from source to the translated utterances, and thus are sensitive to projection errors. In this work, we propose a novel end-to-end model that learns to align and predict target slot labels jointly for cross-lingual transfer. We introduce MultiATIS++, a new multilingual NLU corpus that extends the Multilingual ATIS corpus to nine languages across four language families, and evaluate our method using the corpus. Results show that our method outperforms a simple label projection method using fast-align on most languages, and achieves competitive performance to the more complex, state-of-the-art projection method with only half of the training time. We release our MultiATIS++ corpus to the community to continue future research on cross-lingual NLU.
pdf
bib
abs
Discriminative Nearest Neighbor Few-Shot Intent Detection by Transferring Natural Language Inference
Jianguo Zhang
|
Kazuma Hashimoto
|
Wenhao Liu
|
Chien-Sheng Wu
|
Yao Wan
|
Philip Yu
|
Richard Socher
|
Caiming Xiong
Intent detection is one of the core components of goal-oriented dialog systems, and detecting out-of-scope (OOS) intents is also a practically important skill. Few-shot learning is attracting much attention to mitigate data scarcity, but OOS detection becomes even more challenging. In this paper, we present a simple yet effective approach, discriminative nearest neighbor classification with deep self-attention. Unlike softmax classifiers, we leverage BERT-style pairwise encoding to train a binary classifier that estimates the best matched training example for a user input. We propose to boost the discriminative ability by transferring a natural language inference (NLI) model. Our extensive experiments on a large-scale multi-domain intent detection task show that our method achieves more stable and accurate in-domain and OOS detection accuracy than RoBERTa-based classifiers and embedding-based nearest neighbor approaches. More notably, the NLI transfer enables our 10-shot model to perform competitively with 50-shot or even full-shot classifiers, while we can keep the inference time constant by leveraging a faster embedding retrieval model.
pdf
bib
abs
Simple Data Augmentation with the Mask Token Improves Domain Adaptation for Dialog Act Tagging
Semih Yavuz
|
Kazuma Hashimoto
|
Wenhao Liu
|
Nitish Shirish Keskar
|
Richard Socher
|
Caiming Xiong
The concept of Dialogue Act (DA) is universal across different task-oriented dialogue domains - the act of “request” carries the same speaker intention whether it is for restaurant reservation or flight booking. However, DA taggers trained on one domain do not generalize well to other domains, which leaves us with the expensive need for a large amount of annotated data in the target domain. In this work, we investigate how to better adapt DA taggers to desired target domains with only unlabeled data. We propose MaskAugment, a controllable mechanism that augments text input by leveraging the pre-trained Mask token from BERT model. Inspired by consistency regularization, we use MaskAugment to introduce an unsupervised teacher-student learning scheme to examine the domain adaptation of DA taggers. Our extensive experiments on the Simulated Dialogue (GSim) and Schema-Guided Dialogue (SGD) datasets show that MaskAugment is useful in improving the cross-domain generalization for DA tagging.
pdf
bib
abs
Low-Resource Domain Adaptation for Compositional Task-Oriented Semantic Parsing
Xilun Chen
|
Asish Ghoshal
|
Yashar Mehdad
|
Luke Zettlemoyer
|
Sonal Gupta
Task-oriented semantic parsing is a critical component of virtual assistants, which is responsible for understanding the user’s intents (set reminder, play music, etc.). Recent advances in deep learning have enabled several approaches to successfully parse more complex queries (Gupta et al., 2018; Rongali et al.,2020), but these models require a large amount of annotated training data to parse queries on new domains (e.g. reminder, music). In this paper, we focus on adapting task-oriented semantic parsers to low-resource domains, and propose a novel method that outperforms a supervised neural model at a 10-fold data reduction. In particular, we identify two fundamental factors for low-resource domain adaptation: better representation learning and better training techniques. Our representation learning uses BART (Lewis et al., 2019) to initialize our model which outperforms encoder-only pre-trained representations used in previous work. Furthermore, we train with optimization-based meta-learning (Finn et al., 2017) to improve generalization to low-resource domains. This approach significantly outperforms all baseline methods in the experiments on a newly collected multi-domain task-oriented semantic parsing dataset (TOPv2), which we release to the public.
pdf
bib
abs
Sound Natural: Content Rephrasing in Dialog Systems
Arash Einolghozati
|
Anchit Gupta
|
Keith Diedrick
|
Sonal Gupta
We introduce a new task of rephrasing for a more natural virtual assistant. Currently, virtual assistants work in the paradigm of intent-slot tagging and the slot values are directly passed as-is to the execution engine. However, this setup fails in some scenarios such as messaging when the query given by the user needs to be changed before repeating it or sending it to another user. For example, for queries like ‘ask my wife if she can pick up the kids’ or ‘remind me to take my pills’, we need to rephrase the content to ‘can you pick up the kids’ and ‘take your pills’. In this paper, we study the problem of rephrasing with messaging as a use case and release a dataset of 3000 pairs of original query and rephrased query. We show that BART, a pre-trained transformers-based masked language model, is a strong baseline for the task, and show improvements by adding a copy-pointer and copy loss to it. We analyze different trade-offs of BART-based and LSTM-based seq2seq models, and propose a distilled LSTM-based seq2seq as the best practical model
pdf
bib
abs
Zero-Shot Crosslingual Sentence Simplification
Jonathan Mallinson
|
Rico Sennrich
|
Mirella Lapata
Sentence simplification aims to make sentences easier to read and understand. Recent approaches have shown promising results with encoder-decoder models trained on large amounts of parallel data which often only exists in English. We propose a zero-shot modeling framework which transfers simplification knowledge from English to another language (for which no parallel simplification corpus exists) while generalizing across languages and tasks. A shared transformer encoder constructs language-agnostic representations, with a combination of task-specific encoder layers added on top (e.g., for translation and simplification). Empirical results using both human and automatic metrics show that our approach produces better simplifications than unsupervised and pivot-based methods.
pdf
bib
abs
Facilitating the Communication of Politeness through Fine-Grained Paraphrasing
Liye Fu
|
Susan Fussell
|
Cristian Danescu-Niculescu-Mizil
Aided by technology, people are increasingly able to communicate across geographical, cultural, and language barriers. This ability also results in new challenges, as interlocutors need to adapt their communication approaches to increasingly diverse circumstances. In this work, we take the first steps towards automatically assisting people in adjusting their language to a specific communication circumstance. As a case study, we focus on facilitating the accurate transmission of pragmatic intentions and introduce a methodology for suggesting paraphrases that achieve the intended level of politeness under a given communication circumstance. We demonstrate the feasibility of this approach by evaluating our method in two realistic communication scenarios and show that it can reduce the potential for misalignment between the speaker’s intentions and the listener’s perceptions in both cases.
pdf
bib
abs
CAT-Gen: Improving Robustness in NLP Models via Controlled Adversarial Text Generation
Tianlu Wang
|
Xuezhi Wang
|
Yao Qin
|
Ben Packer
|
Kang Li
|
Jilin Chen
|
Alex Beutel
|
Ed Chi
NLP models are shown to suffer from robustness issues, i.e., a model’s prediction can be easily changed under small perturbations to the input. In this work, we present a Controlled Adversarial Text Generation (CAT-Gen) model that, given an input text, generates adversarial texts through controllable attributes that are known to be invariant to task labels. For example, in order to attack a model for sentiment classification over product reviews, we can use the product categories as the controllable attribute which would not change the sentiment of the reviews. Experiments on real-world NLP datasets demonstrate that our method can generate more diverse and fluent adversarial texts, compared to many existing adversarial text generation approaches. We further use our generated adversarial examples to improve models through adversarial training, and we demonstrate that our generated attacks are more robust against model re-training and different model architectures.
pdf
bib
abs
Seq2Edits: Sequence Transduction Using Span-level Edit Operations
Felix Stahlberg
|
Shankar Kumar
We propose Seq2Edits, an open-vocabulary approach to sequence editing for natural language processing (NLP) tasks with a high degree of overlap between input and output texts. In this approach, each sequence-to-sequence transduction is represented as a sequence of edit operations, where each operation either replaces an entire source span with target tokens or keeps it unchanged. We evaluate our method on five NLP tasks (text normalization, sentence fusion, sentence splitting & rephrasing, text simplification, and grammatical error correction) and report competitive results across the board. For grammatical error correction, our method speeds up inference by up to 5.2x compared to full sequence models because inference time depends on the number of edits rather than the number of target tokens. For text normalization, sentence fusion, and grammatical error correction, our approach improves explainability by associating each edit operation with a human-readable tag.
pdf
bib
abs
Controllable Meaning Representation to Text Generation: Linearization and Data Augmentation Strategies
Chris Kedzie
|
Kathleen McKeown
We study the degree to which neural sequence-to-sequence models exhibit fine-grained controllability when performing natural language generation from a meaning representation. Using two task-oriented dialogue generation benchmarks, we systematically compare the effect of four input linearization strategies on controllability and faithfulness. Additionally, we evaluate how a phrase-based data augmentation method can improve performance. We find that properly aligning input sequences during training leads to highly controllable generation, both when training from scratch or when fine-tuning a larger pre-trained model. Data augmentation further improves control on difficult, randomly generated utterance plans.
pdf
bib
abs
Blank Language Models
Tianxiao Shen
|
Victor Quach
|
Regina Barzilay
|
Tommi Jaakkola
We propose Blank Language Model (BLM), a model that generates sequences by dynamically creating and filling in blanks. The blanks control which part of the sequence to expand, making BLM ideal for a variety of text editing and rewriting tasks. The model can start from a single blank or partially completed text with blanks at specified locations. It iteratively determines which word to place in a blank and whether to insert new blanks, and stops generating when no blanks are left to fill. BLM can be efficiently trained using a lower bound of the marginal data likelihood. On the task of filling missing text snippets, BLM significantly outperforms all other baselines in terms of both accuracy and fluency. Experiments on style transfer and damaged ancient text restoration demonstrate the potential of this framework for a wide range of applications.
pdf
bib
abs
COD3S: Diverse Generation with Discrete Semantic Signatures
Nathaniel Weir
|
João Sedoc
|
Benjamin Van Durme
We present COD3S, a novel method for generating semantically diverse sentences using neural sequence-to-sequence (seq2seq) models. Conditioned on an input, seq2seqs typically produce semantically and syntactically homogeneous sets of sentences and thus perform poorly on one-to-many sequence generation tasks. Our two-stage approach improves output diversity by conditioning generation on locality-sensitive hash (LSH)-based semantic sentence codes whose Hamming distances highly correlate with human judgments of semantic textual similarity. Though it is generally applicable, we apply to causal generation, the task of predicting a proposition’s plausible causes or effects. We demonstrate through automatic and human evaluation that responses produced using our method exhibit improved diversity without degrading task performance.
pdf
bib
abs
Automatic Extraction of Rules Governing Morphological Agreement
Aditi Chaudhary
|
Antonios Anastasopoulos
|
Adithya Pratapa
|
David R. Mortensen
|
Zaid Sheikh
|
Yulia Tsvetkov
|
Graham Neubig
Creating a descriptive grammar of a language is an indispensable step for language documentation and preservation. However, at the same time it is a tedious, time-consuming task. In this paper, we take steps towards automating this process by devising an automated framework for extracting a first-pass grammatical specification from raw text in a concise, human- and machine-readable format. We focus on extracting rules describing agreement, a morphosyntactic phenomenon at the core of the grammars of many of the world’s languages. We apply our framework to all languages included in the Universal Dependencies project, with promising results. Using cross-lingual transfer, even with no expert annotations in the language of interest, our framework extracts a grammatical specification which is nearly equivalent to those created with large amounts of gold-standard annotated data. We confirm this finding with human expert evaluations of the rules that our framework produces, which have an average accuracy of 78%. We release an interface demonstrating the extracted rules at
https://neulab.github.io/lase/pdf
bib
abs
Tackling the Low-resource Challenge for Canonical Segmentation
Manuel Mager
|
Özlem Çetinoğlu
|
Katharina Kann
Canonical morphological segmentation consists of dividing words into their standardized morphemes. Here, we are interested in approaches for the task when training data is limited. We compare model performance in a simulated low-resource setting for the high-resource languages German, English, and Indonesian to experiments on new datasets for the truly low-resource languages Popoluca and Tepehua. We explore two new models for the task, borrowing from the closely related area of morphological generation: an LSTM pointer-generator and a sequence-to-sequence model with hard monotonic attention trained with imitation learning. We find that, in the low-resource setting, the novel approaches out-perform existing ones on all languages by up to 11.4% accuracy. However, while accuracy in emulated low-resource scenarios is over 50% for all languages, for the truly low-resource languages Popoluca and Tepehua, our best model only obtains 37.4% and 28.4% accuracy, respectively. Thus, we conclude that canonical segmentation is still a challenging task for low-resource languages.
pdf
bib
abs
IGT2P: From Interlinear Glossed Texts to Paradigms
Sarah Moeller
|
Ling Liu
|
Changbing Yang
|
Katharina Kann
|
Mans Hulden
An intermediate step in the linguistic analysis of an under-documented language is to find and organize inflected forms that are attested in natural speech. From this data, linguists generate unseen inflected word forms in order to test hypotheses about the language’s inflectional patterns and to complete inflectional paradigm tables. To get the data linguists spend many hours manually creating interlinear glossed texts (IGTs). We introduce a new task that speeds this process and automatically generates new morphological resources for natural language processing systems: IGT-to-paradigms (IGT2P). IGT2P generates entire morphological paradigms from IGT input. We show that existing morphological reinflection models can solve the task with 21% to 64% accuracy, depending on the language. We further find that (i) having a language expert spend only a few hours cleaning the noisy IGT data improves performance by as much as 21 percentage points, and (ii) POS tags, which are generally considered a necessary part of NLP morphological reinflection input, have no effect on the accuracy of the models considered here.
pdf
bib
abs
A Computational Approach to Understanding Empathy Expressed in Text-Based Mental Health Support
Ashish Sharma
|
Adam Miner
|
David Atkins
|
Tim Althoff
Empathy is critical to successful mental health support. Empathy measurement has predominantly occurred in synchronous, face-to-face settings, and may not translate to asynchronous, text-based contexts. Because millions of people use text-based platforms for mental health support, understanding empathy in these contexts is crucial. In this work, we present a computational approach to understanding how empathy is expressed in online mental health platforms. We develop a novel unifying theoretically-grounded framework for characterizing the communication of empathy in text-based conversations. We collect and share a corpus of 10k (post, response) pairs annotated using this empathy framework with supporting evidence for annotations (rationales). We develop a multi-task RoBERTa-based bi-encoder model for identifying empathy in conversations and extracting rationales underlying its predictions. Experiments demonstrate that our approach can effectively identify empathic conversations. We further apply this model to analyze 235k mental health interactions and show that users do not self-learn empathy over time, revealing opportunities for empathy training and feedback.
pdf
bib
abs
Modeling Protagonist Emotions for Emotion-Aware Storytelling
Faeze Brahman
|
Snigdha Chaturvedi
Emotions and their evolution play a central role in creating a captivating story. In this paper, we present the first study on modeling the emotional trajectory of the protagonist in neural storytelling. We design methods that generate stories that adhere to given story titles and desired emotion arcs for the protagonist. Our models include Emotion Supervision (EmoSup) and two Emotion-Reinforced (EmoRL) models. The EmoRL models use special rewards designed to regularize the story generation process through reinforcement learning. Our automatic and manual evaluations demonstrate that these models are significantly better at generating stories that follow the desired emotion arcs compared to baseline methods, without sacrificing story quality.
pdf
bib
abs
Help! Need Advice on Identifying Advice
Venkata Subrahmanyan Govindarajan
|
Benjamin Chen
|
Rebecca Warholic
|
Katrin Erk
|
Junyi Jessy Li
Humans use language to accomplish a wide variety of tasks - asking for and giving advice being one of them. In online advice forums, advice is mixed in with non-advice, like emotional support, and is sometimes stated explicitly, sometimes implicitly. Understanding the language of advice would equip systems with a better grasp of language pragmatics; practically, the ability to identify advice would drastically increase the efficiency of advice-seeking online, as well as advice-giving in natural language generation systems. We present a dataset in English from two Reddit advice forums - r/AskParents and r/needadvice - annotated for whether sentences in posts contain advice or not. Our analysis reveals rich linguistic phenomena in advice discourse. We present preliminary models showing that while pre-trained language models are able to capture advice better than rule-based systems, advice identification is challenging, and we identify directions for future research.
pdf
bib
abs
Quantifying Intimacy in Language
Jiaxin Pei
|
David Jurgens
Intimacy is a fundamental aspect of how we relate to others in social settings. Language encodes the social information of intimacy through both topics and other more subtle cues (such as linguistic hedging and swearing). Here, we introduce a new computational framework for studying expressions of the intimacy in language with an accompanying dataset and deep learning model for accurately predicting the intimacy level of questions (Pearson r = 0.87). Through analyzing a dataset of 80.5M questions across social media, books, and films, we show that individuals employ interpersonal pragmatic moves in their language to align their intimacy with social settings. Then, in three studies, we further demonstrate how individuals modulate their intimacy to match social norms around gender, social distance, and audience, each validating key findings from studies in social psychology. Our work demonstrates that intimacy is a pervasive and impactful social dimension of language.
pdf
bib
abs
Writing Strategies for Science Communication: Data and Computational Analysis
Tal August
|
Lauren Kim
|
Katharina Reinecke
|
Noah A. Smith
Communicating complex scientific ideas without misleading or overwhelming the public is challenging. While science communication guides exist, they rarely offer empirical evidence for how their strategies are used in practice. Writing strategies that can be automatically recognized could greatly support science communication efforts by enabling tools to detect and suggest strategies for writers. We compile a set of writing strategies drawn from a wide range of prescriptive sources and develop an annotation scheme allowing humans to recognize them. We collect a corpus of 128k science writing documents in English and annotate a subset of this corpus. We use the annotations to train transformer-based classifiers and measure the strategies’ use in the larger corpus. We find that the use of strategies, such as storytelling and emphasizing the most important findings, varies significantly across publications with different reader audiences.
pdf
bib
abs
Weakly Supervised Subevent Knowledge Acquisition
Wenlin Yao
|
Zeyu Dai
|
Maitreyi Ramaswamy
|
Bonan Min
|
Ruihong Huang
Subevents elaborate an event and widely exist in event descriptions. Subevent knowledge is useful for discourse analysis and event-centric applications. Acknowledging the scarcity of subevent knowledge, we propose a weakly supervised approach to extract subevent relation tuples from text and build the first large scale subevent knowledge base. We first obtain the initial set of event pairs that are likely to have the subevent relation, by exploiting two observations that 1) subevents are temporally contained by the parent event, and 2) the definitions of the parent event can be used to further guide the identification of subevents. Then, we collect rich weak supervision using the initial seed subevent pairs to train a contextual classifier using BERT and apply the classifier to identify new subevent pairs. The evaluation showed that the acquired subevent tuples (239K) are of high quality (90.1% accuracy) and cover a wide range of event types. The acquired subevent knowledge has been shown useful for discourse analysis and identifying a range of event-event relations.
pdf
bib
abs
Biomedical Event Extraction as Sequence Labeling
Alan Ramponi
|
Rob van der Goot
|
Rosario Lombardo
|
Barbara Plank
We introduce Biomedical Event Extraction as Sequence Labeling (BeeSL), a joint end-to-end neural information extraction model. BeeSL recasts the task as sequence labeling, taking advantage of a multi-label aware encoding strategy and jointly modeling the intermediate tasks via multi-task learning. BeeSL is fast, accurate, end-to-end, and unlike current methods does not require any external knowledge base or preprocessing tools. BeeSL outperforms the current best system (Li et al., 2019) on the Genia 2011 benchmark by 1.57% absolute F1 score reaching 60.22% F1, establishing a new state of the art for the task. Importantly, we also provide first results on biomedical event extraction without gold entity information. Empirical results show that BeeSL’s speed and accuracy makes it a viable approach for large-scale real-world scenarios.
pdf
bib
abs
Annotating Temporal Dependency Graphs via Crowdsourcing
Jiarui Yao
|
Haoling Qiu
|
Bonan Min
|
Nianwen Xue
We present the construction of a corpus of 500 Wikinews articles annotated with temporal dependency graphs (TDGs) that can be used to train systems to understand temporal relations in text. We argue that temporal dependency graphs, built on previous research on narrative times and temporal anaphora, provide a representation scheme that achieves a good trade-off between completeness and practicality in temporal annotation. We also provide a crowdsourcing strategy to annotate TDGs, and demonstrate the feasibility of this approach with an evaluation of the quality of the annotation, and the utility of the resulting data set by training a machine learning model on this data set. The data set is publicly available.
pdf
bib
abs
Introducing a New Dataset for Event Detection in Cybersecurity Texts
Hieu Man Duc Trong
|
Duc Trong Le
|
Amir Pouran Ben Veyseh
|
Thuat Nguyen
|
Thien Huu Nguyen
Detecting cybersecurity events is necessary to keep us informed about the fast growing number of such events reported in text. In this work, we focus on the task of event detection (ED) to identify event trigger words for the cybersecurity domain. In particular, to facilitate the future research, we introduce a new dataset for this problem, characterizing the manual annotation for 30 important cybersecurity event types and a large dataset size to develop deep learning models. Comparing to the prior datasets for this task, our dataset involves more event types and supports the modeling of document-level information to improve the performance. We perform extensive evaluation with the current state-of-the-art methods for ED on the proposed dataset. Our experiments reveal the challenges of cybersecurity ED and present many research opportunities in this area for the future work.
pdf
bib
abs
CHARM: Inferring Personal Attributes from Conversations
Anna Tigunova
|
Andrew Yates
|
Paramita Mirza
|
Gerhard Weikum
Personal knowledge about users’ professions, hobbies, favorite food, and travel preferences, among others, is a valuable asset for individualized AI, such as recommenders or chatbots. Conversations in social media, such as Reddit, are a rich source of data for inferring personal facts. Prior work developed supervised methods to extract this knowledge, but these approaches can not generalize beyond attribute values with ample labeled training samples. This paper overcomes this limitation by devising CHARM: a zero-shot learning method that creatively leverages keyword extraction and document retrieval in order to predict attribute values that were never seen during training. Experiments with large datasets from Reddit show the viability of CHARM for open-ended attributes, such as professions and hobbies.
pdf
bib
abs
Event Detection: Gate Diversity and Syntactic Importance Scores for Graph Convolution Neural Networks
Viet Dac Lai
|
Tuan Ngo Nguyen
|
Thien Huu Nguyen
Recent studies on event detection (ED) have shown that the syntactic dependency graph can be employed in graph convolution neural networks (GCN) to achieve state-of-the-art performance. However, the computation of the hidden vectors in such graph-based models is agnostic to the trigger candidate words, potentially leaving irrelevant information for the trigger candidate for event prediction. In addition, the current models for ED fail to exploit the overall contextual importance scores of the words, which can be obtained via the dependency tree, to boost the performance. In this study, we propose a novel gating mechanism to filter noisy information in the hidden vectors of the GCN models for ED based on the information from the trigger candidate. We also introduce novel mechanisms to achieve the contextual diversity for the gates and the importance score consistency for the graphs and models in ED. The experiments show that the proposed model achieves state-of-the-art performance on two ED datasets.
pdf
bib
abs
Severing the Edge Between Before and After: Neural Architectures for Temporal Ordering of Events
Miguel Ballesteros
|
Rishita Anubhai
|
Shuai Wang
|
Nima Pourdamghani
|
Yogarshi Vyas
|
Jie Ma
|
Parminder Bhatia
|
Kathleen McKeown
|
Yaser Al-Onaizan
In this paper, we propose a neural architecture and a set of training methods for ordering events by predicting temporal relations. Our proposed models receive a pair of events within a span of text as input and they identify temporal relations (Before, After, Equal, Vague) between them. Given that a key challenge with this task is the scarcity of annotated data, our models rely on either pretrained representations (i.e. RoBERTa, BERT or ELMo), transfer and multi-task learning (by leveraging complementary datasets), and self-training techniques. Experiments on the MATRES dataset of English documents establish a new state-of-the-art on this task.
pdf
bib
abs
How Much Knowledge Can You Pack Into the Parameters of a Language Model?
Adam Roberts
|
Colin Raffel
|
Noam Shazeer
It has recently been observed that neural language models trained on unstructured text can implicitly store and retrieve knowledge using natural language queries. In this short paper, we measure the practical utility of this approach by fine-tuning pre-trained models to answer questions without access to any external context or knowledge. We show that this approach scales with model size and performs competitively with open-domain systems that explicitly retrieve answers from an external knowledge source when answering questions. To facilitate reproducibility and future work, we release our code and trained models.
pdf
bib
abs
EXAMS: A Multi-subject High School Examinations Dataset for Cross-lingual and Multilingual Question Answering
Momchil Hardalov
|
Todor Mihaylov
|
Dimitrina Zlatkova
|
Yoan Dinkov
|
Ivan Koychev
|
Preslav Nakov
We propose EXAMS – a new benchmark dataset for cross-lingual and multilingual question answering for high school examinations. We collected more than 24,000 high-quality high school exam questions in 16 languages, covering 8 language families and 24 school subjects from Natural Sciences and Social Sciences, among others.EXAMS offers unique fine-grained evaluation framework across multiple languages and subjects, which allows precise analysis and comparison of the proposed models. We perform various experiments with existing top-performing multilingual pre-trained models and show that EXAMS offers multiple challenges that require multilingual knowledge and reasoning in multiple domains. We hope that EXAMS will enable researchers to explore challenging reasoning and knowledge transfer methods and pre-trained models for school question answering in various languages which was not possible by now. The data, code, pre-trained models, and evaluation are available at
http://github.com/mhardalov/exams-qa.
pdf
bib
abs
End-to-End Synthetic Data Generation for Domain Adaptation of Question Answering Systems
Siamak Shakeri
|
Cicero Nogueira dos Santos
|
Henghui Zhu
|
Patrick Ng
|
Feng Nan
|
Zhiguo Wang
|
Ramesh Nallapati
|
Bing Xiang
We propose an end-to-end approach for synthetic QA data generation. Our model comprises a single transformer-based encoder-decoder network that is trained end-to-end to generate both answers and questions. In a nutshell, we feed a passage to the encoder and ask the decoder to generate a question and an answer token-by-token. The likelihood produced in the generation process is used as a filtering score, which avoids the need for a separate filtering model. Our generator is trained by fine-tuning a pretrained LM using maximum likelihood estimation. The experimental results indicate significant improvements in the domain adaptation of QA models outperforming current state-of-the-art methods.
pdf
bib
abs
Multi-Stage Pre-training for Low-Resource Domain Adaptation
Rong Zhang
|
Revanth Gangi Reddy
|
Md Arafat Sultan
|
Vittorio Castelli
|
Anthony Ferritto
|
Radu Florian
|
Efsun Sarioglu Kayi
|
Salim Roukos
|
Avi Sil
|
Todd Ward
Transfer learning techniques are particularly useful for NLP tasks where a sizable amount of high-quality annotated data is difficult to obtain. Current approaches directly adapt a pretrained language model (LM) on in-domain text before fine-tuning to downstream tasks. We show that extending the vocabulary of the LM with domain-specific terms leads to further gains. To a bigger effect, we utilize structure in the unlabeled data to create auxiliary synthetic tasks, which helps the LM transfer to downstream tasks. We apply these approaches incrementally on a pretrained Roberta-large LM and show considerable performance gain on three tasks in the IT domain: Extractive Reading Comprehension, Document Ranking and Duplicate Question Detection.
pdf
bib
abs
ISAAQ - Mastering Textbook Questions with Pre-trained Transformers and Bottom-Up and Top-Down Attention
Jose Manuel Gomez-Perez
|
Raúl Ortega
Textbook Question Answering is a complex task in the intersection of Machine Comprehension and Visual Question Answering that requires reasoning with multimodal information from text and diagrams. For the first time, this paper taps on the potential of transformer language models and bottom-up and top-down attention to tackle the language and visual understanding challenges this task entails. Rather than training a language-visual transformer from scratch we rely on pre-trained transformers, fine-tuning and ensembling. We add bottom-up and top-down attention to identify regions of interest corresponding to diagram constituents and their relationships, improving the selection of relevant visual information for each question and answer options. Our system ISAAQ reports unprecedented success in all TQA question types, with accuracies of 81.36%, 71.11% and 55.12% on true/false, text-only and diagram multiple choice questions. ISAAQ also demonstrates its broad applicability, obtaining state-of-the-art results in other demanding datasets.
pdf
bib
abs
SubjQA: A Dataset for Subjectivity and Review Comprehension
Johannes Bjerva
|
Nikita Bhutani
|
Behzad Golshan
|
Wang-Chiew Tan
|
Isabelle Augenstein
Subjectivity is the expression of internal opinions or beliefs which cannot be objectively observed or verified, and has been shown to be important for sentiment analysis and word-sense disambiguation. Furthermore, subjectivity is an important aspect of user-generated data. In spite of this, subjectivity has not been investigated in contexts where such data is widespread, such as in question answering (QA). We develop a new dataset which allows us to investigate this relationship. We find that subjectivity is an important feature in the case of QA, albeit with more intricate interactions between subjectivity and QA performance than found in previous work on sentiment analysis. For instance, a subjective question may or may not be associated with a subjective answer. We release an English QA dataset (SubjQA) based on customer reviews, containing subjectivity annotations for questions and answer spans across 6 domains.
pdf
bib
abs
Widget Captioning: Generating Natural Language Description for Mobile User Interface Elements
Yang Li
|
Gang Li
|
Luheng He
|
Jingjie Zheng
|
Hong Li
|
Zhiwei Guan
Natural language descriptions of user interface (UI) elements such as alternative text are crucial for accessibility and language-based interaction in general. Yet, these descriptions are constantly missing in mobile UIs. We propose widget captioning, a novel task for automatically generating language descriptions for UI elements from multimodal input including both the image and the structural representations of user interfaces. We collected a large-scale dataset for widget captioning with crowdsourcing. Our dataset contains 162,860 language phrases created by human workers for annotating 61,285 UI elements across 21,750 unique UI screens. We thoroughly analyze the dataset, and train and evaluate a set of deep model configurations to investigate how each feature modality as well as the choice of learning strategies impact the quality of predicted captions. The task formulation and the dataset as well as our benchmark models contribute a solid basis for this novel multimodal captioning task that connects language and user interfaces.
pdf
bib
abs
Unsupervised Natural Language Inference via Decoupled Multimodal Contrastive Learning
Wanyun Cui
|
Guangyu Zheng
|
Wei Wang
We propose to solve the natural language inference problem without any supervision from the inference labels via task-agnostic multimodal pretraining. Although recent studies of multimodal self-supervised learning also represent the linguistic and visual context, their encoders for different modalities are coupled. Thus they cannot incorporate visual information when encoding plain text alone. In this paper, we propose Multimodal Aligned Contrastive Decoupled learning (MACD) network. MACD forces the decoupled text encoder to represent the visual information via contrastive learning. Therefore, it embeds visual knowledge even for plain text inference. We conducted comprehensive experiments over plain text inference datasets (i.e. SNLI and STS-B). The unsupervised MACD even outperforms the fully-supervised BiLSTM and BiLSTM+ELMO on STS-B.
pdf
bib
abs
Digital Voicing of Silent Speech
David Gaddy
|
Dan Klein
In this paper, we consider the task of digitally voicing silent speech, where silently mouthed words are converted to audible speech based on electromyography (EMG) sensor measurements that capture muscle impulses. While prior work has focused on training speech synthesis models from EMG collected during vocalized speech, we are the first to train from EMG collected during silently articulated speech. We introduce a method of training on silent EMG by transferring audio targets from vocalized to silent signals. Our method greatly improves intelligibility of audio generated from silent EMG compared to a baseline that only trains with vocalized data, decreasing transcription word error rate from 64% to 4% in one data condition and 88% to 68% in another. To spur further development on this task, we share our new dataset of silent and vocalized facial EMG measurements.
pdf
bib
abs
Imitation Attacks and Defenses for Black-box Machine Translation Systems
Eric Wallace
|
Mitchell Stern
|
Dawn Song
Adversaries may look to steal or attack black-box NLP systems, either for financial gain or to exploit model errors. One setting of particular interest is machine translation (MT), where models have high commercial value and errors can be costly. We investigate possible exploitations of black-box MT systems and explore a preliminary defense against such threats. We first show that MT systems can be stolen by querying them with monolingual sentences and training models to imitate their outputs. Using simulated experiments, we demonstrate that MT model stealing is possible even when imitation models have different input data or architectures than their target models. Applying these ideas, we train imitation models that reach within 0.6 BLEU of three production MT systems on both high-resource and low-resource language pairs. We then leverage the similarity of our imitation models to transfer adversarial examples to the production systems. We use gradient-based attacks that expose inputs which lead to semantically-incorrect translations, dropped content, and vulgar model outputs. To mitigate these vulnerabilities, we propose a defense that modifies translation outputs in order to misdirect the optimization of imitation models. This defense degrades the adversary’s BLEU score and attack success rate at some cost in the defender’s BLEU and inference speed.
pdf
bib
abs
Sequence-Level Mixed Sample Data Augmentation
Demi Guo
|
Yoon Kim
|
Alexander Rush
Despite their empirical success, neural networks still have difficulty capturing compositional aspects of natural language. This work proposes a simple data augmentation approach to encourage compositional behavior in neural models for sequence-to-sequence problems. Our approach, SeqMix, creates new synthetic examples by softly combining input/output sequences from the training set. We connect this approach to existing techniques such as SwitchOut and word dropout, and show that these techniques are all essentially approximating variants of a single objective. SeqMix consistently yields approximately 1.0 BLEU improvement on five different translation datasets over strong Transformer baselines. On tasks that require strong compositional generalization such as SCAN and semantic parsing, SeqMix also offers further improvements.
pdf
bib
abs
Consistency of a Recurrent Language Model With Respect to Incomplete Decoding
Sean Welleck
|
Ilia Kulikov
|
Jaedeok Kim
|
Richard Yuanzhe Pang
|
Kyunghyun Cho
Despite strong performance on a variety of tasks, neural sequence models trained with maximum likelihood have been shown to exhibit issues such as length bias and degenerate repetition. We study the related issue of receiving infinite-length sequences from a recurrent language model when using common decoding algorithms. To analyze this issue, we first define inconsistency of a decoding algorithm, meaning that the algorithm can yield an infinite-length sequence that has zero probability under the model. We prove that commonly used incomplete decoding algorithms – greedy search, beam search, top-k sampling, and nucleus sampling – are inconsistent, despite the fact that recurrent language models are trained to produce sequences of finite length. Based on these insights, we propose two remedies which address inconsistency: consistent variants of top-k and nucleus sampling, and a self-terminating recurrent language model. Empirical results show that inconsistency occurs in practice, and that the proposed methods prevent inconsistency.
pdf
bib
abs
An Exploration of Arbitrary-Order Sequence Labeling via Energy-Based Inference Networks
Lifu Tu
|
Tianyu Liu
|
Kevin Gimpel
Many tasks in natural language processing involve predicting structured outputs, e.g., sequence labeling, semantic role labeling, parsing, and machine translation. Researchers are increasingly applying deep representation learning to these problems, but the structured component of these approaches is usually quite simplistic. In this work, we propose several high-order energy terms to capture complex dependencies among labels in sequence labeling, including several that consider the entire label sequence. We use neural parameterizations for these energy terms, drawing from convolutional, recurrent, and self-attention networks. We use the framework of learning energy-based inference networks (Tu and Gimpel, 2018) for dealing with the difficulties of training and inference with such models. We empirically demonstrate that this approach achieves substantial improvement using a variety of high-order energy terms on four sequence labeling tasks, while having the same decoding speed as simple, local classifiers. We also find high-order energies to help in noisy data conditions.
pdf
bib
abs
Ensemble Distillation for Structured Prediction: Calibrated, Accurate, Fast—Choose Three
Steven Reich
|
David Mueller
|
Nicholas Andrews
Modern neural networks do not always produce well-calibrated predictions, even when trained with a proper scoring function such as cross-entropy. In classification settings, simple methods such as isotonic regression or temperature scaling may be used in conjunction with a held-out dataset to calibrate model outputs. However, extending these methods to structured prediction is not always straightforward or effective; furthermore, a held-out calibration set may not always be available. In this paper, we study ensemble distillation as a general framework for producing well-calibrated structured prediction models while avoiding the prohibitive inference-time cost of ensembles. We validate this framework on two tasks: named-entity recognition and machine translation. We find that, across both tasks, ensemble distillation produces models which retain much of, and occasionally improve upon, the performance and calibration benefits of ensembles, while only requiring a single model during test-time.
pdf
bib
abs
Inducing Target-Specific Latent Structures for Aspect Sentiment Classification
Chenhua Chen
|
Zhiyang Teng
|
Yue Zhang
Aspect-level sentiment analysis aims to recognize the sentiment polarity of an aspect or a target in a comment. Recently, graph convolutional networks based on linguistic dependency trees have been studied for this task. However, the dependency parsing accuracy of commercial product comments or tweets might be unsatisfactory. To tackle this problem, we associate linguistic dependency trees with automatically induced aspectspecific graphs. We propose gating mechanisms to dynamically combine information from word dependency graphs and latent graphs which are learned by self-attention networks. Our model can complement supervised syntactic features with latent semantic dependencies. Experimental results on five benchmarks show the effectiveness of our proposed latent models, giving significantly better results than models without using latent graphs.
pdf
bib
abs
Affective Event Classification with Discourse-enhanced Self-training
Yuan Zhuang
|
Tianyu Jiang
|
Ellen Riloff
Prior research has recognized the need to associate affective polarities with events and has produced several techniques and lexical resources for identifying affective events. Our research introduces new classification models to assign affective polarity to event phrases. First, we present a BERT-based model for affective event classification and show that the classifier achieves substantially better performance than a large affective event knowledge base. Second, we present a discourse-enhanced self-training method that iteratively improves the classifier with unlabeled data. The key idea is to exploit event phrases that occur with a coreferent sentiment expression. The discourse-enhanced self-training algorithm iteratively labels new event phrases based on both the classifier’s predictions and the polarities of the event’s coreferent sentiment expressions. Our results show that discourse-enhanced self-training further improves both recall and precision for affective event classification.
pdf
bib
abs
Deep Weighted MaxSAT for Aspect-based Opinion Extraction
Meixi Wu
|
Wenya Wang
|
Sinno Jialin Pan
Though deep learning has achieved significant success in various NLP tasks, most deep learning models lack the capability of encoding explicit domain knowledge to model complex causal relationships among different types of variables. On the other hand, logic rules offer a compact expression to represent the causal relationships to guide the training process. Logic programs can be cast as a satisfiability problem which aims to find truth assignments to logic variables by maximizing the number of satisfiable clauses (MaxSAT). We adopt the MaxSAT semantics to model logic inference process and smoothly incorporate a weighted version of MaxSAT that connects deep neural networks and a graphical model in a joint framework. The joint model feeds deep learning outputs to a weighted MaxSAT layer to rectify the erroneous predictions and can be trained via end-to-end gradient descent. Our proposed model associates the benefits of high-level feature learning, knowledge reasoning, and structured learning with observable performance gain for the task of aspect-based opinion extraction.
pdf
bib
abs
Multi-view Story Characterization from Movie Plot Synopses and Reviews
Sudipta Kar
|
Gustavo Aguilar
|
Mirella Lapata
|
Thamar Solorio
This paper considers the problem of characterizing stories by inferring properties such as theme and style using written synopses and reviews of movies. We experiment with a multi-label dataset of movie synopses and a tagset representing various attributes of stories (e.g., genre, type of events). Our proposed multi-view model encodes the synopses and reviews using hierarchical attention and shows improvement over methods that only use synopses. Finally, we demonstrate how we can take advantage of such a model to extract a complementary set of story-attributes from reviews without direct supervision. We have made our dataset and source code publicly available at
https://ritual.uh.edu/multiview-tag-2020.
pdf
bib
abs
Mind Your Inflections! Improving NLP for Non-Standard Englishes with Base-Inflection Encoding
Samson Tan
|
Shafiq Joty
|
Lav Varshney
|
Min-Yen Kan
Inflectional variation is a common feature of World Englishes such as Colloquial Singapore English and African American Vernacular English. Although comprehension by human readers is usually unimpaired by non-standard inflections, current NLP systems are not yet robust. We propose Base-Inflection Encoding (BITE), a method to tokenize English text by reducing inflected words to their base forms before reinjecting the grammatical information as special symbols. Fine-tuning pretrained NLP models for downstream tasks using our encoding defends against inflectional adversaries while maintaining performance on clean data. Models using BITE generalize better to dialects with non-standard inflections without explicit training and translation models converge faster when trained with BITE. Finally, we show that our encoding improves the vocabulary efficiency of popular data-driven subword tokenizers. Since there has been no prior work on quantitatively evaluating vocabulary efficiency, we propose metrics to do so.
pdf
bib
abs
Measuring the Similarity of Grammatical Gender Systems by Comparing Partitions
Arya D. McCarthy
|
Adina Williams
|
Shijia Liu
|
David Yarowsky
|
Ryan Cotterell
A grammatical gender system divides a lexicon into a small number of relatively fixed grammatical categories. How similar are these gender systems across languages? To quantify the similarity, we define gender systems extensionally, thereby reducing the problem of comparisons between languages’ gender systems to cluster evaluation. We borrow a rich inventory of statistical tools for cluster evaluation from the field of community detection (Driver and Kroeber, 1932; Cattell, 1945), that enable us to craft novel information theoretic metrics for measuring similarity between gender systems. We first validate our metrics, then use them to measure gender system similarity in 20 languages. We then ask whether our gender system similarities alone are sufficient to reconstruct historical relationships between languages. Towards this end, we make phylogenetic predictions on the popular, but thorny, problem from historical linguistics of inducing a phylogenetic tree over extant Indo-European languages. Of particular interest, languages on the same branch of our phylogenetic tree are notably similar, whereas languages from separate branches are no more similar than chance.
pdf
bib
abs
RethinkCWS: Is Chinese Word Segmentation a Solved Task?
Jinlan Fu
|
Pengfei Liu
|
Qi Zhang
|
Xuanjing Huang
The performance of the Chinese Word Segmentation (CWS) systems has gradually reached a plateau with the rapid development of deep neural networks, especially the successful use of large pre-trained models. In this paper, we take stock of what we have achieved and rethink what’s left in the CWS task. Methodologically, we propose a fine-grained evaluation for existing CWS systems, which not only allows us to diagnose the strengths and weaknesses of existing models (under the in-dataset setting), but enables us to quantify the discrepancy between different criterion and alleviate the negative transfer problem when doing multi-criteria learning. Strategically, despite not aiming to propose a novel model in this paper, our comprehensive experiments on eight models and seven datasets, as well as thorough analysis, could search for some promising direction for future research. We make all codes publicly available and release an interface that can quickly evaluate and diagnose user’s models:
https://github.com/neulab/InterpretEvalpdf
bib
abs
Learning to Pronounce Chinese Without a Pronunciation Dictionary
Christopher Chu
|
Scot Fang
|
Kevin Knight
We demonstrate a program that learns to pronounce Chinese text in Mandarin, without a pronunciation dictionary. From non-parallel streams of Chinese characters and Chinese pinyin syllables, it establishes a many-to-many mapping between characters and pronunciations. Using unsupervised methods, the program effectively deciphers writing into speech. Its token-level character-to-syllable accuracy is 89%, which significantly exceeds the 22% accuracy of prior work.
pdf
bib
abs
Dynamic Anticipation and Completion for Multi-Hop Reasoning over Sparse Knowledge Graph
Xin Lv
|
Xu Han
|
Lei Hou
|
Juanzi Li
|
Zhiyuan Liu
|
Wei Zhang
|
Yichi Zhang
|
Hao Kong
|
Suhui Wu
Multi-hop reasoning has been widely studied in recent years to seek an effective and interpretable method for knowledge graph (KG) completion. Most previous reasoning methods are designed for dense KGs with enough paths between entities, but cannot work well on those sparse KGs that only contain sparse paths for reasoning. On the one hand, sparse KGs contain less information, which makes it difficult for the model to choose correct paths. On the other hand, the lack of evidential paths to target entities also makes the reasoning process difficult. To solve these problems, we propose a multi-hop reasoning model over sparse KGs, by applying novel dynamic anticipation and completion strategies: (1) The anticipation strategy utilizes the latent prediction of embedding-based models to make our model perform more potential path search over sparse KGs. (2) Based on the anticipation information, the completion strategy dynamically adds edges as additional actions during the path search, which further alleviates the sparseness problem of KGs. The experimental results on five datasets sampled from Freebase, NELL and Wikidata show that our method outperforms state-of-the-art baselines. Our codes and datasets can be obtained from
https://github.com/THU-KEG/DacKGR.
pdf
bib
abs
Knowledge Association with Hyperbolic Knowledge Graph Embeddings
Zequn Sun
|
Muhao Chen
|
Wei Hu
|
Chengming Wang
|
Jian Dai
|
Wei Zhang
Capturing associations for knowledge graphs (KGs) through entity alignment, entity type inference and other related tasks benefits NLP applications with comprehensive knowledge representations. Recent related methods built on Euclidean embeddings are challenged by the hierarchical structures and different scales of KGs. They also depend on high embedding dimensions to realize enough expressiveness. Differently, we explore with low-dimensional hyperbolic embeddings for knowledge association. We propose a hyperbolic relational graph neural network for KG embedding and capture knowledge associations with a hyperbolic transformation. Extensive experiments on entity alignment and type inference demonstrate the effectiveness and efficiency of our method.
pdf
bib
abs
Domain Knowledge Empowered Structured Neural Net for End-to-End Event Temporal Relation Extraction
Rujun Han
|
Yichao Zhou
|
Nanyun Peng
Extracting event temporal relations is a critical task for information extraction and plays an important role in natural language understanding. Prior systems leverage deep learning and pre-trained language models to improve the performance of the task. However, these systems often suffer from two shortcomings: 1) when performing maximum a posteriori (MAP) inference based on neural models, previous systems only used structured knowledge that is assumed to be absolutely correct, i.e., hard constraints; 2) biased predictions on dominant temporal relations when training with a limited amount of data. To address these issues, we propose a framework that enhances deep neural network with distributional constraints constructed by probabilistic domain knowledge. We solve the constrained inference problem via Lagrangian Relaxation and apply it to end-to-end event temporal relation extraction tasks. Experimental results show our framework is able to improve the baseline neural network models with strong statistical significance on two widely used datasets in news and clinical domains.
pdf
bib
abs
TeMP: Temporal Message Passing for Temporal Knowledge Graph Completion
Jiapeng Wu
|
Meng Cao
|
Jackie Chi Kit Cheung
|
William L. Hamilton
Inferring missing facts in temporal knowledge graphs (TKGs) is a fundamental and challenging task. Previous works have approached this problem by augmenting methods for static knowledge graphs to leverage time-dependent representations. However, these methods do not explicitly leverage multi-hop structural information and temporal facts from recent time steps to enhance their predictions. Additionally, prior work does not explicitly address the temporal sparsity and variability of entity distributions in TKGs. We propose the Temporal Message Passing (TeMP) framework to address these challenges by combining graph neural networks, temporal dynamics models, data imputation and frequency-based gating techniques. Experiments on standard TKG tasks show that our approach provides substantial gains compared to the previous state of the art, achieving a 10.7% average relative improvement in Hits@10 across three standard benchmarks. Our analysis also reveals important sources of variability both within and across TKG datasets, and we introduce several simple but strong baselines that outperform the prior state of the art in certain settings.
pdf
bib
abs
Understanding the Difficulty of Training Transformers
Liyuan Liu
|
Xiaodong Liu
|
Jianfeng Gao
|
Weizhu Chen
|
Jiawei Han
Transformers have proved effective in many NLP tasks. However, their training requires non-trivial efforts regarding carefully designing cutting-edge optimizers and learning rate schedulers (e.g., conventional SGD fails to train Transformers effectively). Our objective here is to understand __what complicates Transformer training__ from both empirical and theoretical perspectives. Our analysis reveals that unbalanced gradients are not the root cause of the instability of training. Instead, we identify an amplification effect that influences training substantially—for each layer in a multi-layer Transformer model, heavy dependency on its residual branch makes training unstable, since it amplifies small parameter perturbations (e.g., parameter updates) and results in significant disturbances in the model output. Yet we observe that a light dependency limits the model potential and leads to inferior trained models. Inspired by our analysis, we propose Admin (Adaptive model initialization) to stabilize the early stage’s training and unleash its full potential in the late stage. Extensive experiments show that Admin is more stable, converges faster, and leads to better performance
pdf
bib
abs
An Empirical Study of Generation Order for Machine Translation
William Chan
|
Mitchell Stern
|
Jamie Kiros
|
Jakob Uszkoreit
In this work, we present an empirical study of generation order for machine translation. Building on recent advances in insertion-based modeling, we first introduce a soft order-reward framework that enables us to train models to follow arbitrary oracle generation policies. We then make use of this framework to explore a large variety of generation orders, including uninformed orders, location-based orders, frequency-based orders, content-based orders, and model-based orders. Curiously, we find that for the WMT’14 English → German and WMT’18 English → Chinese translation tasks, order does not have a substantial impact on output quality. Moreover, for English → German, we even discover that unintuitive orderings such as alphabetical and shortest-first can match the performance of a standard Transformer, suggesting that traditional left-to-right generation may not be necessary to achieve high performance.
pdf
bib
abs
Inference Strategies for Machine Translation with Conditional Masking
Julia Kreutzer
|
George Foster
|
Colin Cherry
Conditional masked language model (CMLM) training has proven successful for non-autoregressive and semi-autoregressive sequence generation tasks, such as machine translation. Given a trained CMLM, however, it is not clear what the best inference strategy is. We formulate masked inference as a factorization of conditional probabilities of partial sequences, show that this does not harm performance, and investigate a number of simple heuristics motivated by this perspective. We identify a thresholding strategy that has advantages over the standard “mask-predict” algorithm, and provide analyses of its behavior on machine translation tasks.
pdf
bib
abs
AmbigQA: Answering Ambiguous Open-domain Questions
Sewon Min
|
Julian Michael
|
Hannaneh Hajishirzi
|
Luke Zettlemoyer
Ambiguity is inherent to open-domain question answering; especially when exploring new topics, it can be difficult to ask questions that have a single, unambiguous answer. In this paper, we introduce AmbigQA, a new open-domain question answering task which involves finding every plausible answer, and then rewriting the question for each one to resolve the ambiguity. To study this task, we construct AmbigNQ, a dataset covering 14,042 questions from NQ-open, an existing open-domain QA benchmark. We find that over half of the questions in NQ-open are ambiguous, with diverse sources of ambiguity such as event and entity references. We also present strong baseline models for AmbigQA which we show benefit from weakly supervised learning that incorporates NQ-open, strongly suggesting our new task and data will support significant future research effort. Our data and baselines are available at
https://nlp.cs.washington.edu/ambigqa.
pdf
bib
abs
Tell Me How to Ask Again: Question Data Augmentation with Controllable Rewriting in Continuous Space
Dayiheng Liu
|
Yeyun Gong
|
Jie Fu
|
Yu Yan
|
Jiusheng Chen
|
Jiancheng Lv
|
Nan Duan
|
Ming Zhou
In this paper, we propose a novel data augmentation method, referred to as Controllable Rewriting based Question Data Augmentation (CRQDA), for machine reading comprehension (MRC), question generation, and question-answering natural language inference tasks. We treat the question data augmentation task as a constrained question rewriting problem to generate context-relevant, high-quality, and diverse question data samples. CRQDA utilizes a Transformer Autoencoder to map the original discrete question into a continuous embedding space. It then uses a pre-trained MRC model to revise the question representation iteratively with gradient-based optimization. Finally, the revised question representations are mapped back into the discrete space, which serve as additional question data. Comprehensive experiments on SQuAD 2.0, SQuAD 1.1 question generation, and QNLI tasks demonstrate the effectiveness of CRQDA.
pdf
bib
abs
Training Question Answering Models From Synthetic Data
Raul Puri
|
Ryan Spring
|
Mohammad Shoeybi
|
Mostofa Patwary
|
Bryan Catanzaro
Question and answer generation is a data augmentation method that aims to improve question answering (QA) models given the limited amount of human labeled data. However, a considerable gap remains between synthetic and human-generated question-answer pairs. This work aims to narrow this gap by taking advantage of large language models and explores several factors such as model size, quality of pretrained models, scale of data synthesized, and algorithmic choices. On the SQuAD1.1 question answering task, we achieve higher accuracy using solely synthetic questions and answers than when using the SQuAD1.1 training set questions alone. Removing access to real Wikipedia data, we synthesize questions and answers from a synthetic text corpus generated by an 8.3 billion parameter GPT-2 model and achieve 88.4 Exact Match (EM) and 93.9 F1 score on the SQuAD1.1 dev set. We further apply our methodology to SQuAD2.0 and show a 2.8 absolute gain on EM score compared to prior work using synthetic data.
pdf
bib
abs
Few-Shot Complex Knowledge Base Question Answering via Meta Reinforcement Learning
Yuncheng Hua
|
Yuan-Fang Li
|
Gholamreza Haffari
|
Guilin Qi
|
Tongtong Wu
Complex question-answering (CQA) involves answering complex natural-language questions on a knowledge base (KB). However, the conventional neural program induction (NPI) approach exhibits uneven performance when the questions have different types, harboring inherently different characteristics, e.g., difficulty level. This paper proposes a meta-reinforcement learning approach to program induction in CQA to tackle the potential distributional bias in questions. Our method quickly and effectively adapts the meta-learned programmer to new questions based on the most similar questions retrieved from the training data. The meta-learned policy is then used to learn a good programming policy, utilizing the trial trajectories and their rewards for similar questions in the support set. Our method achieves state-of-the-art performance on the CQA dataset (Saha et al., 2018) while using only five trial trajectories for the top-5 retrieved questions in each support set, and meta-training on tasks constructed from only 1% of the training set. We have released our code at
https://github.com/DevinJake/MRL-CQA.
pdf
bib
abs
Multilingual Offensive Language Identification with Cross-lingual Embeddings
Tharindu Ranasinghe
|
Marcos Zampieri
Offensive content is pervasive in social media and a reason for concern to companies and government organizations. Several studies have been recently published investigating methods to detect the various forms of such content (e.g. hate speech, cyberbulling, and cyberaggression). The clear majority of these studies deal with English partially because most annotated datasets available contain English data. In this paper, we take advantage of English data available by applying cross-lingual contextual word embeddings and transfer learning to make predictions in languages with less resources. We project predictions on comparable data in Bengali, Hindi, and Spanish and we report results of 0.8415 F1 macro for Bengali, 0.8568 F1 macro for Hindi, and 0.7513 F1 macro for Spanish. Finally, we show that our approach compares favorably to the best systems submitted to recent shared tasks on these three languages, confirming the robustness of cross-lingual contextual embeddings and transfer learning for this task.
pdf
bib
abs
Solving Historical Dictionary Codes with a Neural Language Model
Christopher Chu
|
Raphael Valenti
|
Kevin Knight
We solve difficult word-based substitution codes by constructing a decoding lattice and searching that lattice with a neural language model. We apply our method to a set of enciphered letters exchanged between US Army General James Wilkinson and agents of the Spanish Crown in the late 1700s and early 1800s, obtained from the US Library of Congress. We are able to decipher 75.1% of the cipher-word tokens correctly.
pdf
bib
abs
Toward Micro-Dialect Identification in Diaglossic and Code-Switched Environments
Muhammad Abdul-Mageed
|
Chiyu Zhang
|
AbdelRahim Elmadany
|
Lyle Ungar
Although prediction of dialects is an important language processing task, with a wide range of applications, existing work is largely limited to coarse-grained varieties. Inspired by geolocation research, we propose the novel task of Micro-Dialect Identification (MDI) and introduce MARBERT, a new language model with striking abilities to predict a fine-grained variety (as small as that of a city) given a single, short message. For modeling, we offer a range of novel spatially and linguistically-motivated multi-task learning models. To showcase the utility of our models, we introduce a new, large-scale dataset of Arabic micro-varieties (low-resource) suited to our tasks. MARBERT predicts micro-dialects with 9.9% F1, 76 better than a majority class baseline. Our new language model also establishes new state-of-the-art on several external tasks.
pdf
bib
abs
Investigating African-American Vernacular English in Transformer-Based Text Generation
Sophie Groenwold
|
Lily Ou
|
Aesha Parekh
|
Samhita Honnavalli
|
Sharon Levy
|
Diba Mirza
|
William Yang Wang
The growth of social media has encouraged the written use of African American Vernacular English (AAVE), which has traditionally been used only in oral contexts. However, NLP models have historically been developed using dominant English varieties, such as Standard American English (SAE), due to text corpora availability. We investigate the performance of GPT-2 on AAVE text by creating a dataset of intent-equivalent parallel AAVE/SAE tweet pairs, thereby isolating syntactic structure and AAVE- or SAE-specific language for each pair. We evaluate each sample and its GPT-2 generated text with pretrained sentiment classifiers and find that while AAVE text results in more classifications of negative sentiment than SAE, the use of GPT-2 generally increases occurrences of positive sentiment for both. Additionally, we conduct human evaluation of AAVE and SAE text generated with GPT-2 to compare contextual rigor and overall quality.
pdf
bib
abs
Iterative Domain-Repaired Back-Translation
Hao-Ran Wei
|
Zhirui Zhang
|
Boxing Chen
|
Weihua Luo
In this paper, we focus on the domain-specific translation with low resources, where in-domain parallel corpora are scarce or nonexistent. One common and effective strategy for this case is exploiting in-domain monolingual data with the back-translation method. However, the synthetic parallel data is very noisy because they are generated by imperfect out-of-domain systems, resulting in the poor performance of domain adaptation. To address this issue, we propose a novel iterative domain-repaired back-translation framework, which introduces the Domain-Repair (DR) model to refine translations in synthetic bilingual data. To this end, we construct corresponding data for the DR model training by round-trip translating the monolingual sentences, and then design the unified training framework to optimize paired DR and NMT models jointly. Experiments on adapting NMT models between specific domains and from the general domain to specific domains demonstrate the effectiveness of our proposed approach, achieving 15.79 and 4.47 BLEU improvements on average over unadapted models and back-translation.
pdf
bib
abs
Dynamic Data Selection and Weighting for Iterative Back-Translation
Zi-Yi Dou
|
Antonios Anastasopoulos
|
Graham Neubig
Back-translation has proven to be an effective method to utilize monolingual data in neural machine translation (NMT), and iteratively conducting back-translation can further improve the model performance. Selecting which monolingual data to back-translate is crucial, as we require that the resulting synthetic data are of high quality and reflect the target domain. To achieve these two goals, data selection and weighting strategies have been proposed, with a common practice being to select samples close to the target domain but also dissimilar to the average general-domain text. In this paper, we provide insights into this commonly used approach and generalize it to a dynamic curriculum learning strategy, which is applied to iterative back-translation models. In addition, we propose weighting strategies based on both the current quality of the sentence and its improvement over the previous iteration. We evaluate our models on domain adaptation, low-resource, and high-resource MT settings and on two language pairs. Experimental results demonstrate that our methods achieve improvements of up to 1.8 BLEU points over competitive baselines.
pdf
bib
abs
Revisiting Modularized Multilingual NMT to Meet Industrial Demands
Sungwon Lyu
|
Bokyung Son
|
Kichang Yang
|
Jaekyoung Bae
The complete sharing of parameters for multilingual translation (1-1) has been the mainstream approach in current research. However, degraded performance due to the capacity bottleneck and low maintainability hinders its extensive adoption in industries. In this study, we revisit the multilingual neural machine translation model that only share modules among the same languages (M2) as a practical alternative to 1-1 to satisfy industrial requirements. Through comprehensive experiments, we identify the benefits of multi-way training and demonstrate that the M2 can enjoy these benefits without suffering from the capacity bottleneck. Furthermore, the interlingual space of the M2 allows convenient modification of the model. By leveraging trained modules, we find that incrementally added modules exhibit better performance than singly trained models. The zero-shot performance of the added modules is even comparable to supervised models. Our findings suggest that the M2 can be a competent candidate for multilingual translation in industries.
pdf
bib
abs
LAReQA: Language-Agnostic Answer Retrieval from a Multilingual Pool
Uma Roy
|
Noah Constant
|
Rami Al-Rfou
|
Aditya Barua
|
Aaron Phillips
|
Yinfei Yang
We present LAReQA, a challenging new benchmark for language-agnostic answer retrieval from a multilingual candidate pool. Unlike previous cross-lingual tasks, LAReQA tests for “strong” cross-lingual alignment, requiring semantically related
cross-language pairs to be closer in representation space than unrelated
same-language pairs. This level of alignment is important for the practical task of cross-lingual information retrieval. Building on multilingual BERT (mBERT), we study different strategies for achieving strong alignment. We find that augmenting training data via machine translation is effective, and improves significantly over using mBERT out-of-the-box. Interestingly, model performance on zero-shot variants of our task that only target “weak” alignment is not predictive of performance on LAReQA. This finding underscores our claim that language-agnostic retrieval is a substantively new kind of cross-lingual evaluation, and suggests that measuring both weak and strong alignment will be important for improving cross-lingual systems going forward. We release our dataset and evaluation code at
https://github.com/google-research-datasets/lareqa.
pdf
bib
abs
OCR Post Correction for Endangered Language Texts
Shruti Rijhwani
|
Antonios Anastasopoulos
|
Graham Neubig
There is little to no data available to build natural language processing models for most endangered languages. However, textual data in these languages often exists in formats that are not machine-readable, such as paper books and scanned images. In this work, we address the task of extracting text from these resources. We create a benchmark dataset of transcriptions for scanned books in three critically endangered languages and present a systematic analysis of how general-purpose OCR tools are not robust to the data-scarce setting of endangered languages. We develop an OCR post-correction method tailored to ease training in this data-scarce setting, reducing the recognition error rate by 34% on average across the three languages.
pdf
bib
abs
X-FACTR: Multilingual Factual Knowledge Retrieval from Pretrained Language Models
Zhengbao Jiang
|
Antonios Anastasopoulos
|
Jun Araki
|
Haibo Ding
|
Graham Neubig
Language models (LMs) have proven surprisingly successful at capturing factual knowledge by completing cloze-style fill-in-the-blank questions such as “Punta Cana is located in _.” However, while knowledge is both written and queried in many languages, studies on LMs’ factual representation ability have almost invariably been performed on English. To assess factual knowledge retrieval in LMs in different languages, we create a multilingual benchmark of cloze-style probes for typologically diverse languages. To properly handle language variations, we expand probing methods from single- to multi-word entities, and develop several decoding algorithms to generate multi-token predictions. Extensive experimental results provide insights about how well (or poorly) current state-of-the-art LMs perform at this task in languages with more or fewer available resources. We further propose a code-switching-based method to improve the ability of multilingual LMs to access knowledge, and verify its effectiveness on several benchmark languages. Benchmark data and code have be released at
https://x-factr.github.io.
pdf
bib
abs
CCAligned: A Massive Collection of Cross-Lingual Web-Document Pairs
Ahmed El-Kishky
|
Vishrav Chaudhary
|
Francisco Guzmán
|
Philipp Koehn
Cross-lingual document alignment aims to identify pairs of documents in two distinct languages that are of comparable content or translations of each other. In this paper, we exploit the signals embedded in URLs to label web documents at scale with an average precision of 94.5% across different language pairs. We mine sixty-eight snapshots of the Common Crawl corpus and identify web document pairs that are translations of each other. We release a new web dataset consisting of over 392 million URL pairs from Common Crawl covering documents in 8144 language pairs of which 137 pairs include English. In addition to curating this massive dataset, we introduce baseline methods that leverage cross-lingual representations to identify aligned documents based on their textual content. Finally, we demonstrate the value of this parallel documents dataset through a downstream task of mining parallel sentences and measuring the quality of machine translations from models trained on this mined data. Our objective in releasing this dataset is to foster new research in cross-lingual NLP across a variety of low, medium, and high-resource languages.
pdf
bib
abs
Localizing Open-Ontology QA Semantic Parsers in a Day Using Machine Translation
Mehrad Moradshahi
|
Giovanni Campagna
|
Sina Semnani
|
Silei Xu
|
Monica Lam
We propose Semantic Parser Localizer (SPL), a toolkit that leverages Neural Machine Translation (NMT) systems to localize a semantic parser for a new language. Our methodology is to (1) generate training data automatically in the target language by augmenting machine-translated datasets with local entities scraped from public websites, (2) add a few-shot boost of human-translated sentences and train a novel XLMR-LSTM semantic parser, and (3) test the model on natural utterances curated using human translators. We assess the effectiveness of our approach by extending the current capabilities of Schema2QA, a system for English Question Answering (QA) on the open web, to 10 new languages for the restaurants and hotels domains. Our model achieves an overall test accuracy ranging between 61% and 69% for the hotels domain and between 64% and 78% for restaurants domain, which compares favorably to 69% and 80% obtained for English parser trained on gold English data and a few examples from validation set. We show our approach outperforms the previous state-of-the-art methodology by more than 30% for hotels and 40% for restaurants with localized ontologies for the subset of languages tested. Our methodology enables any software developer to add a new language capability to a QA system for a new domain, leveraging machine translation, in less than 24 hours. Our code is released open-source.
pdf
bib
abs
Interactive Refinement of Cross-Lingual Word Embeddings
Michelle Yuan
|
Mozhi Zhang
|
Benjamin Van Durme
|
Leah Findlater
|
Jordan Boyd-Graber
Cross-lingual word embeddings transfer knowledge between languages: models trained on high-resource languages can predict in low-resource languages. We introduce CLIME, an interactive system to quickly refine cross-lingual word embeddings for a given classification problem. First, CLIME ranks words by their salience to the downstream task. Then, users mark similarity between keywords and their nearest neighbors in the embedding space. Finally, CLIME updates the embeddings using the annotations. We evaluate CLIME on identifying health-related text in four low-resource languages: Ilocano, Sinhalese, Tigrinya, and Uyghur. Embeddings refined by CLIME capture more nuanced word semantics and have higher test accuracy than the original embeddings. CLIME often improves accuracy faster than an active learning baseline and can be easily combined with active learning to improve results.
pdf
bib
abs
Exploiting Sentence Order in Document Alignment
Brian Thompson
|
Philipp Koehn
We present a simple document alignment method that incorporates sentence order information in both candidate generation and candidate re-scoring. Our method results in 61% relative reduction in error compared to the best previously published result on the WMT16 document alignment shared task. Our method improves downstream MT performance on web-scraped Sinhala–English documents from ParaCrawl, outperforming the document alignment method used in the most recent ParaCrawl release. It also outperforms a comparable corpora method which uses the same multilingual embeddings, demonstrating that exploiting sentence order is beneficial even if the end goal is sentence-level bitext.
pdf
bib
abs
XGLUE: A New Benchmark Dataset for Cross-lingual Pre-training, Understanding and Generation
Yaobo Liang
|
Nan Duan
|
Yeyun Gong
|
Ning Wu
|
Fenfei Guo
|
Weizhen Qi
|
Ming Gong
|
Linjun Shou
|
Daxin Jiang
|
Guihong Cao
|
Xiaodong Fan
|
Ruofei Zhang
|
Rahul Agrawal
|
Edward Cui
|
Sining Wei
|
Taroon Bharti
|
Ying Qiao
|
Jiun-Hung Chen
|
Winnie Wu
|
Shuguang Liu
|
Fan Yang
|
Daniel Campos
|
Rangan Majumder
|
Ming Zhou
In this paper, we introduce XGLUE, a new benchmark dataset to train large-scale cross-lingual pre-trained models using multilingual and bilingual corpora, and evaluate their performance across a diverse set of cross-lingual tasks. Comparing to GLUE (Wang et al.,2019), which is labeled in English and includes natural language understanding tasks only, XGLUE has three main advantages: (1) it provides two corpora with different sizes for cross-lingual pre-training; (2) it provides 11 diversified tasks that cover both natural language understanding and generation scenarios; (3) for each task, it provides labeled data in multiple languages. We extend a recent cross-lingual pre-trained model Unicoder (Huang et al., 2019) to cover both understanding and generation tasks, which is evaluated on XGLUE as a strong baseline. We also evaluate the base versions (12-layer) of Multilingual BERT, XLM and XLM-R for comparison.
pdf
bib
abs
AIN: Fast and Accurate Sequence Labeling with Approximate Inference Network
Xinyu Wang
|
Yong Jiang
|
Nguyen Bach
|
Tao Wang
|
Zhongqiang Huang
|
Fei Huang
|
Kewei Tu
The linear-chain Conditional Random Field (CRF) model is one of the most widely-used neural sequence labeling approaches. Exact probabilistic inference algorithms such as the forward-backward and Viterbi algorithms are typically applied in training and prediction stages of the CRF model. However, these algorithms require sequential computation that makes parallelization impossible. In this paper, we propose to employ a parallelizable approximate variational inference algorithm for the CRF model. Based on this algorithm, we design an approximate inference network that can be connected with the encoder of the neural CRF model to form an end-to-end network, which is amenable to parallelization for faster training and prediction. The empirical results show that our proposed approaches achieve a 12.7-fold improvement in decoding speed with long sentences and a competitive accuracy compared with the traditional CRF approach.
pdf
bib
abs
HIT: Nested Named Entity Recognition via Head-Tail Pair and Token Interaction
Yu Wang
|
Yun Li
|
Hanghang Tong
|
Ziye Zhu
Named Entity Recognition (NER) is a fundamental task in natural language processing. In order to identify entities with nested structure, many sophisticated methods have been recently developed based on either the traditional sequence labeling approaches or directed hypergraph structures. Despite being successful, these methods often fall short in striking a good balance between the expression power for nested structure and the model complexity. To address this issue, we present a novel nested NER model named HIT. Our proposed HIT model leverages two key properties pertaining to the (nested) named entity, including (1) explicit boundary tokens and (2) tight internal connection between tokens within the boundary. Specifically, we design (1) Head-Tail Detector based on the multi-head self-attention mechanism and bi-affine classifier to detect boundary tokens, and (2) Token Interaction Tagger based on traditional sequence labeling approaches to characterize the internal token connection within the boundary. Experiments on three public NER datasets demonstrate that the proposed HIT achieves state-of-the-art performance.
pdf
bib
abs
Supertagging Combinatory Categorial Grammar with Attentive Graph Convolutional Networks
Yuanhe Tian
|
Yan Song
|
Fei Xia
Supertagging is conventionally regarded as an important task for combinatory categorial grammar (CCG) parsing, where effective modeling of contextual information is highly important to this task. However, existing studies have made limited efforts to leverage contextual features except for applying powerful encoders (e.g., bi-LSTM). In this paper, we propose attentive graph convolutional networks to enhance neural CCG supertagging through a novel solution of leveraging contextual information. Specifically, we build the graph from chunks (n-grams) extracted from a lexicon and apply attention over the graph, so that different word pairs from the contexts within and across chunks are weighted in the model and facilitate the supertagging accordingly. The experiments performed on the CCGbank demonstrate that our approach outperforms all previous studies in terms of both supertagging and parsing. Further analyses illustrate the effectiveness of each component in our approach to discriminatively learn from word pairs to enhance CCG supertagging.
pdf
bib
abs
DAGA: Data Augmentation with a Generation Approach for Low-resource Tagging Tasks
Bosheng Ding
|
Linlin Liu
|
Lidong Bing
|
Canasai Kruengkrai
|
Thien Hai Nguyen
|
Shafiq Joty
|
Luo Si
|
Chunyan Miao
Data augmentation techniques have been widely used to improve machine learning performance as they facilitate generalization. In this work, we propose a novel augmentation method to generate high quality synthetic data for low-resource tagging tasks with language models trained on the linearized labeled sentences. Our method is applicable to both supervised and semi-supervised settings. For the supervised settings, we conduct extensive experiments on named entity recognition (NER), part of speech (POS) tagging and end-to-end target based sentiment analysis (E2E-TBSA) tasks. For the semi-supervised settings, we evaluate our method on the NER task under the conditions of given unlabeled data only and unlabeled data plus a knowledge base. The results show that our method can consistently outperform the baselines, particularly when the given gold training data are less.
pdf
bib
abs
Interpretable Multi-dataset Evaluation for Named Entity Recognition
Jinlan Fu
|
Pengfei Liu
|
Graham Neubig
With the proliferation of models for natural language processing tasks, it is even harder to understand the differences between models and their relative merits. Simply looking at differences between holistic metrics such as accuracy, BLEU, or F1 does not tell us why or how particular methods perform differently and how diverse datasets influence the model design choices. In this paper, we present a general methodology for interpretable evaluation for the named entity recognition (NER) task. The proposed evaluation method enables us to interpret the differences in models and datasets, as well as the interplay between them, identifying the strengths and weaknesses of current systems. By making our analysis tool available, we make it easy for future researchers to run similar analyses and drive progress in this area:
https://github.com/neulab/InterpretEvalpdf
bib
abs
Adversarial Semantic Decoupling for Recognizing Open-Vocabulary Slots
Yuanmeng Yan
|
Keqing He
|
Hong Xu
|
Sihong Liu
|
Fanyu Meng
|
Min Hu
|
Weiran Xu
Open-vocabulary slots, such as file name, album name, or schedule title, significantly degrade the performance of neural-based slot filling models since these slots can take on values from a virtually unlimited set and have no semantic restriction nor a length limit. In this paper, we propose a robust adversarial model-agnostic slot filling method that explicitly decouples local semantics inherent in open-vocabulary slot words from the global context. We aim to depart entangled contextual semantics and focus more on the holistic context at the level of the whole sentence. Experiments on two public datasets show that our method consistently outperforms other methods with a statistically significant margin on all the open-vocabulary slots without deteriorating the performance of normal slots.
pdf
bib
abs
Plug and Play Autoencoders for Conditional Text Generation
Florian Mai
|
Nikolaos Pappas
|
Ivan Montero
|
Noah A. Smith
|
James Henderson
Text autoencoders are commonly used for conditional generation tasks such as style transfer. We propose methods which are plug and play, where any pretrained autoencoder can be used, and only require learning a mapping within the autoencoder’s embedding space, training embedding-to-embedding (Emb2Emb). This reduces the need for labeled training data for the task and makes the training procedure more efficient. Crucial to the success of this method is a loss term for keeping the mapped embedding on the manifold of the autoencoder and a mapping which is trained to navigate the manifold by learning offset vectors. Evaluations on style transfer tasks both with and without sequence-to-sequence supervision show that our method performs better than or comparable to strong baselines while being up to four times faster.
pdf
bib
abs
Structure Aware Negative Sampling in Knowledge Graphs
Kian Ahrabian
|
Aarash Feizi
|
Yasmin Salehi
|
William L. Hamilton
|
Avishek Joey Bose
Learning low-dimensional representations for entities and relations in knowledge graphs using contrastive estimation represents a scalable and effective method for inferring connectivity patterns. A crucial aspect of contrastive learning approaches is the choice of corruption distribution that generates hard negative samples, which force the embedding model to learn discriminative representations and find critical characteristics of observed data. While earlier methods either employ too simple corruption distributions, i.e. uniform, yielding easy uninformative negatives or sophisticated adversarial distributions with challenging optimization schemes, they do not explicitly incorporate known graph structure resulting in suboptimal negatives. In this paper, we propose Structure Aware Negative Sampling (SANS), an inexpensive negative sampling strategy that utilizes the rich graph structure by selecting negative samples from a node’s k-hop neighborhood. Empirically, we demonstrate that SANS finds semantically meaningful negatives and is competitive with SOTA approaches while requires no additional parameters nor difficult adversarial optimization.
pdf
bib
abs
Neural Mask Generator: Learning to Generate Adaptive Word Maskings for Language Model Adaptation
Minki Kang
|
Moonsu Han
|
Sung Ju Hwang
We propose a method to automatically generate a domain- and task-adaptive maskings of the given text for self-supervised pre-training, such that we can effectively adapt the language model to a particular target task (e.g. question answering). Specifically, we present a novel reinforcement learning-based framework which learns the masking policy, such that using the generated masks for further pre-training of the target language model helps improve task performance on unseen texts. We use off-policy actor-critic with entropy regularization and experience replay for reinforcement learning, and propose a Transformer-based policy network that can consider the relative importance of words in a given text. We validate our Neural Mask Generator (NMG) on several question answering and text classification datasets using BERT and DistilBERT as the language models, on which it outperforms rule-based masking strategies, by automatically learning optimal adaptive maskings.
pdf
bib
abs
Autoregressive Knowledge Distillation through Imitation Learning
Alexander Lin
|
Jeremy Wohlwend
|
Howard Chen
|
Tao Lei
The performance of autoregressive models on natural language generation tasks has dramatically improved due to the adoption of deep, self-attentive architectures. However, these gains have come at the cost of hindering inference speed, making state-of-the-art models cumbersome to deploy in real-world, time-sensitive settings. We develop a compression technique for autoregressive models that is driven by an imitation learning perspective on knowledge distillation. The algorithm is designed to address the exposure bias problem. On prototypical language generation tasks such as translation and summarization, our method consistently outperforms other distillation algorithms, such as sequence-level knowledge distillation. Student models trained with our method attain 1.4 to 4.8 BLEU/ROUGE points higher than those trained from scratch, while increasing inference speed by up to 14 times in comparison to the teacher model.
pdf
bib
abs
T3: Tree-Autoencoder Constrained Adversarial Text Generation for Targeted Attack
Boxin Wang
|
Hengzhi Pei
|
Boyuan Pan
|
Qian Chen
|
Shuohang Wang
|
Bo Li
Adversarial attacks against natural language processing systems, which perform seemingly innocuous modifications to inputs, can induce arbitrary mistakes to the target models. Though raised great concerns, such adversarial attacks can be leveraged to estimate the robustness of NLP models. Compared with the adversarial example generation in continuous data domain (e.g., image), generating adversarial text that preserves the original meaning is challenging since the text space is discrete and non-differentiable. To handle these challenges, we propose a target-controllable adversarial attack framework T3, which is applicable to a range of NLP tasks. In particular, we propose a tree-based autoencoder to embed the discrete text data into a continuous representation space, upon which we optimize the adversarial perturbation. A novel tree-based decoder is then applied to regularize the syntactic correctness of the generated text and manipulate it on either sentence (T3(Sent)) or word (T3(Word)) level. We consider two most representative NLP tasks: sentiment analysis and question answering (QA). Extensive experimental results and human studies show that T3 generated adversarial texts can successfully manipulate the NLP models to output the targeted incorrect answer without misleading the human. Moreover, we show that the generated adversarial texts have high transferability which enables the black-box attacks in practice. Our work sheds light on an effective and general way to examine the robustness of NLP models. Our code is publicly available at
https://github.com/AI-secure/T3/.
pdf
bib
abs
Structured Pruning of Large Language Models
Ziheng Wang
|
Jeremy Wohlwend
|
Tao Lei
Large language models have recently achieved state of the art performance across a wide variety of natural language tasks. Meanwhile, the size of these models and their latency have significantly increased, which makes their usage costly, and raises an interesting question: do language models need to be large? We study this question through the lens of model compression. We present a generic, structured pruning approach by parameterizing each weight matrix using its low-rank factorization, and adaptively removing rank-1 components during training. On language modeling tasks, our structured approach outperforms other unstructured and block-structured pruning baselines at various compression levels, while achieving significant speedups during both training and inference. We also demonstrate that our method can be applied to pruning adaptive word embeddings in large language models, and to pruning the BERT model on several downstream fine-tuning classification benchmarks.
pdf
bib
abs
Effective Unsupervised Domain Adaptation with Adversarially Trained Language Models
Thuy-Trang Vu
|
Dinh Phung
|
Gholamreza Haffari
Recent work has shown the importance of adaptation of broad-coverage contextualised embedding models on the domain of the target task of interest. Current self-supervised adaptation methods are simplistic, as the training signal comes from a small percentage of randomly masked-out tokens. In this paper, we show that careful masking strategies can bridge the knowledge gap of masked language models (MLMs) about the domains more effectively by allocating self-supervision where it is needed. Furthermore, we propose an effective training strategy by adversarially masking out those tokens which are harder to reconstruct by the underlying MLM. The adversarial objective leads to a challenging combinatorial optimisation problem over subsets of tokens, which we tackle efficiently through relaxation to a variational lowerbound and dynamic programming. On six unsupervised domain adaptation tasks involving named entity recognition, our method strongly outperforms the random masking strategy and achieves up to +1.64 F1 score improvements.
pdf
bib
abs
BAE: BERT-based Adversarial Examples for Text Classification
Siddhant Garg
|
Goutham Ramakrishnan
Modern text classification models are susceptible to adversarial examples, perturbed versions of the original text indiscernible by humans which get misclassified by the model. Recent works in NLP use rule-based synonym replacement strategies to generate adversarial examples. These strategies can lead to out-of-context and unnaturally complex token replacements, which are easily identifiable by humans. We present BAE, a black box attack for generating adversarial examples using contextual perturbations from a BERT masked language model. BAE replaces and inserts tokens in the original text by masking a portion of the text and leveraging the BERT-MLM to generate alternatives for the masked tokens. Through automatic and human evaluations, we show that BAE performs a stronger attack, in addition to generating adversarial examples with improved grammaticality and semantic coherence as compared to prior work.
pdf
bib
abs
Adversarial Self-Supervised Data-Free Distillation for Text Classification
Xinyin Ma
|
Yongliang Shen
|
Gongfan Fang
|
Chen Chen
|
Chenghao Jia
|
Weiming Lu
Large pre-trained transformer-based language models have achieved impressive results on a wide range of NLP tasks. In the past few years, Knowledge Distillation(KD) has become a popular paradigm to compress a computationally expensive model to a resource-efficient lightweight model. However, most KD algorithms, especially in NLP, rely on the accessibility of the original training dataset, which may be unavailable due to privacy issues. To tackle this problem, we propose a novel two-stage data-free distillation method, named Adversarial self-Supervised Data-Free Distillation (AS-DFD), which is designed for compressing large-scale transformer-based models (e.g., BERT). To avoid text generation in discrete space, we introduce a Plug & Play Embedding Guessing method to craft pseudo embeddings from the teacher’s hidden knowledge. Meanwhile, with a self-supervised module to quantify the student’s ability, we adapt the difficulty of pseudo embeddings in an adversarial training manner. To the best of our knowledge, our framework is the first data-free distillation framework designed for NLP tasks. We verify the effectiveness of our method on several text classification datasets.
pdf
bib
abs
BERT-ATTACK: Adversarial Attack Against BERT Using BERT
Linyang Li
|
Ruotian Ma
|
Qipeng Guo
|
Xiangyang Xue
|
Xipeng Qiu
Adversarial attacks for discrete data (such as texts) have been proved significantly more challenging than continuous data (such as images) since it is difficult to generate adversarial samples with gradient-based methods. Current successful attack methods for texts usually adopt heuristic replacement strategies on the character or word level, which remains challenging to find the optimal solution in the massive space of possible combinations of replacements while preserving semantic consistency and language fluency. In this paper, we propose
BERT-Attack, a high-quality and effective method to generate adversarial samples using pre-trained masked language models exemplified by BERT. We turn BERT against its fine-tuned models and other deep neural models in downstream tasks so that we can successfully mislead the target models to predict incorrectly. Our method outperforms state-of-the-art attack strategies in both success rate and perturb percentage, while the generated adversarial samples are fluent and semantically preserved. Also, the cost of calculation is low, thus possible for large-scale generations. The code is available at
https://github.com/LinyangLee/BERT-Attack.
pdf
bib
abs
The Thieves on Sesame Street are Polyglots - Extracting Multilingual Models from Monolingual APIs
Nitish Shirish Keskar
|
Bryan McCann
|
Caiming Xiong
|
Richard Socher
Pre-training in natural language processing makes it easier for an adversary with only query access to a victim model to reconstruct a local copy of the victim by training with gibberish input data paired with the victim’s labels for that data. We discover that this extraction process extends to local copies initialized from a pre-trained, multilingual model while the victim remains monolingual. The extracted model learns the task from the monolingual victim, but it generalizes far better than the victim to several other languages. This is done without ever showing the multilingual, extracted model a well-formed input in any of the languages for the target task. We also demonstrate that a few real examples can greatly improve performance, and we analyze how these results shed light on how such extraction methods succeed.
pdf
bib
abs
When Hearst Is not Enough: Improving Hypernymy Detection from Corpus with Distributional Models
Changlong Yu
|
Jialong Han
|
Peifeng Wang
|
Yangqiu Song
|
Hongming Zhang
|
Wilfred Ng
|
Shuming Shi
We address hypernymy detection, i.e., whether an is-a relationship exists between words (x ,y), with the help of large textual corpora. Most conventional approaches to this task have been categorized to be either pattern-based or distributional. Recent studies suggest that pattern-based ones are superior, if large-scale Hearst pairs are extracted and fed, with the sparsity of unseen (x ,y) pairs relieved. However, they become invalid in some specific sparsity cases, where x or y is not involved in any pattern. For the first time, this paper quantifies the non-negligible existence of those specific cases. We also demonstrate that distributional methods are ideal to make up for pattern-based ones in such cases. We devise a complementary framework, under which a pattern-based and a distributional model collaborate seamlessly in cases which they each prefer. On several benchmark datasets, our framework demonstrates improvements that are both competitive and explainable.
pdf
bib
abs
Interpreting Open-Domain Modifiers: Decomposition of Wikipedia Categories into Disambiguated Property-Value Pairs
Marius Pasca
This paper proposes an open-domain method for automatically annotating modifier constituents (20th-century’) within Wikipedia categories (20th-century male writers) with properties (date of birth). The annotations offer a semantically-anchored understanding of the role of the constituents in defining the underlying meaning of the categories. In experiments over an evaluation set of Wikipedia categories, the proposed method annotates constituent modifiers as semantically-anchored properties, rather than as mere strings in a previous method. It does so at a better trade-off between precision and recall.
pdf
bib
abs
A Synset Relation-enhanced Framework with a Try-again Mechanism for Word Sense Disambiguation
Ming Wang
|
Yinglin Wang
Contextual embeddings are proved to be overwhelmingly effective to the task of Word Sense Disambiguation (WSD) compared with other sense representation techniques. However, these embeddings fail to embed sense knowledge in semantic networks. In this paper, we propose a Synset Relation-Enhanced Framework (SREF) that leverages sense relations for both sense embedding enhancement and a try-again mechanism that implements WSD again, after obtaining basic sense embeddings from augmented WordNet glosses. Experiments on all-words and lexical sample datasets show that the proposed system achieves new state-of-the-art results, defeating previous knowledge-based systems by at least 5.5 F1 measure. When the system utilizes sense embeddings learned from SemCor, it outperforms all previous supervised systems with only 20% SemCor data.
pdf
bib
abs
Diverse, Controllable, and Keyphrase-Aware: A Corpus and Method for News Multi-Headline Generation
Dayiheng Liu
|
Yeyun Gong
|
Yu Yan
|
Jie Fu
|
Bo Shao
|
Daxin Jiang
|
Jiancheng Lv
|
Nan Duan
News headline generation aims to produce a short sentence to attract readers to read the news. One news article often contains multiple keyphrases that are of interest to different users, which can naturally have multiple reasonable headlines. However, most existing methods focus on the single headline generation. In this paper, we propose generating multiple headlines with keyphrases of user interests, whose main idea is to generate multiple keyphrases of interest to users for the news first, and then generate multiple keyphrase-relevant headlines. We propose a multi-source Transformer decoder, which takes three sources as inputs: (a) keyphrase, (b) keyphrase-filtered article, and (c) original article to generate keyphrase-relevant, high-quality, and diverse headlines. Furthermore, we propose a simple and effective method to mine the keyphrases of interest in the news article and build a first large-scale keyphrase-aware news headline corpus, which contains over 180K aligned triples of <news article, headline, keyphrase>. Extensive experimental comparisons on the real-world dataset show that the proposed method achieves state-of-the-art results in terms of quality and diversity.
pdf
bib
abs
Factual Error Correction for Abstractive Summarization Models
Meng Cao
|
Yue Dong
|
Jiapeng Wu
|
Jackie Chi Kit Cheung
Neural abstractive summarization systems have achieved promising progress, thanks to the availability of large-scale datasets and models pre-trained with self-supervised methods. However, ensuring the factual consistency of the generated summaries for abstractive summarization systems is a challenge. We propose a post-editing corrector module to address this issue by identifying and correcting factual errors in generated summaries. The neural corrector model is pre-trained on artificial examples that are created by applying a series of heuristic transformations on reference summaries. These transformations are inspired by the error analysis of state-of-the-art summarization model outputs. Experimental results show that our model is able to correct factual errors in summaries generated by other neural summarization models and outperforms previous models on factual consistency evaluation on the CNN/DailyMail dataset. We also find that transferring from artificial error correction to downstream settings is still very challenging.
pdf
bib
abs
Compressive Summarization with Plausibility and Salience Modeling
Shrey Desai
|
Jiacheng Xu
|
Greg Durrett
Compressive summarization systems typically rely on a seed set of syntactic rules to determine under what circumstances deleting a span is permissible, then learn which compressions to actually apply by optimizing for ROUGE. In this work, we propose to relax these explicit syntactic constraints on candidate spans, and instead leave the decision about what to delete to two data-driven criteria: plausibility and salience. Deleting a span is plausible if removing it maintains the grammaticality and factuality of a sentence, and it is salient if it removes important information from the summary. Each of these is judged by a pre-trained Transformer model, and only deletions that are both plausible and not salient can be applied. When integrated into a simple extraction-compression pipeline, our method achieves strong in-domain results on benchmark datasets, and human evaluation shows that the plausibility model generally selects for grammatical and factual deletions. Furthermore, the flexibility of our approach allows it to generalize cross-domain, and we show that our system fine-tuned on only 500 samples from a new domain can match or exceed a strong in-domain extractive model.
pdf
bib
abs
Understanding Neural Abstractive Summarization Models via Uncertainty
Jiacheng Xu
|
Shrey Desai
|
Greg Durrett
An advantage of seq2seq abstractive summarization models is that they generate text in a free-form manner, but this flexibility makes it difficult to interpret model behavior. In this work, we analyze summarization decoders in both blackbox and whitebox ways by studying on the entropy, or uncertainty, of the model’s token-level predictions. For two strong pre-trained models, PEGASUS and BART on two summarization datasets, we find a strong correlation between low prediction entropy and where the model copies tokens rather than generating novel text. The decoder’s uncertainty also connects to factors like sentence position and syntactic distance between adjacent pairs of tokens, giving a sense of what factors make a context particularly selective for the model’s next output token. Finally, we study the relationship of decoder uncertainty and attention behavior to understand how attention gives rise to these observed effects in the model. We show that uncertainty is a useful perspective for analyzing summarization and text generation models more broadly.
pdf
bib
abs
Better Highlighting: Creating Sub-Sentence Summary Highlights
Sangwoo Cho
|
Kaiqiang Song
|
Chen Li
|
Dong Yu
|
Hassan Foroosh
|
Fei Liu
Amongst the best means to summarize is highlighting. In this paper, we aim to generate summary highlights to be overlaid on the original documents to make it easier for readers to sift through a large amount of text. The method allows summaries to be understood in context to prevent a summarizer from distorting the original meaning, of which abstractive summarizers usually fall short. In particular, we present a new method to produce self-contained highlights that are understandable on their own to avoid confusion. Our method combines determinantal point processes and deep contextualized representations to identify an optimal set of sub-sentence segments that are both important and non-redundant to form summary highlights. To demonstrate the flexibility and modeling power of our method, we conduct extensive experiments on summarization datasets. Our analysis provides evidence that highlighting is a promising avenue of research towards future summarization.
pdf
bib
abs
Summarizing Text on Any Aspects: A Knowledge-Informed Weakly-Supervised Approach
Bowen Tan
|
Lianhui Qin
|
Eric Xing
|
Zhiting Hu
Given a document and a target aspect (e.g., a topic of interest), aspect-based abstractive summarization attempts to generate a summary with respect to the aspect. Previous studies usually assume a small pre-defined set of aspects and fall short of summarizing on other diverse topics. In this work, we study summarizing on arbitrary aspects relevant to the document, which significantly expands the application of the task in practice. Due to the lack of supervision data, we develop a new weak supervision construction method and an aspect modeling scheme, both of which integrate rich external knowledge sources such as ConceptNet and Wikipedia. Experiments show our approach achieves performance boosts on summarizing both real and synthetic documents given pre-defined or arbitrary aspects.
pdf
bib
abs
BERT-enhanced Relational Sentence Ordering Network
Baiyun Cui
|
Yingming Li
|
Zhongfei Zhang
In this paper, we introduce a novel BERT-enhanced Relational Sentence Ordering Network (referred to as BRSON) by leveraging BERT for capturing better dependency relationship among sentences to enhance the coherence modeling for the entire paragraph. In particular, we develop a new Relational Pointer Decoder (referred as RPD) by incorporating the relative ordering information into the pointer network with a Deep Relational Module (referred as DRM), which utilizes BERT to exploit the deep semantic connection and relative ordering between sentences. This enables us to strengthen both local and global dependencies among sentences. Extensive evaluations are conducted on six public datasets. The experimental results demonstrate the effectiveness and promise of our BRSON, showing a significant improvement over the state-of-the-art by a wide margin.
pdf
bib
abs
Online Conversation Disentanglement with Pointer Networks
Tao Yu
|
Shafiq Joty
Huge amounts of textual conversations occur online every day, where multiple conversations take place concurrently. Interleaved conversations lead to difficulties in not only following the ongoing discussions but also extracting relevant information from simultaneous messages. Conversation disentanglement aims to separate intermingled messages into detached conversations. However, existing disentanglement methods rely mostly on handcrafted features that are dataset specific, which hinders generalization and adaptability. In this work, we propose an end-to-end online framework for conversation disentanglement that avoids time-consuming domain-specific feature engineering. We design a novel way to embed the whole utterance that comprises timestamp, speaker, and message text, and propose a custom attention mechanism that models disentanglement as a pointing problem while effectively capturing inter-utterance interactions in an end-to-end fashion. We also introduce a joint-learning objective to better capture contextual information. Our experiments on the Ubuntu IRC dataset show that our method achieves state-of-the-art performance in both link and conversation prediction tasks.
pdf
bib
abs
VCDM: Leveraging Variational Bi-encoding and Deep Contextualized Word Representations for Improved Definition Modeling
Machel Reid
|
Edison Marrese-Taylor
|
Yutaka Matsuo
In this paper, we tackle the task of definition modeling, where the goal is to learn to generate definitions of words and phrases. Existing approaches for this task are discriminative, combining distributional and lexical semantics in an implicit rather than direct way. To tackle this issue we propose a generative model for the task, introducing a continuous latent variable to explicitly model the underlying relationship between a phrase used within a context and its definition. We rely on variational inference for estimation and leverage contextualized word embeddings for improved performance. Our approach is evaluated on four existing challenging benchmarks with the addition of two new datasets, “Cambridge” and the first non-English corpus “Robert”, which we release to complement our empirical study. Our Variational Contextual Definition Modeler (VCDM) achieves state-of-the-art performance in terms of automatic and human evaluation metrics, demonstrating the effectiveness of our approach.
pdf
bib
abs
Coarse-to-Fine Pre-training for Named Entity Recognition
Xue Mengge
|
Bowen Yu
|
Zhenyu Zhang
|
Tingwen Liu
|
Yue Zhang
|
Bin Wang
More recently, Named Entity Recognition hasachieved great advances aided by pre-trainingapproaches such as BERT. However, currentpre-training techniques focus on building lan-guage modeling objectives to learn a gen-eral representation, ignoring the named entity-related knowledge. To this end, we proposea NER-specific pre-training framework to in-ject coarse-to-fine automatically mined entityknowledge into pre-trained models. Specifi-cally, we first warm-up the model via an en-tity span identification task by training it withWikipedia anchors, which can be deemed asgeneral-typed entities. Then we leverage thegazetteer-based distant supervision strategy totrain the model extract coarse-grained typedentities. Finally, we devise a self-supervisedauxiliary task to mine the fine-grained namedentity knowledge via clustering.Empiricalstudies on three public NER datasets demon-strate that our framework achieves significantimprovements against several pre-trained base-lines, establishing the new state-of-the-art per-formance on three benchmarks. Besides, weshow that our framework gains promising re-sults without using human-labeled trainingdata, demonstrating its effectiveness in label-few and low-resource scenarios.
pdf
bib
abs
Exploring and Evaluating Attributes, Values, and Structures for Entity Alignment
Zhiyuan Liu
|
Yixin Cao
|
Liangming Pan
|
Juanzi Li
|
Zhiyuan Liu
|
Tat-Seng Chua
Entity alignment (EA) aims at building a unified Knowledge Graph (KG) of rich content by linking the equivalent entities from various KGs. GNN-based EA methods present promising performance by modeling the KG structure defined by relation triples. However, attribute triples can also provide crucial alignment signal but have not been well explored yet. In this paper, we propose to utilize an attributed value encoder and partition the KG into subgraphs to model the various types of attribute triples efficiently. Besides, the performances of current EA methods are overestimated because of the name-bias of existing EA datasets. To make an objective evaluation, we propose a hard experimental setting where we select equivalent entity pairs with very different names as the test set. Under both the regular and hard settings, our method achieves significant improvements (5.10% on average Hits@1 in DBP15k) over 12 baselines in cross-lingual and monolingual datasets. Ablation studies on different subgraphs and a case study about attribute types further demonstrate the effectiveness of our method. Source code and data can be found at
https://github.com/thunlp/explore-and-evaluate.
pdf
bib
abs
Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning
Yi Yang
|
Arzoo Katiyar
We present a simple few-shot named entity recognition (NER) system based on nearest neighbor learning and structured inference. Our system uses a supervised NER model trained on the source domain, as a feature extractor. Across several test domains, we show that a nearest neighbor classifier in this feature-space is far more effective than the standard meta-learning approaches. We further propose a cheap but effective method to capture the label dependencies between entity tags without expensive CRF training. We show that our method of combining structured decoding with nearest neighbor learning achieves state-of-the-art performance on standard few-shot NER evaluation tasks, improving F1 scores by 6% to 16% absolute points over prior meta-learning based systems.
pdf
bib
abs
Learning Structured Representations of Entity Names using Active Learning and Weak Supervision
Kun Qian
|
Poornima Chozhiyath Raman
|
Yunyao Li
|
Lucian Popa
Structured representations of entity names are useful for many entity-related tasks such as entity normalization and variant generation. Learning the implicit structured representations of entity names without context and external knowledge is particularly challenging. In this paper, we present a novel learning framework that combines active learning and weak supervision to solve this problem. Our experimental evaluation show that this framework enables the learning of high-quality models from merely a dozen or so labeled examples.
pdf
bib
abs
Entity Enhanced BERT Pre-training for Chinese NER
Chen Jia
|
Yuefeng Shi
|
Qinrong Yang
|
Yue Zhang
Character-level BERT pre-trained in Chinese suffers a limitation of lacking lexicon information, which shows effectiveness for Chinese NER. To integrate the lexicon into pre-trained LMs for Chinese NER, we investigate a semi-supervised entity enhanced BERT pre-training method. In particular, we first extract an entity lexicon from the relevant raw text using a new-word discovery method. We then integrate the entity information into BERT using Char-Entity-Transformer, which augments the self-attention using a combination of character and entity representations. In addition, an entity classification task helps inject the entity information into model parameters in pre-training. The pre-trained models are used for NER fine-tuning. Experiments on a news dataset and two datasets annotated by ourselves for NER in long-text show that our method is highly effective and achieves the best results.
pdf
bib
abs
Scalable Zero-shot Entity Linking with Dense Entity Retrieval
Ledell Wu
|
Fabio Petroni
|
Martin Josifoski
|
Sebastian Riedel
|
Luke Zettlemoyer
This paper introduces a conceptually simple, scalable, and highly effective BERT-based entity linking model, along with an extensive evaluation of its accuracy-speed trade-off. We present a two-stage zero-shot linking algorithm, where each entity is defined only by a short textual description. The first stage does retrieval in a dense space defined by a bi-encoder that independently embeds the mention context and the entity descriptions. Each candidate is then re-ranked with a cross-encoder, that concatenates the mention and entity text. Experiments demonstrate that this approach is state of the art on recent zero-shot benchmarks (6 point absolute gains) and also on more established non-zero-shot evaluations (e.g. TACKBP-2010), despite its relative simplicity (e.g. no explicit entity embeddings or manually engineered mention tables). We also show that bi-encoder linking is very fast with nearest neighbor search (e.g. linking with 5.9 million candidates in 2 milliseconds), and that much of the accuracy gain from the more expensive cross-encoder can be transferred to the bi-encoder via knowledge distillation. Our code and models are available at
https://github.com/facebookresearch/BLINK.
pdf
bib
abs
A Dataset for Tracking Entities in Open Domain Procedural Text
Niket Tandon
|
Keisuke Sakaguchi
|
Bhavana Dalvi
|
Dheeraj Rajagopal
|
Peter Clark
|
Michal Guerquin
|
Kyle Richardson
|
Eduard Hovy
We present the first dataset for tracking state changes in procedural text from arbitrary domains by using an unrestricted (open) vocabulary. For example, in a text describing fog removal using potatoes, a car window may transition between being foggy, sticky, opaque, and clear. Previous formulations of this task provide the text and entities involved, and ask how those entities change for just a small, pre-defined set of attributes (e.g., location), limiting their fidelity. Our solution is a new task formulation where given just a procedural text as input, the task is to generate a set of state change tuples (entity, attribute, before-state, after-state) for each step, where the entity, attribute, and state values must be predicted from an open vocabulary. Using crowdsourcing, we create OPENPI, a high-quality (91.5% coverage as judged by humans and completely vetted), and large-scale dataset comprising 29,928 state changes over 4,050 sentences from 810 procedural real-world paragraphs from WikiHow.com. A current state-of-the-art generation model on this task achieves 16.1% F1 based on BLEU metric, leaving enough room for novel model architectures.
pdf
bib
abs
Design Challenges in Low-resource Cross-lingual Entity Linking
Xingyu Fu
|
Weijia Shi
|
Xiaodong Yu
|
Zian Zhao
|
Dan Roth
Cross-lingual Entity Linking (XEL), the problem of grounding mentions of entities in a foreign language text into an English knowledge base such as Wikipedia, has seen a lot of research in recent years, with a range of promising techniques. However, current techniques do not rise to the challenges introduced by text in low-resource languages (LRL) and, surprisingly, fail to generalize to text not taken from Wikipedia, on which they are usually trained. This paper provides a thorough analysis of low-resource XEL techniques, focusing on the key step of identifying candidate English Wikipedia titles that correspond to a given foreign language mention. Our analysis indicates that current methods are limited by their reliance on Wikipedia’s interlanguage links and thus suffer when the foreign language’s Wikipedia is small. We conclude that the LRL setting requires the use of outside-Wikipedia cross-lingual resources and present a simple yet effective zero-shot XEL system, QuEL, that utilizes search engines query logs. With experiments on 25 languages, QuEL shows an average increase of 25% in gold candidate recall and of 13% in end-to-end linking accuracy over state-of-the-art baselines.
pdf
bib
abs
Efficient One-Pass End-to-End Entity Linking for Questions
Belinda Z. Li
|
Sewon Min
|
Srinivasan Iyer
|
Yashar Mehdad
|
Wen-tau Yih
We present ELQ, a fast end-to-end entity linking model for questions, which uses a biencoder to jointly perform mention detection and linking in one pass. Evaluated on WebQSP and GraphQuestions with extended annotations that cover multiple entities per question, ELQ outperforms the previous state of the art by a large margin of +12.7% and +19.6% F1, respectively. With a very fast inference time (1.57 examples/s on a single CPU), ELQ can be useful for downstream question answering systems. In a proof-of-concept experiment, we demonstrate that using ELQ significantly improves the downstream QA performance of GraphRetriever.
pdf
bib
abs
LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention
Ikuya Yamada
|
Akari Asai
|
Hiroyuki Shindo
|
Hideaki Takeda
|
Yuji Matsumoto
Entity representations are useful in natural language tasks involving entities. In this paper, we propose new pretrained contextualized representations of words and entities based on the bidirectional transformer. The proposed model treats words and entities in a given text as independent tokens, and outputs contextualized representations of them. Our model is trained using a new pretraining task based on the masked language model of BERT. The task involves predicting randomly masked words and entities in a large entity-annotated corpus retrieved from Wikipedia. We also propose an entity-aware self-attention mechanism that is an extension of the self-attention mechanism of the transformer, and considers the types of tokens (words or entities) when computing attention scores. The proposed model achieves impressive empirical performance on a wide range of entity-related tasks. In particular, it obtains state-of-the-art results on five well-known datasets: Open Entity (entity typing), TACRED (relation classification), CoNLL-2003 (named entity recognition), ReCoRD (cloze-style question answering), and SQuAD 1.1 (extractive question answering). Our source code and pretrained representations are available at
https://github.com/studio-ousia/luke.
pdf
bib
abs
Generating similes effortlessly like a Pro: A Style Transfer Approach for Simile Generation
Tuhin Chakrabarty
|
Smaranda Muresan
|
Nanyun Peng
Literary tropes, from poetry to stories, are at the crux of human imagination and communication. Figurative language such as a simile go beyond plain expressions to give readers new insights and inspirations. In this paper, we tackle the problem of simile generation. Generating a simile requires proper understanding for effective mapping of properties between two concepts. To this end, we first propose a method to automatically construct a parallel corpus by transforming a large number of similes collected from Reddit to their literal counterpart using structured common sense knowledge. We then propose to fine-tune a pre-trained sequence to sequence model, BART (Lewis et al 2019), on the literal-simile pairs to gain generalizability, so that we can generate novel similes given a literal sentence. Experiments show that our approach generates 88% novel similes that do not share properties with the training data. Human evaluation on an independent set of literal statements shows that our model generates similes better than two literary experts 37% of the time when compared pairwise. We also show how replacing literal sentences with similes from our best model in machine-generated stories improves evocativeness and leads to better acceptance by human judges.
pdf
bib
abs
STORIUM: A Dataset and Evaluation Platform for Machine-in-the-Loop Story Generation
Nader Akoury
|
Shufan Wang
|
Josh Whiting
|
Stephen Hood
|
Nanyun Peng
|
Mohit Iyyer
Systems for story generation are asked to produce plausible and enjoyable stories given an input context. This task is underspecified, as a vast number of diverse stories can originate from a single input. The large output space makes it difficult to build and evaluate story generation models, as (1) existing datasets lack rich enough contexts to meaningfully guide models, and (2) existing evaluations (both crowdsourced and automatic) are unreliable for assessing long-form creative text. To address these issues, we introduce a dataset and evaluation platform built from STORIUM, an online collaborative storytelling community. Our author-generated dataset contains 6K lengthy stories (125M tokens) with fine-grained natural language annotations (e.g., character goals and attributes) interspersed throughout each narrative, forming a robust source for guiding models. We evaluate language models fine-tuned on our dataset by integrating them onto STORIUM, where real authors can query a model for suggested story continuations and then edit them. Automatic metrics computed over these edits correlate well with both user ratings of generated stories and qualitative feedback from semi-structured user interviews. We release both the STORIUM dataset and evaluation platform to spur more principled research into story generation.
pdf
bib
abs
Substance over Style: Document-Level Targeted Content Transfer
Allison Hegel
|
Sudha Rao
|
Asli Celikyilmaz
|
Bill Dolan
Existing language models excel at writing from scratch, but many real-world scenarios require rewriting an existing document to fit a set of constraints. Although sentence-level rewriting has been fairly well-studied, little work has addressed the challenge of rewriting an entire document coherently. In this work, we introduce the task of document-level targeted content transfer and address it in the recipe domain, with a recipe as the document and a dietary restriction (such as vegan or dairy-free) as the targeted constraint. We propose a novel model for this task based on the generative pre-trained language model (GPT-2) and train on a large number of roughly-aligned recipe pairs. Both automatic and human evaluations show that our model out-performs existing methods by generating coherent and diverse rewrites that obey the constraint while remaining close to the original document. Finally, we analyze our model’s rewrites to assess progress toward the goal of making language generation more attuned to constraints that are substantive rather than stylistic.
pdf
bib
abs
Template Guided Text Generation for Task-Oriented Dialogue
Mihir Kale
|
Abhinav Rastogi
Virtual assistants such as Google Assistant, Amazon Alexa, and Apple Siri enable users to interact with a large number of services and APIs on the web using natural language. In this work, we investigate two methods for Natural Language Generation (NLG) using a single domain-independent model across a large number of APIs. First, we propose a schema-guided approach which conditions the generation on a schema describing the API in natural language. Our second method investigates the use of a small number of templates, growing linearly in number of slots, to convey the semantics of the API. To generate utterances for an arbitrary slot combination, a few simple templates are first concatenated to give a semantically correct, but possibly incoherent and ungrammatical utterance. A pre-trained language model is subsequently employed to rewrite it into coherent, natural sounding text. Through automatic metrics and human evaluation, we show that our method improves over strong baselines, is robust to out-of-domain inputs and shows improved sample efficiency.
pdf
bib
abs
MOCHA: A Dataset for Training and Evaluating Generative Reading Comprehension Metrics
Anthony Chen
|
Gabriel Stanovsky
|
Sameer Singh
|
Matt Gardner
Posing reading comprehension as a generation problem provides a great deal of flexibility, allowing for open-ended questions with few restrictions on possible answers. However, progress is impeded by existing generation metrics, which rely on token overlap and are agnostic to the nuances of reading comprehension. To address this, we introduce a benchmark for training and evaluating generative reading comprehension metrics: MOdeling Correctness with Human Annotations. MOCHA contains 40K human judgement scores on model outputs from 6 diverse question answering datasets and an additional set of minimal pairs for evaluation. Using MOCHA, we train a Learned Evaluation metric for Reading Comprehension, LERC, to mimic human judgement scores. LERC outperforms baseline metrics by 10 to 36 absolute Pearson points on held-out annotations. When we evaluate robustness on minimal pairs, LERC achieves 80% accuracy, outperforming baselines by 14 to 26 absolute percentage points while leaving significant room for improvement. MOCHA presents a challenging problem for developing accurate and robust generative reading comprehension metrics.
pdf
bib
abs
Plan ahead: Self-Supervised Text Planning for Paragraph Completion Task
Dongyeop Kang
|
Eduard Hovy
Despite the recent success of contextualized language models on various NLP tasks, language model itself cannot capture textual coherence of a long, multi-sentence document (e.g., a paragraph). Humans often make structural decisions on what and how to say about before making utterances. Guiding surface realization with such high-level decisions and structuring text in a coherent way is essentially called a planning process. Where can the model learn such high-level coherence? A paragraph itself contains various forms of inductive coherence signals called self-supervision in this work, such as sentence orders, topical keywords, rhetorical structures, and so on. Motivated by that, this work proposes a new paragraph completion task PARCOM; predicting masked sentences in a paragraph. However, the task suffers from predicting and selecting appropriate topical content with respect to the given context. To address that, we propose a self-supervised text planner SSPlanner that predicts what to say first (content prediction), then guides the pretrained language model (surface realization) using the predicted content. SSPlanner outperforms the baseline generation models on the paragraph completion task in both automatic and human evaluation. We also find that a combination of noun and verb types of keywords is the most effective for content selection. As more number of content keywords are provided, overall generation quality also increases.
pdf
bib
abs
Inquisitive Question Generation for High Level Text Comprehension
Wei-Jen Ko
|
Te-yuan Chen
|
Yiyan Huang
|
Greg Durrett
|
Junyi Jessy Li
Inquisitive probing questions come naturally to humans in a variety of settings, but is a challenging task for automatic systems. One natural type of question to ask tries to fill a gap in knowledge during text comprehension, like reading a news article: we might ask about background information, deeper reasons behind things occurring, or more. Despite recent progress with data-driven approaches, generating such questions is beyond the range of models trained on existing datasets. We introduce INQUISITIVE, a dataset of ~19K questions that are elicited while a person is reading through a document. Compared to existing datasets, INQUISITIVE questions target more towards high-level (semantic and discourse) comprehension of text. We show that readers engage in a series of pragmatic strategies to seek information. Finally, we evaluate question generation models based on GPT-2 and show that our model is able to generate reasonable questions although the task is challenging, and highlight the importance of context to generate INQUISITIVE questions.
pdf
bib
abs
Towards Persona-Based Empathetic Conversational Models
Peixiang Zhong
|
Chen Zhang
|
Hao Wang
|
Yong Liu
|
Chunyan Miao
Empathetic conversational models have been shown to improve user satisfaction and task outcomes in numerous domains. In Psychology, persona has been shown to be highly correlated to personality, which in turn influences empathy. In addition, our empirical analysis also suggests that persona plays an important role in empathetic conversations. To this end, we propose a new task towards persona-based empathetic conversations and present the first empirical study on the impact of persona on empathetic responding. Specifically, we first present a novel large-scale multi-domain dataset for persona-based empathetic conversations. We then propose CoBERT, an efficient BERT-based response selection model that obtains the state-of-the-art performance on our dataset. Finally, we conduct extensive experiments to investigate the impact of persona on empathetic responding. Notably, our results show that persona improves empathetic responding more when CoBERT is trained on empathetic conversations than non-empathetic ones, establishing an empirical link between persona and empathy in human conversations.
pdf
bib
abs
Personal Information Leakage Detection in Conversations
Qiongkai Xu
|
Lizhen Qu
|
Zeyu Gao
|
Gholamreza Haffari
The global market size of conversational assistants (chatbots) is expected to grow to USD 9.4 billion by 2024, according to MarketsandMarkets. Despite the wide use of chatbots, leakage of personal information through chatbots poses serious privacy concerns for their users. In this work, we propose to protect personal information by warning users of detected suspicious sentences generated by conversational assistants. The detection task is formulated as an alignment optimization problem and a new dataset PERSONA-LEAKAGE is collected for evaluation. In this paper, we propose two novel constrained alignment models, which consistently outperform baseline methods on Moreover, we conduct analysis on the behavior of recently proposed personalized chit-chat dialogue systems. The empirical results show that those systems suffer more from personal information disclosure than the widely used Seq2Seq model and the language model. In those cases, a significant number of information leaking utterances can be detected by our models with high precision.
pdf
bib
abs
Response Selection for Multi-Party Conversations with Dynamic Topic Tracking
Weishi Wang
|
Steven C.H. Hoi
|
Shafiq Joty
While participants in a multi-party multi-turn conversation simultaneously engage in multiple conversation topics, existing response selection methods are developed mainly focusing on a two-party single-conversation scenario. Hence, the prolongation and transition of conversation topics are ignored by current methods. In this work, we frame response selection as a dynamic topic tracking task to match the topic between the response and relevant conversation context. With this new formulation, we propose a novel multi-task learning framework that supports efficient encoding through large pretrained models with only two utterances at once to perform dynamic topic disentanglement and response selection. We also propose Topic-BERT an essential pretraining step to embed topic information into BERT with self-supervised learning. Experimental results on the DSTC-8 Ubuntu IRC dataset show state-of-the-art results in response selection and topic disentanglement tasks outperforming existing methods by a good margin.
pdf
bib
abs
Regularizing Dialogue Generation by Imitating Implicit Scenarios
Shaoxiong Feng
|
Xuancheng Ren
|
Hongshen Chen
|
Bin Sun
|
Kan Li
|
Xu Sun
Human dialogues are scenario-based and appropriate responses generally relate to the latent context knowledge entailed by the specific scenario. To enable responses that are more meaningful and context-specific, we propose to improve generative dialogue systems from the scenario perspective, where both dialogue history and future conversation are taken into account to implicitly reconstruct the scenario knowledge. More importantly, the conversation scenarios are further internalized using imitation learning framework, where the conventional dialogue model that has no access to future conversations is effectively regularized by transferring the scenario knowledge contained in hierarchical supervising signals from the scenario-based dialogue model, so that the future conversation is not required in actual inference. Extensive evaluations show that our approach significantly outperforms state-of-the-art baselines on diversity and relevance, and expresses scenario-specific knowledge.
pdf
bib
abs
MovieChats: Chat like Humans in a Closed Domain
Hui Su
|
Xiaoyu Shen
|
Zhou Xiao
|
Zheng Zhang
|
Ernie Chang
|
Cheng Zhang
|
Cheng Niu
|
Jie Zhou
Being able to perform in-depth chat with humans in a closed domain is a precondition before an open-domain chatbot can be ever claimed. In this work, we take a close look at the movie domain and present a large-scale high-quality corpus with fine-grained annotations in hope of pushing the limit of movie-domain chatbots. We propose a unified, readily scalable neural approach which reconciles all subtasks like intent prediction and knowledge retrieval. The model is first pretrained on the huge general-domain data, then finetuned on our corpus. We show this simple neural approach trained on high-quality data is able to outperform commercial systems replying on complex rules. On both the static and interactive tests, we find responses generated by our system exhibits remarkably good engagement and sensibleness close to human-written ones. We further analyze the limits of our work and point out potential directions for future work
pdf
bib
abs
Conundrums in Entity Coreference Resolution: Making Sense of the State of the Art
Jing Lu
|
Vincent Ng
Despite the significant progress on entity coreference resolution observed in recent years, there is a general lack of understanding of what has been improved. We present an empirical analysis of state-of-the-art resolvers with the goal of providing the general NLP audience with a better understanding of the state of the art and coreference researchers with directions for future research.
pdf
bib
abs
Semantic Role Labeling Guided Multi-turn Dialogue ReWriter
Kun Xu
|
Haochen Tan
|
Linfeng Song
|
Han Wu
|
Haisong Zhang
|
Linqi Song
|
Dong Yu
For multi-turn dialogue rewriting, the capacity of effectively modeling the linguistic knowledge in dialog context and getting ride of the noises is essential to improve its performance. Existing attentive models attend to all words without prior focus, which results in inaccurate concentration on some dispensable words. In this paper, we propose to use semantic role labeling (SRL), which highlights the core semantic information of who did what to whom, to provide additional guidance for the rewriter model. Experiments show that this information significantly improves a RoBERTa-based model that already outperforms previous state-of-the-art systems.
pdf
bib
abs
Continuity of Topic, Interaction, and Query: Learning to Quote in Online Conversations
Lingzhi Wang
|
Jing Li
|
Xingshan Zeng
|
Haisong Zhang
|
Kam-Fai Wong
Quotations are crucial for successful explanations and persuasions in interpersonal communications. However, finding what to quote in a conversation is challenging for both humans and machines. This work studies automatic quotation generation in an online conversation and explores how language consistency affects whether a quotation fits the given context. Here, we capture the contextual consistency of a quotation in terms of latent topics, interactions with the dialogue history, and coherence to the query turn’s existing contents. Further, an encoder-decoder neural framework is employed to continue the context with a quotation via language generation. Experiment results on two large-scale datasets in English and Chinese demonstrate that our quotation generation model outperforms the state-of-the-art models. Further analysis shows that topic, interaction, and query consistency are all helpful to learn how to quote in online conversations.
pdf
bib
abs
Profile Consistency Identification for Open-domain Dialogue Agents
Haoyu Song
|
Yan Wang
|
Wei-Nan Zhang
|
Zhengyu Zhao
|
Ting Liu
|
Xiaojiang Liu
Maintaining a consistent attribute profile is crucial for dialogue agents to naturally converse with humans. Existing studies on improving attribute consistency mainly explored how to incorporate attribute information in the responses, but few efforts have been made to identify the consistency relations between response and attribute profile. To facilitate the study of profile consistency identification, we create a large-scale human-annotated dataset with over 110K single-turn conversations and their key-value attribute profiles. Explicit relation between response and profile is manually labeled. We also propose a key-value structure information enriched BERT model to identify the profile consistency, and it gained improvements over strong baselines. Further evaluations on downstream tasks demonstrate that the profile consistency identification model is conducive for improving dialogue consistency.
pdf
bib
abs
An Element-aware Multi-representation Model for Law Article Prediction
Huilin Zhong
|
Junsheng Zhou
|
Weiguang Qu
|
Yunfei Long
|
Yanhui Gu
Existing works have proved that using law articles as external knowledge can improve the performance of the Legal Judgment Prediction. However, they do not fully use law article information and most of the current work is only for single label samples. In this paper, we propose a Law Article Element-aware Multi-representation Model (LEMM), which can make full use of law article information and can be used for multi-label samples. The model uses the labeled elements of law articles to extract fact description features from multiple angles. It generates multiple representations of a fact for classification. Every label has a law-aware fact representation to encode more information. To capture the dependencies between law articles, the model also introduces a self-attention mechanism between multiple representations. Compared with baseline models like TopJudge, this model improves the accuracy of 5.84%, the macro F1 of 6.42%, and the micro F1 of 4.28%.
pdf
bib
abs
Recurrent Event Network: Autoregressive Structure Inferenceover Temporal Knowledge Graphs
Woojeong Jin
|
Meng Qu
|
Xisen Jin
|
Xiang Ren
Knowledge graph reasoning is a critical task in natural language processing. The task becomes more challenging on temporal knowledge graphs, where each fact is associated with a timestamp. Most existing methods focus on reasoning at past timestamps and they are not able to predict facts happening in the future. This paper proposes Recurrent Event Network (RE-Net), a novel autoregressive architecture for predicting future interactions. The occurrence of a fact (event) is modeled as a probability distribution conditioned on temporal sequences of past knowledge graphs. Specifically, our RE-Net employs a recurrent event encoder to encode past facts, and uses a neighborhood aggregator to model the connection of facts at the same timestamp. Future facts can then be inferred in a sequential manner based on the two modules. We evaluate our proposed method via link prediction at future times on five public datasets. Through extensive experiments, we demonstrate the strength of RE-Net, especially on multi-step inference over future timestamps, and achieve state-of-the-art performance on all five datasets.
pdf
bib
abs
Multi-resolution Annotations for Emoji Prediction
Weicheng Ma
|
Ruibo Liu
|
Lili Wang
|
Soroush Vosoughi
Emojis are able to express various linguistic components, including emotions, sentiments, events, etc. Predicting the proper emojis associated with text provides a way to summarize the text accurately, and it has been proven to be a good auxiliary task to many Natural Language Understanding (NLU) tasks. Labels in existing emoji prediction datasets are all passage-based and are usually under the multi-class classification setting. However, in many cases, one single emoji cannot fully cover the theme of a piece of text. It is thus useful to infer the part of text related to each emoji. The lack of multi-label and aspect-level emoji prediction datasets is one of the bottlenecks for this task. This paper annotates an emoji prediction dataset with passage-level multi-class/multi-label, and aspect-level multi-class annotations. We also present a novel annotation method with which we generate the aspect-level annotations. The annotations are generated heuristically, taking advantage of the self-attention mechanism in Transformer networks. We validate the annotations both automatically and manually to ensure their quality. We also benchmark the dataset with a pre-trained BERT model.
pdf
bib
abs
Less is More: Attention Supervision with Counterfactuals for Text Classification
Seungtaek Choi
|
Haeju Park
|
Jinyoung Yeo
|
Seung-won Hwang
We aim to leverage human and machine intelligence together for attention supervision. Specifically, we show that human annotation cost can be kept reasonably low, while its quality can be enhanced by machine self-supervision. Specifically, for this goal, we explore the advantage of counterfactual reasoning, over associative reasoning typically used in attention supervision. Our empirical results show that this machine-augmented human attention supervision is more effective than existing methods requiring a higher annotation cost, in text classification tasks, including sentiment analysis and news categorization.
pdf
bib
abs
MODE-LSTM: A Parameter-efficient Recurrent Network with Multi-Scale for Sentence Classification
Qianli Ma
|
Zhenxi Lin
|
Jiangyue Yan
|
Zipeng Chen
|
Liuhong Yu
The central problem of sentence classification is to extract multi-scale n-gram features for understanding the semantic meaning of sentences. Most existing models tackle this problem by stacking CNN and RNN models, which easily leads to feature redundancy and overfitting because of relatively limited datasets. In this paper, we propose a simple yet effective model called Multi-scale Orthogonal inDependEnt LSTM (MODE-LSTM), which not only has effective parameters and good generalization ability, but also considers multiscale n-gram features. We disentangle the hidden state of the LSTM into several independently updated small hidden states and apply an orthogonal constraint on their recurrent matrices. We then equip this structure with sliding windows of different sizes for extracting multi-scale n-gram features. Extensive experiments demonstrate that our model achieves better or competitive performance against state-of-the-art baselines on eight benchmark datasets. We also combine our model with BERT to further boost the generalization performance.
pdf
bib
abs
HSCNN: A Hybrid-Siamese Convolutional Neural Network for Extremely Imbalanced Multi-label Text Classification
Wenshuo Yang
|
Jiyi Li
|
Fumiyo Fukumoto
|
Yanming Ye
The data imbalance problem is a crucial issue for the multi-label text classification. Some existing works tackle it by proposing imbalanced loss objectives instead of the vanilla cross-entropy loss, but their performances remain limited in the cases of extremely imbalanced data. We propose a hybrid solution which adapts general networks for the head categories, and few-shot techniques for the tail categories. We propose a Hybrid-Siamese Convolutional Neural Network (HSCNN) with additional technical attributes, i.e., a multi-task architecture based on Single and Siamese networks; a category-specific similarity in the Siamese structure; a specific sampling method for training HSCNN. The results using two benchmark datasets and three loss objectives show that our method can improve the performance of Single networks with diverse loss objectives on the tail or entire categories.
pdf
bib
abs
Multi-Stage Pre-training for Automated Chinese Essay Scoring
Wei Song
|
Kai Zhang
|
Ruiji Fu
|
Lizhen Liu
|
Ting Liu
|
Miaomiao Cheng
This paper proposes a pre-training based automated Chinese essay scoring method. The method involves three components: weakly supervised pre-training, supervised cross- prompt fine-tuning and supervised target- prompt fine-tuning. An essay scorer is first pre- trained on a large essay dataset covering diverse topics and with coarse ratings, i.e., good and poor, which are used as a kind of weak supervision. The pre-trained essay scorer would be further fine-tuned on previously rated es- says from existing prompts, which have the same score range with the target prompt and provide extra supervision. At last, the scorer is fine-tuned on the target-prompt training data. The evaluation on four prompts shows that this method can improve a state-of-the-art neural essay scorer in terms of effectiveness and domain adaptation ability, while in-depth analysis also reveals its limitations..
pdf
bib
abs
Multi-hop Inference for Question-driven Summarization
Yang Deng
|
Wenxuan Zhang
|
Wai Lam
Question-driven summarization has been recently studied as an effective approach to summarizing the source document to produce concise but informative answers for non-factoid questions. In this work, we propose a novel question-driven abstractive summarization method, Multi-hop Selective Generator (MSG), to incorporate multi-hop reasoning into question-driven summarization and, meanwhile, provide justifications for the generated summaries. Specifically, we jointly model the relevance to the question and the interrelation among different sentences via a human-like multi-hop inference module, which captures important sentences for justifying the summarized answer. A gated selective pointer generator network with a multi-view coverage mechanism is designed to integrate diverse information from different perspectives. Experimental results show that the proposed method consistently outperforms state-of-the-art methods on two non-factoid QA datasets, namely WikiHow and PubMedQA.
pdf
bib
abs
Towards Interpretable Reasoning over Paragraph Effects in Situation
Mucheng Ren
|
Xiubo Geng
|
Tao Qin
|
Heyan Huang
|
Daxin Jiang
We focus on the task of reasoning over paragraph effects in situation, which requires a model to understand the cause and effect described in a background paragraph, and apply the knowledge to a novel situation. Existing works ignore the complicated reasoning process and solve it with a one-step “black box” model. Inspired by human cognitive processes, in this paper we propose a sequential approach for this task which explicitly models each step of the reasoning process with neural network modules. In particular, five reasoning modules are designed and learned in an end-to-end manner, which leads to a more interpretable model. Experimental results on the ROPES dataset demonstrate the effectiveness and explainability of our proposed approach.
pdf
bib
abs
Question Directed Graph Attention Network for Numerical Reasoning over Text
Kunlong Chen
|
Weidi Xu
|
Xingyi Cheng
|
Zou Xiaochuan
|
Yuyu Zhang
|
Le Song
|
Taifeng Wang
|
Yuan Qi
|
Wei Chu
Numerical reasoning over texts, such as addition, subtraction, sorting and counting, is a challenging machine reading comprehension task, since it requires both natural language understanding and arithmetic computation. To address this challenge, we propose a heterogeneous graph representation for the context of the passage and question needed for such reasoning, and design a question directed graph attention network to drive multi-step numerical reasoning over this context graph. Our model, which combines deep learning and graph reasoning, achieves remarkable results in benchmark datasets such as DROP.
pdf
bib
abs
Dense Passage Retrieval for Open-Domain Question Answering
Vladimir Karpukhin
|
Barlas Oguz
|
Sewon Min
|
Patrick Lewis
|
Ledell Wu
|
Sergey Edunov
|
Danqi Chen
|
Wen-tau Yih
Open-domain question answering relies on efficient passage retrieval to select candidate contexts, where traditional sparse vector space models, such as TF-IDF or BM25, are the de facto method. In this work, we show that retrieval can be practically implemented using dense representations alone, where embeddings are learned from a small number of questions and passages by a simple dual-encoder framework. When evaluated on a wide range of open-domain QA datasets, our dense retriever outperforms a strong Lucene-BM25 system greatly by 9%-19% absolute in terms of top-20 passage retrieval accuracy, and helps our end-to-end QA system establish new state-of-the-art on multiple open-domain QA benchmarks.
pdf
bib
abs
Distilling Structured Knowledge for Text-Based Relational Reasoning
Jin Dong
|
Marc-Antoine Rondeau
|
William L. Hamilton
There is an increasing interest in developing text-based relational reasoning systems, which are capable of systematically reasoning about the relationships between entities mentioned in a text. However, there remains a substantial performance gap between NLP models for relational reasoning and models based on graph neural networks (GNNs), which have access to an underlying symbolic representation of the text. In this work, we investigate how the structured knowledge of a GNN can be distilled into various NLP models in order to improve their performance. We first pre-train a GNN on a reasoning task using structured inputs and then incorporate its knowledge into an NLP model (e.g., an LSTM) via knowledge distillation. To overcome the difficulty of cross-modal knowledge transfer, we also employ a contrastive learning based module to align the latent representations of NLP models and the GNN. We test our approach with two state-of-the-art NLP models on 13 different inductive reasoning datasets from the CLUTRR benchmark and obtain significant improvements.
pdf
bib
abs
Asking without Telling: Exploring Latent Ontologies in Contextual Representations
Julian Michael
|
Jan A. Botha
|
Ian Tenney
The success of pretrained contextual encoders, such as ELMo and BERT, has brought a great deal of interest in what these models learn: do they, without explicit supervision, learn to encode meaningful notions of linguistic structure? If so, how is this structure encoded? To investigate this, we introduce latent subclass learning (LSL): a modification to classifier-based probing that induces a latent categorization (or ontology) of the probe’s inputs. Without access to fine-grained gold labels, LSL extracts emergent structure from input representations in an interpretable and quantifiable form. In experiments, we find strong evidence of familiar categories, such as a notion of personhood in ELMo, as well as novel ontological distinctions, such as a preference for fine-grained semantic roles on core arguments. Our results provide unique new evidence of emergent structure in pretrained encoders, including departures from existing annotations which are inaccessible to earlier methods.
pdf
bib
abs
Pretrained Language Model Embryology: The Birth of ALBERT
Cheng-Han Chiang
|
Sung-Feng Huang
|
Hung-yi Lee
While behaviors of pretrained language models (LMs) have been thoroughly examined, what happened during pretraining is rarely studied. We thus investigate the developmental process from a set of randomly initialized parameters to a totipotent language model, which we refer to as the
embryology of a pretrained language model. Our results show that ALBERT learns to reconstruct and predict tokens of different parts of speech (POS) in different learning speeds during pretraining. We also find that linguistic knowledge and world knowledge do not generally improve as pretraining proceeds, nor do downstream tasks’ performance. These findings suggest that knowledge of a pretrained model varies during pretraining, and having more pretrain steps does not necessarily provide a model with more comprehensive knowledge. We provide source codes and pretrained models to reproduce our results at
https://github.com/d223302/albert-embryology.
pdf
bib
abs
Learning Music Helps You Read: Using Transfer to Study Linguistic Structure in Language Models
Isabel Papadimitriou
|
Dan Jurafsky
We propose transfer learning as a method for analyzing the encoding of grammatical structure in neural language models. We train LSTMs on non-linguistic data and evaluate their performance on natural language to assess which kinds of data induce generalizable structural features that LSTMs can use for natural language. We find that training on non-linguistic data with latent structure (MIDI music or Java code) improves test performance on natural language, despite no overlap in surface form or vocabulary. To pinpoint the kinds of abstract structure that models may be encoding to lead to this improvement, we run similar experiments with two artificial parentheses languages: one which has a hierarchical recursive structure, and a control which has paired tokens but no recursion. Surprisingly, training a model on either of these artificial languages leads the same substantial gains when testing on natural language. Further experiments on transfer between natural languages controlling for vocabulary overlap show that zero-shot performance on a test language is highly correlated with typological syntactic similarity to the training language, suggesting that representations induced by pre-training correspond to the cross-linguistic syntactic properties. Our results provide insights into the ways that neural models represent abstract syntactic structure, and also about the kind of structural inductive biases which allow for natural language acquisition.
pdf
bib
abs
What Do Position Embeddings Learn? An Empirical Study of Pre-Trained Language Model Positional Encoding
Yu-An Wang
|
Yun-Nung Chen
In recent years, pre-trained Transformers have dominated the majority of NLP benchmark tasks. Many variants of pre-trained Transformers have kept breaking out, and most focus on designing different pre-training objectives or variants of self-attention. Embedding the position information in the self-attention mechanism is also an indispensable factor in Transformers however is often discussed at will. Hence, we carry out an empirical study on position embedding of mainstream pre-trained Transformers mainly focusing on two questions: 1) Do position embeddings really learn the meaning of positions? 2) How do these different learned position embeddings affect Transformers for NLP tasks? This paper focuses on providing a new insight of pre-trained position embeddings by feature-level analysis and empirical experiments on most of iconic NLP tasks. It is believed that our experimental results can guide the future works to choose the suitable positional encoding function for specific tasks given the application property.
pdf
bib
abs
“You are grounded!”: Latent Name Artifacts in Pre-trained Language Models
Vered Shwartz
|
Rachel Rudinger
|
Oyvind Tafjord
Pre-trained language models (LMs) may perpetuate biases originating in their training corpus to downstream models. We focus on artifacts associated with the representation of given names (e.g., Donald), which, depending on the corpus, may be associated with specific entities, as indicated by next token prediction (e.g., Trump). While helpful in some contexts, grounding happens also in under-specified or inappropriate contexts. For example, endings generated for ‘Donald is a’ substantially differ from those of other names, and often have more-than-average negative sentiment. We demonstrate the potential effect on downstream tasks with reading comprehension probes where name perturbation changes the model answers. As a silver lining, our experiments suggest that additional pre-training on different corpora may mitigate this bias.
pdf
bib
abs
Birds have four legs?! NumerSense: Probing Numerical Commonsense Knowledge of Pre-Trained Language Models
Bill Yuchen Lin
|
Seyeon Lee
|
Rahul Khanna
|
Xiang Ren
Recent works show that pre-trained language models (PTLMs), such as BERT, possess certain commonsense and factual knowledge. They suggest that it is promising to use PTLMs as “neural knowledge bases” via predicting masked words. Surprisingly, we find that this may not work for numerical commonsense knowledge (e.g., a bird usually has two legs). In this paper, we investigate whether and to what extent we can induce numerical commonsense knowledge from PTLMs as well as the robustness of this process. In this paper, we investigate whether and to what extent we can induce numerical commonsense knowledge from PTLMs as well as the robustness of this process. To study this, we introduce a novel probing task with a diagnostic dataset, NumerSense, containing 13.6k masked-word-prediction probes (10.5k for fine-tuning and 3.1k for testing). Our analysis reveals that: (1) BERT and its stronger variant RoBERTa perform poorly on the diagnostic dataset prior to any fine-tuning; (2) fine-tuning with distant supervision brings some improvement; (3) the best supervised model still performs poorly as compared to human performance (54.06% vs. 96.3% in accuracy).
pdf
bib
abs
Grounded Adaptation for Zero-shot Executable Semantic Parsing
Victor Zhong
|
Mike Lewis
|
Sida I. Wang
|
Luke Zettlemoyer
We propose Grounded Adaptation for Zeroshot Executable Semantic Parsing (GAZP) to adapt an existing semantic parser to new environments (e.g. new database schemas). GAZP combines a forward semantic parser with a backward utterance generator to synthesize data (e.g. utterances and SQL queries) in the new environment, then selects cycle-consistent examples to adapt the parser. Unlike data-augmentation, which typically synthesizes unverified examples in the training environment, GAZP synthesizes examples in the new environment whose input-output consistency are verified through execution. On the Spider, Sparc, and CoSQL zero-shot semantic parsing tasks, GAZP improves logical form and execution accuracy of the baseline parser. Our analyses show that GAZP outperforms data-augmentation in the training environment, performance increases with the amount of GAZP-synthesized data, and cycle-consistency is central to successful adaptation.
pdf
bib
abs
An Imitation Game for Learning Semantic Parsers from User Interaction
Ziyu Yao
|
Yiqi Tang
|
Wen-tau Yih
|
Huan Sun
|
Yu Su
Despite the widely successful applications, bootstrapping and fine-tuning semantic parsers are still a tedious process with challenges such as costly data annotation and privacy risks. In this paper, we suggest an alternative, human-in-the-loop methodology for learning semantic parsers directly from users. A semantic parser should be introspective of its uncertainties and prompt for user demonstrations when uncertain. In doing so it also gets to imitate the user behavior and continue improving itself autonomously with the hope that eventually it may become as good as the user in interpreting their questions. To combat the sparsity of demonstrations, we propose a novel annotation-efficient imitation learning algorithm, which iteratively collects new datasets by mixing demonstrated states and confident predictions and retrains the semantic parser in a Dataset Aggregation fashion (Ross et al., 2011). We provide a theoretical analysis of its cost bound and also empirically demonstrate its promising performance on the text-to-SQL problem. Code will be available at
https://github.com/sunlab-osu/MISP.
pdf
bib
abs
IGSQL: Database Schema Interaction Graph Based Neural Model for Context-Dependent Text-to-SQL Generation
Yitao Cai
|
Xiaojun Wan
Context-dependent text-to-SQL task has drawn much attention in recent years. Previous models on context-dependent text-to-SQL task only concentrate on utilizing historic user inputs. In this work, in addition to using encoders to capture historic information of user inputs, we propose a database schema interaction graph encoder to utilize historic information of database schema items. In decoding phase, we introduce a gate mechanism to weigh the importance of different vocabularies and then make the prediction of SQL tokens. We evaluate our model on the benchmark SParC and CoSQL datasets, which are two large complex context-dependent cross-domain text-to-SQL datasets. Our model outperforms previous state-of-the-art model by a large margin and achieves new state-of-the-art results on the two datasets. The comparison and ablation results demonstrate the efficacy of our model and the usefulness of the database schema interaction graph encoder.
pdf
bib
abs
“What Do You Mean by That?” A Parser-Independent Interactive Approach for Enhancing Text-to-SQL
Yuntao Li
|
Bei Chen
|
Qian Liu
|
Yan Gao
|
Jian-Guang Lou
|
Yan Zhang
|
Dongmei Zhang
In Natural Language Interfaces to Databases systems, the text-to-SQL technique allows users to query databases by using natural language questions. Though significant progress in this area has been made recently, most parsers may fall short when they are deployed in real systems. One main reason stems from the difficulty of fully understanding the users’ natural language questions. In this paper, we include human in the loop and present a novel parser-independent interactive approach (PIIA) that interacts with users using multi-choice questions and can easily work with arbitrary parsers. Experiments were conducted on two cross-domain datasets, the WikiSQL and the more complex Spider, with five state-of-the-art parsers. These demonstrated that PIIA is capable of enhancing the text-to-SQL performance with limited interaction turns by using both simulation and human evaluation.
pdf
bib
abs
DuSQL: A Large-Scale and Pragmatic Chinese Text-to-SQL Dataset
Lijie Wang
|
Ao Zhang
|
Kun Wu
|
Ke Sun
|
Zhenghua Li
|
Hua Wu
|
Min Zhang
|
Haifeng Wang
Due to the lack of labeled data, previous research on text-to-SQL parsing mainly focuses on English. Representative English datasets include ATIS, WikiSQL, Spider, etc. This paper presents DuSQL, a larges-scale and pragmatic Chinese dataset for the cross-domain text-to-SQL task, containing 200 databases, 813 tables, and 23,797 question/SQL pairs. Our new dataset has three major characteristics. First, by manually analyzing questions from several representative applications, we try to figure out the true distribution of SQL queries in real-life needs. Second, DuSQL contains a considerable proportion of SQL queries involving row or column calculations, motivated by our analysis on the SQL query distributions. Finally, we adopt an effective data construction framework via human-computer collaboration. The basic idea is automatically generating SQL queries based on the SQL grammar and constrained by the given database. This paper describes in detail the construction process and data statistics of DuSQL. Moreover, we present and compare performance of several open-source text-to-SQL parsers with minor modification to accommodate Chinese, including a simple yet effective extension to IRNet for handling calculation SQL queries.
pdf
bib
abs
Mention Extraction and Linking for SQL Query Generation
Jianqiang Ma
|
Zeyu Yan
|
Shuai Pang
|
Yang Zhang
|
Jianping Shen
On the WikiSQL benchmark, state-of-the-art text-to-SQL systems typically take a slot- filling approach by building several dedicated models for each type of slots. Such modularized systems are not only complex but also of limited capacity for capturing inter-dependencies among SQL clauses. To solve these problems, this paper proposes a novel extraction-linking approach, where a unified extractor recognizes all types of slot mentions appearing in the question sentence before a linker maps the recognized columns to the table schema to generate executable SQL queries. Trained with automatically generated annotations, the proposed method achieves the first place on the WikiSQL benchmark.
pdf
bib
abs
Re-examining the Role of Schema Linking in Text-to-SQL
Wenqiang Lei
|
Weixin Wang
|
Zhixin Ma
|
Tian Gan
|
Wei Lu
|
Min-Yen Kan
|
Tat-Seng Chua
In existing sophisticated text-to-SQL models, schema linking is often considered as a simple, minor component, belying its importance. By providing a schema linking corpus based on the Spider text-to-SQL dataset, we systematically study the role of schema linking. We also build a simple BERT-based baseline, called Schema-Linking SQL (SLSQL) to perform a data-driven study. We find when schema linking is done well, SLSQL demonstrates good performance on Spider despite its structural simplicity. Many remaining errors are attributable to corpus noise. This suggests schema linking is the crux for the current text-to-SQL task. Our analytic studies provide insights on the characteristics of schema linking for future developments of text-to-SQL tasks.
pdf
bib
abs
A Multi-Task Incremental Learning Framework with Category Name Embedding for Aspect-Category Sentiment Analysis
Zehui Dai
|
Cheng Peng
|
Huajie Chen
|
Yadong Ding
(T)ACSA tasks, including aspect-category sentiment analysis (ACSA) and targeted aspect-category sentiment analysis (TACSA), aims at identifying sentiment polarity on predefined categories. Incremental learning on new categories is necessary for (T)ACSA real applications. Though current multi-task learning models achieve good performance in (T)ACSA tasks, they suffer from catastrophic forgetting problems in (T)ACSA incremental learning tasks. In this paper, to make multi-task learning feasible for incremental learning, we proposed Category Name Embedding network (CNE-net). We set both encoder and decoder shared among all categories to weaken the catastrophic forgetting problem. Besides the origin input sentence, we applied another input feature, i.e., category name, for task discrimination. Our model achieved state-of-the-art on two (T)ACSA benchmark datasets. Furthermore, we proposed a dataset for (T)ACSA incremental learning and achieved the best performance compared with other strong baselines.
pdf
bib
abs
Train No Evil: Selective Masking for Task-Guided Pre-Training
Yuxian Gu
|
Zhengyan Zhang
|
Xiaozhi Wang
|
Zhiyuan Liu
|
Maosong Sun
Recently, pre-trained language models mostly follow the pre-train-then-fine-tuning paradigm and have achieved great performance on various downstream tasks. However, since the pre-training stage is typically task-agnostic and the fine-tuning stage usually suffers from insufficient supervised data, the models cannot always well capture the domain-specific and task-specific patterns. In this paper, we propose a three-stage framework by adding a task-guided pre-training stage with selective masking between general pre-training and fine-tuning. In this stage, the model is trained by masked language modeling on in-domain unsupervised data to learn domain-specific patterns and we propose a novel selective masking strategy to learn task-specific patterns. Specifically, we design a method to measure the importance of each token in sequences and selectively mask the important tokens. Experimental results on two sentiment analysis tasks show that our method can achieve comparable or even better performance with less than 50% of computation cost, which indicates our method is both effective and efficient. The source code of this paper can be obtained from
https://github.com/thunlp/SelectiveMasking.
pdf
bib
abs
SentiLARE: Sentiment-Aware Language Representation Learning with Linguistic Knowledge
Pei Ke
|
Haozhe Ji
|
Siyang Liu
|
Xiaoyan Zhu
|
Minlie Huang
Most of the existing pre-trained language representation models neglect to consider the linguistic knowledge of texts, which can promote language understanding in NLP tasks. To benefit the downstream tasks in sentiment analysis, we propose a novel language representation model called SentiLARE, which introduces word-level linguistic knowledge including part-of-speech tag and sentiment polarity (inferred from SentiWordNet) into pre-trained models. We first propose a context-aware sentiment attention mechanism to acquire the sentiment polarity of each word with its part-of-speech tag by querying SentiWordNet. Then, we devise a new pre-training task called label-aware masked language model to construct knowledge-aware language representation. Experiments show that SentiLARE obtains new state-of-the-art performance on a variety of sentiment analysis tasks.
pdf
bib
abs
Weakly-Supervised Aspect-Based Sentiment Analysis via Joint Aspect-Sentiment Topic Embedding
Jiaxin Huang
|
Yu Meng
|
Fang Guo
|
Heng Ji
|
Jiawei Han
Aspect-based sentiment analysis of review texts is of great value for understanding user feedback in a fine-grained manner. It has in general two sub-tasks: (i) extracting aspects from each review, and (ii) classifying aspect-based reviews by sentiment polarity. In this paper, we propose a weakly-supervised approach for aspect-based sentiment analysis, which uses only a few keywords describing each aspect/sentiment without using any labeled examples. Existing methods are either designed only for one of the sub-tasks, or are based on topic models that may contain overlapping concepts. We propose to first learn <sentiment, aspect> joint topic embeddings in the word embedding space by imposing regularizations to encourage topic distinctiveness, and then use neural models to generalize the word-level discriminative information by pre-training the classifiers with embedding-based predictions and self-training them on unlabeled data. Our comprehensive performance analysis shows that our method generates quality joint topics and outperforms the baselines significantly (7.4% and 5.1% F1-score gain on average for aspect and sentiment classification respectively) on benchmark datasets.
pdf
bib
abs
APE: Argument Pair Extraction from Peer Review and Rebuttal via Multi-task Learning
Liying Cheng
|
Lidong Bing
|
Qian Yu
|
Wei Lu
|
Luo Si
Peer review and rebuttal, with rich interactions and argumentative discussions in between, are naturally a good resource to mine arguments. However, few works study both of them simultaneously. In this paper, we introduce a new argument pair extraction (APE) task on peer review and rebuttal in order to study the contents, the structure and the connections between them. We prepare a challenging dataset that contains 4,764 fully annotated review-rebuttal passage pairs from an open review platform to facilitate the study of this task. To automatically detect argumentative propositions and extract argument pairs from this corpus, we cast it as the combination of a sequence labeling task and a text relation classification task. Thus, we propose a multitask learning framework based on hierarchical LSTM networks. Extensive experiments and analysis demonstrate the effectiveness of our multi-task framework, and also show the challenges of the new task as well as motivate future research directions.
pdf
bib
abs
Diversified Multiple Instance Learning for Document-Level Multi-Aspect Sentiment Classification
Yunjie Ji
|
Hao Liu
|
Bolei He
|
Xinyan Xiao
|
Hua Wu
|
Yanhua Yu
Neural Document-level Multi-aspect Sentiment Classification (DMSC) usually requires a lot of manual aspect-level sentiment annotations, which is time-consuming and laborious. As document-level sentiment labeled data are widely available from online service, it is valuable to perform DMSC with such free document-level annotations. To this end, we propose a novel Diversified Multiple Instance Learning Network (D-MILN), which is able to achieve aspect-level sentiment classification with only document-level weak supervision. Specifically, we connect aspect-level and document-level sentiment by formulating this problem as multiple instance learning, providing a way to learn aspect-level classifier from the back propagation of document-level supervision. Two diversified regularizations are further introduced in order to avoid the overfitting on document-level signals during training. Diversified textual regularization encourages the classifier to select aspect-relevant snippets, and diversified sentimental regularization prevents the aspect-level sentiments from being overly consistent with document-level sentiment. Experimental results on TripAdvisor and BeerAdvocate datasets show that D-MILN remarkably outperforms recent weakly-supervised baselines, and is also comparable to the supervised method.
pdf
bib
abs
Identifying Exaggerated Language
Li Kong
|
Chuanyi Li
|
Jidong Ge
|
Bin Luo
|
Vincent Ng
While hyperbole is one of the most prevalent rhetorical devices, it is arguably one of the least studied devices in the figurative language processing community. We contribute to the study of hyperbole by (1) creating a corpus focusing on sentence-level hyperbole detection, (2) performing a statistical and manual analysis of our corpus, and (3) addressing the automatic hyperbole detection task.
pdf
bib
abs
Unified Feature and Instance Based Domain Adaptation for Aspect-Based Sentiment Analysis
Chenggong Gong
|
Jianfei Yu
|
Rui Xia
The supervised models for aspect-based sentiment analysis (ABSA) rely heavily on labeled data. However, fine-grained labeled data are scarce for the ABSA task. To alleviate the dependence on labeled data, prior works mainly focused on feature-based adaptation, which used the domain-shared knowledge to construct auxiliary tasks or domain adversarial learning to bridge the gap between domains, while ignored the attribute of instance-based adaptation. To resolve this limitation, we propose an end-to-end framework to jointly perform feature and instance based adaptation for the ABSA task in this paper. Based on BERT, we learn domain-invariant feature representations by using part-of-speech features and syntactic dependency relations to construct auxiliary tasks, and jointly perform word-level instance weighting in the framework of sequence labeling. Experiment results on four benchmarks show that the proposed method can achieve significant improvements in comparison with the state-of-the-arts in both tasks of cross-domain End2End ABSA and cross-domain aspect extraction.
pdf
bib
abs
Compositional and Lexical Semantics in RoBERTa, BERT and DistilBERT: A Case Study on CoQA
Ieva Staliūnaitė
|
Ignacio Iacobacci
Many NLP tasks have benefited from transferring knowledge from contextualized word embeddings, however the picture of what type of knowledge is transferred is incomplete. This paper studies the types of linguistic phenomena accounted for by language models in the context of a Conversational Question Answering (CoQA) task. We identify the problematic areas for the finetuned RoBERTa, BERT and DistilBERT models through systematic error analysis - basic arithmetic (counting phrases), compositional semantics (negation and Semantic Role Labeling), and lexical semantics (surprisal and antonymy). When enhanced with the relevant linguistic knowledge through multitask learning, the models improve in performance. Ensembles of the enhanced models yield a boost between 2.2 and 2.7 points in F1 score overall, and up to 42.1 points in F1 on the hardest question classes. The results show differences in ability to represent compositional and lexical information between RoBERTa, BERT and DistilBERT.
pdf
bib
abs
Attention is Not Only a Weight: Analyzing Transformers with Vector Norms
Goro Kobayashi
|
Tatsuki Kuribayashi
|
Sho Yokoi
|
Kentaro Inui
Attention is a key component of Transformers, which have recently achieved considerable success in natural language processing. Hence, attention is being extensively studied to investigate various linguistic capabilities of Transformers, focusing on analyzing the parallels between attention weights and specific linguistic phenomena. This paper shows that attention weights alone are only one of the two factors that determine the output of attention and proposes a norm-based analysis that incorporates the second factor, the norm of the transformed input vectors. The findings of our norm-based analyses of BERT and a Transformer-based neural machine translation system include the following: (i) contrary to previous studies, BERT pays poor attention to special tokens, and (ii) reasonable word alignment can be extracted from attention mechanisms of Transformer. These findings provide insights into the inner workings of Transformers.
pdf
bib
abs
F1 is Not Enough! Models and Evaluation Towards User-Centered Explainable Question Answering
Hendrik Schuff
|
Heike Adel
|
Ngoc Thang Vu
Explainable question answering systems predict an answer together with an explanation showing why the answer has been selected. The goal is to enable users to assess the correctness of the system and understand its reasoning process. However, we show that current models and evaluation settings have shortcomings regarding the coupling of answer and explanation which might cause serious issues in user experience. As a remedy, we propose a hierarchical model and a new regularization term to strengthen the answer-explanation coupling as well as two evaluation scores to quantify the coupling. We conduct experiments on the HOTPOTQA benchmark data set and perform a user study. The user study shows that our models increase the ability of the users to judge the correctness of the system and that scores like F1 are not enough to estimate the usefulness of a model in a practical setting with human users. Our scores are better aligned with user experience, making them promising candidates for model selection.
pdf
bib
abs
On the Ability and Limitations of Transformers to Recognize Formal Languages
Satwik Bhattamishra
|
Kabir Ahuja
|
Navin Goyal
Transformers have supplanted recurrent models in a large number of NLP tasks. However, the differences in their abilities to model different syntactic properties remain largely unknown. Past works suggest that LSTMs generalize very well on regular languages and have close connections with counter languages. In this work, we systematically study the ability of Transformers to model such languages as well as the role of its individual components in doing so. We first provide a construction of Transformers for a subclass of counter languages, including well-studied languages such as n-ary Boolean Expressions, Dyck-1, and its generalizations. In experiments, we find that Transformers do well on this subclass, and their learned mechanism strongly correlates with our construction. Perhaps surprisingly, in contrast to LSTMs, Transformers do well only on a subset of regular languages with degrading performance as we make languages more complex according to a well-known measure of complexity. Our analysis also provides insights on the role of self-attention mechanism in modeling certain behaviors and the influence of positional encoding schemes on the learning and generalization abilities of the model.
pdf
bib
abs
An Unsupervised Joint System for Text Generation from Knowledge Graphs and Semantic Parsing
Martin Schmitt
|
Sahand Sharifzadeh
|
Volker Tresp
|
Hinrich Schütze
Knowledge graphs (KGs) can vary greatly from one domain to another. Therefore supervised approaches to both graph-to-text generation and text-to-graph knowledge extraction (semantic parsing) will always suffer from a shortage of domain-specific parallel graph-text data; at the same time, adapting a model trained on a different domain is often impossible due to little or no overlap in entities and relations. This situation calls for an approach that (1) does not need large amounts of annotated data and thus (2) does not need to rely on domain adaptation techniques to work well on different domains. To this end, we present the first approach to unsupervised text generation from KGs and show simultaneously how it can be used for unsupervised semantic parsing. We evaluate our approach on WebNLG v2.1 and a new benchmark leveraging scene graphs from Visual Genome. Our system outperforms strong baselines for both text<->graph conversion tasks without any manual adaptation from one dataset to the other. In additional experiments, we investigate the impact of using different unsupervised objectives.
pdf
bib
abs
DGST: a Dual-Generator Network for Text Style Transfer
Xiao Li
|
Guanyi Chen
|
Chenghua Lin
|
Ruizhe Li
We propose DGST, a novel and simple Dual-Generator network architecture for text Style Transfer. Our model employs two generators only, and does not rely on any discriminators or parallel corpus for training. Both quantitative and qualitative experiments on the Yelp and IMDb datasets show that our model gives competitive performance compared to several strong baselines with more complicated architecture designs.
pdf
bib
abs
A Knowledge-Aware Sequence-to-Tree Network for Math Word Problem Solving
Qinzhuo Wu
|
Qi Zhang
|
Jinlan Fu
|
Xuanjing Huang
With the advancements in natural language processing tasks, math word problem solving has received increasing attention. Previous methods have achieved promising results but ignore background common-sense knowledge not directly provided by the problem. In addition, during generation, they focus on local features while neglecting global information. To incorporate external knowledge and global expression information, we propose a novel knowledge-aware sequence-to-tree (KA-S2T) network in which the entities in the problem sequences and their categories are modeled as an entity graph. Based on this entity graph, a graph attention network is used to capture knowledge-aware problem representations. Further, we use a tree-structured decoder with a state aggregation mechanism to capture the long-distance dependency and global expression information. Experimental results on the Math23K dataset revealed that the KA-S2T model can achieve better performance than previously reported best results.
pdf
bib
abs
Generating Fact Checking Briefs
Angela Fan
|
Aleksandra Piktus
|
Fabio Petroni
|
Guillaume Wenzek
|
Marzieh Saeidi
|
Andreas Vlachos
|
Antoine Bordes
|
Sebastian Riedel
Fact checking at scale is difficult—while the number of active fact checking websites is growing, it remains too small for the needs of the contemporary media ecosystem. However, despite good intentions, contributions from volunteers are often error-prone, and thus in practice restricted to claim detection. We investigate how to increase the accuracy and efficiency of fact checking by providing information about the claim before performing the check, in the form of natural language briefs. We investigate passage-based briefs, containing a relevant passage from Wikipedia, entity-centric ones consisting of Wikipedia pages of mentioned entities, and Question-Answering Briefs, with questions decomposing the claim, and their answers. To produce QABriefs, we develop QABriefer, a model that generates a set of questions conditioned on the claim, searches the web for evidence, and generates answers. To train its components, we introduce QABriefDataset We show that fact checking with briefs — in particular QABriefs — increases the accuracy of crowdworkers by 10% while slightly decreasing the time taken. For volunteer (unpaid) fact checkers, QABriefs slightly increase accuracy and reduce the time required by around 20%.
pdf
bib
abs
Improving the Efficiency of Grammatical Error Correction with Erroneous Span Detection and Correction
Mengyun Chen
|
Tao Ge
|
Xingxing Zhang
|
Furu Wei
|
Ming Zhou
We propose a novel language-independent approach to improve the efficiency for Grammatical Error Correction (GEC) by dividing the task into two subtasks: Erroneous Span Detection (ESD) and Erroneous Span Correction (ESC). ESD identifies grammatically incorrect text spans with an efficient sequence tagging model. Then, ESC leverages a seq2seq model to take the sentence with annotated erroneous spans as input and only outputs the corrected text for these spans. Experiments show our approach performs comparably to conventional seq2seq approaches in both English and Chinese GEC benchmarks with less than 50% time cost for inference.
pdf
bib
abs
Coreferential Reasoning Learning for Language Representation
Deming Ye
|
Yankai Lin
|
Jiaju Du
|
Zhenghao Liu
|
Peng Li
|
Maosong Sun
|
Zhiyuan Liu
Language representation models such as BERT could effectively capture contextual semantic information from plain text, and have been proved to achieve promising results in lots of downstream NLP tasks with appropriate fine-tuning. However, most existing language representation models cannot explicitly handle coreference, which is essential to the coherent understanding of the whole discourse. To address this issue, we present CorefBERT, a novel language representation model that can capture the coreferential relations in context. The experimental results show that, compared with existing baseline models, CorefBERT can achieve significant improvements consistently on various downstream NLP tasks that require coreferential reasoning, while maintaining comparable performance to previous models on other common NLP tasks. The source code and experiment details of this paper can be obtained from
https://github.com/thunlp/CorefBERT.
pdf
bib
abs
Is Graph Structure Necessary for Multi-hop Question Answering?
Nan Shao
|
Yiming Cui
|
Ting Liu
|
Shijin Wang
|
Guoping Hu
Recently, attempting to model texts as graph structure and introducing graph neural networks to deal with it has become a trend in many NLP research areas. In this paper, we investigate whether the graph structure is necessary for textual multi-hop reasoning. Our analysis is centered on HotpotQA. We construct a strong baseline model to establish that, with the proper use of pre-trained models, graph structure may not be necessary for textual multi-hop reasoning. We point out that both graph structure and adjacency matrix are task-related prior knowledge, and graph-attention can be considered as a special case of self-attention. Experiments demonstrate that graph-attention or the entire graph structure can be replaced by self-attention or Transformers.
pdf
bib
abs
XL-WiC: A Multilingual Benchmark for Evaluating Semantic Contextualization
Alessandro Raganato
|
Tommaso Pasini
|
Jose Camacho-Collados
|
Mohammad Taher Pilehvar
The ability to correctly model distinct meanings of a word is crucial for the effectiveness of semantic representation techniques. However, most existing evaluation benchmarks for assessing this criterion are tied to sense inventories (usually WordNet), restricting their usage to a small subset of knowledge-based representation techniques. The Word-in-Context dataset (WiC) addresses the dependence on sense inventories by reformulating the standard disambiguation task as a binary classification problem; but, it is limited to the English language. We put forward a large multilingual benchmark, XL-WiC, featuring gold standards in 12 new languages from varied language families and with different degrees of resource availability, opening room for evaluation scenarios such as zero-shot cross-lingual transfer. We perform a series of experiments to determine the reliability of the datasets and to set performance baselines for several recent contextualized multilingual models. Experimental results show that even when no tagged instances are available for a target language, models trained solely on the English data can attain competitive performance in the task of distinguishing different meanings of a word, even for distant languages. XL-WiC is available at
https://pilehvar.github.io/xlwic/.
pdf
bib
abs
Generationary or “How We Went beyond Word Sense Inventories and Learned to Gloss”
Michele Bevilacqua
|
Marco Maru
|
Roberto Navigli
Mainstream computational lexical semantics embraces the assumption that word senses can be represented as discrete items of a predefined inventory. In this paper we show this needs not be the case, and propose a unified model that is able to produce contextually appropriate definitions. In our model, Generationary, we employ a novel span-based encoding scheme which we use to fine-tune an English pre-trained Encoder-Decoder system to generate glosses. We show that, even though we drop the need of choosing from a predefined sense inventory, our model can be employed effectively: not only does Generationary outperform previous approaches in the generative task of Definition Modeling in many settings, but it also matches or surpasses the state of the art in discriminative tasks such as Word Sense Disambiguation and Word-in-Context. Finally, we show that Generationary benefits from training on data from multiple inventories, with strong gains on various zero-shot benchmarks, including a novel dataset of definitions for free adjective-noun phrases. The software and reproduction materials are available at
http://generationary.org.
pdf
bib
abs
Probing Pretrained Language Models for Lexical Semantics
Ivan Vulić
|
Edoardo Maria Ponti
|
Robert Litschko
|
Goran Glavaš
|
Anna Korhonen
The success of large pretrained language models (LMs) such as BERT and RoBERTa has sparked interest in probing their representations, in order to unveil what types of knowledge they implicitly capture. While prior research focused on morphosyntactic, semantic, and world knowledge, it remains unclear to which extent LMs also derive lexical type-level knowledge from words in context. In this work, we present a systematic empirical analysis across six typologically diverse languages and five different lexical tasks, addressing the following questions: 1) How do different lexical knowledge extraction strategies (monolingual versus multilingual source LM, out-of-context versus in-context encoding, inclusion of special tokens, and layer-wise averaging) impact performance? How consistent are the observed effects across tasks and languages? 2) Is lexical knowledge stored in few parameters, or is it scattered throughout the network? 3) How do these representations fare against traditional static word vectors in lexical tasks 4) Does the lexical information emerging from independently trained monolingual LMs display latent similarities? Our main results indicate patterns and best practices that hold universally, but also point to prominent variations across languages and tasks. Moreover, we validate the claim that lower Transformer layers carry more type-level lexical knowledge, but also show that this knowledge is distributed across multiple layers.
pdf
bib
abs
Cross-lingual Spoken Language Understanding with Regularized Representation Alignment
Zihan Liu
|
Genta Indra Winata
|
Peng Xu
|
Zhaojiang Lin
|
Pascale Fung
Despite the promising results of current cross-lingual models for spoken language understanding systems, they still suffer from imperfect cross-lingual representation alignments between the source and target languages, which makes the performance sub-optimal. To cope with this issue, we propose a regularization approach to further align word-level and sentence-level representations across languages without any external resource. First, we regularize the representation of user utterances based on their corresponding labels. Second, we regularize the latent variable model (Liu et al., 2019) by leveraging adversarial training to disentangle the latent variables. Experiments on the cross-lingual spoken language understanding task show that our model outperforms current state-of-the-art methods in both few-shot and zero-shot scenarios, and our model, trained on a few-shot setting with only 3% of the target language training data, achieves comparable performance to the supervised training with all the training data.
pdf
bib
abs
SLURP: A Spoken Language Understanding Resource Package
Emanuele Bastianelli
|
Andrea Vanzo
|
Pawel Swietojanski
|
Verena Rieser
Spoken Language Understanding infers semantic meaning directly from audio data, and thus promises to reduce error propagation and misunderstandings in end-user applications. However, publicly available SLU resources are limited. In this paper, we release SLURP, a new SLU package containing the following: (1) A new challenging dataset in English spanning 18 domains, which is substantially bigger and linguistically more diverse than existing datasets; (2) Competitive baselines based on state-of-the-art NLU and ASR systems; (3) A new transparent metric for entity labelling which enables a detailed error analysis for identifying potential areas of improvement. SLURP is available at
https://github.com/pswietojanski/slurp.
pdf
bib
abs
Neural Conversational QA: Learning to Reason vs Exploiting Patterns
Nikhil Verma
|
Abhishek Sharma
|
Dhiraj Madan
|
Danish Contractor
|
Harshit Kumar
|
Sachindra Joshi
Neural Conversational QA tasks such as ShARC require systems to answer questions based on the contents of a given passage. On studying recent state-of-the-art models on the ShARC QA task, we found indications that the model(s) learn spurious clues/patterns in the data-set. Further, a heuristic-based program, built to exploit these patterns, had comparative performance to that of the neural models. In this paper we share our findings about the four types of patterns in the ShARC corpus and how the neural models exploit them. Motivated by the above findings, we create and share a modified data-set that has fewer spurious patterns than the original data-set, consequently allowing models to learn better.
pdf
bib
abs
Counterfactual Generator: A Weakly-Supervised Method for Named Entity Recognition
Xiangji Zeng
|
Yunliang Li
|
Yuchen Zhai
|
Yin Zhang
Past progress on neural models has proven that named entity recognition is no longer a problem if we have enough labeled data. However, collecting enough data and annotating them are labor-intensive, time-consuming, and expensive. In this paper, we decompose the sentence into two parts: entity and context, and rethink the relationship between them and model performance from a causal perspective. Based on this, we propose the Counterfactual Generator, which generates counterfactual examples by the interventions on the existing observational examples to enhance the original dataset. Experiments across three datasets show that our method improves the generalization ability of models under limited observational examples. Besides, we provide a theoretical foundation by using a structural causal model to explore the spurious correlations between input features and output labels. We investigate the causal effects of entity or context on model performance under both conditions: the non-augmented and the augmented. Interestingly, we find that the non-spurious correlations are more located in entity representation rather than context representation. As a result, our method eliminates part of the spurious correlations between context representation and output labels. The code is available at
https://github.com/xijiz/cfgen.
pdf
bib
abs
Understanding Procedural Text using Interactive Entity Networks
Jizhi Tang
|
Yansong Feng
|
Dongyan Zhao
The task of procedural text comprehension aims to understand the dynamic nature of entities/objects in a process. Here, the key is to track how the entities interact with each other and how their states are changing along the procedure. Recent efforts have made great progress to track multiple entities in a procedural text, but usually treat each entity separately and ignore the fact that there are often multiple entities interacting with each other during one process, some of which are even explicitly mentioned. In this paper, we propose a novel Interactive Entity Network (IEN), which is a recurrent network with memory equipped cells for state tracking. In each IEN cell, we maintain different attention matrices through specific memories to model different types of entity interactions. Importantly, we can update these memories in a sequential manner so as to explore the causal relationship between entity actions and subsequent state changes. We evaluate our model on a benchmark dataset, and the results show that IEN outperforms state-of-the-art models by precisely capturing the interactions of multiple entities and explicitly leverage the relationship between entity interactions and subsequent state changes.
pdf
bib
abs
A Rigorous Study on Named Entity Recognition: Can Fine-tuning Pretrained Model Lead to the Promised Land?
Hongyu Lin
|
Yaojie Lu
|
Jialong Tang
|
Xianpei Han
|
Le Sun
|
Zhicheng Wei
|
Nicholas Jing Yuan
Fine-tuning pretrained model has achieved promising performance on standard NER benchmarks. Generally, these benchmarks are blessed with strong name regularity, high mention coverage and sufficient context diversity. Unfortunately, when scaling NER to open situations, these advantages may no longer exist. And therefore it raises a critical question of whether previous creditable approaches can still work well when facing these challenges. As there is no currently available dataset to investigate this problem, this paper proposes to conduct randomization test on standard benchmarks. Specifically, we erase name regularity, mention coverage and context diversity respectively from the benchmarks, in order to explore their impact on the generalization ability of models. To further verify our conclusions, we also construct a new open NER dataset that focuses on entity types with weaker name regularity and lower mention coverage to verify our conclusion. From both randomization test and empirical experiments, we draw the conclusions that 1) name regularity is critical for the models to generalize to unseen mentions; 2) high mention coverage may undermine the model generalization ability and 3) context patterns may not require enormous data to capture when using pretrained encoders.
pdf
bib
abs
DyERNIE: Dynamic Evolution of Riemannian Manifold Embeddings for Temporal Knowledge Graph Completion
Zhen Han
|
Peng Chen
|
Yunpu Ma
|
Volker Tresp
There has recently been increasing interest in learning representations of temporal knowledge graphs (KGs), which record the dynamic relationships between entities over time. Temporal KGs often exhibit multiple simultaneous non-Euclidean structures, such as hierarchical and cyclic structures. However, existing embedding approaches for temporal KGs typically learn entity representations and their dynamic evolution in the Euclidean space, which might not capture such intrinsic structures very well. To this end, we propose DyERNIE, a non-Euclidean embedding approach that learns evolving entity representations in a product of Riemannian manifolds, where the composed spaces are estimated from the sectional curvatures of underlying data. Product manifolds enable our approach to better reflect a wide variety of geometric structures on temporal KGs. Besides, to capture the evolutionary dynamics of temporal KGs, we let the entity representations evolve according to a velocity vector defined in the tangent space at each timestamp. We analyze in detail the contribution of geometric spaces to representation learning of temporal KGs and evaluate our model on temporal knowledge graph completion tasks. Extensive experiments on three real-world datasets demonstrate significantly improved performance, indicating that the dynamics of multi-relational graph data can be more properly modeled by the evolution of embeddings on Riemannian manifolds.
pdf
bib
abs
Embedding Words in Non-Vector Space with Unsupervised Graph Learning
Max Ryabinin
|
Sergei Popov
|
Liudmila Prokhorenkova
|
Elena Voita
It has become a de-facto standard to represent words as elements of a vector space (word2vec, GloVe). While this approach is convenient, it is unnatural for language: words form a graph with a latent hierarchical structure, and this structure has to be revealed and encoded by word embeddings. We introduce GraphGlove: unsupervised graph word representations which are learned end-to-end. In our setting, each word is a node in a weighted graph and the distance between words is the shortest path distance between the corresponding nodes. We adopt a recent method learning a representation of data in the form of a differentiable weighted graph and use it to modify the GloVe training algorithm. We show that our graph-based representations substantially outperform vector-based methods on word similarity and analogy tasks. Our analysis reveals that the structure of the learned graphs is hierarchical and similar to that of WordNet, the geometry is highly non-trivial and contains subgraphs with different local topology.
pdf
bib
abs
Debiasing knowledge graph embeddings
Joseph Fisher
|
Arpit Mittal
|
Dave Palfrey
|
Christos Christodoulopoulos
It has been shown that knowledge graph embeddings encode potentially harmful social biases, such as the information that women are more likely to be nurses, and men more likely to be bankers. As graph embeddings begin to be used more widely in NLP pipelines, there is a need to develop training methods which remove such biases. Previous approaches to this problem both significantly increase the training time, by a factor of eight or more, and decrease the accuracy of the model substantially. We present a novel approach, in which all embeddings are trained to be neutral to sensitive attributes such as gender by default using an adversarial loss. We then add sensitive attributes back on in whitelisted cases. Training time only marginally increases over a baseline model, and the debiased embeddings perform almost as accurately in the triple prediction task as their non-debiased counterparts.
pdf
bib
abs
Message Passing for Hyper-Relational Knowledge Graphs
Mikhail Galkin
|
Priyansh Trivedi
|
Gaurav Maheshwari
|
Ricardo Usbeck
|
Jens Lehmann
Hyper-relational knowledge graphs (KGs) (e.g., Wikidata) enable associating additional key-value pairs along with the main triple to disambiguate, or restrict the validity of a fact. In this work, we propose a message passing based graph encoder - StarE capable of modeling such hyper-relational KGs. Unlike existing approaches, StarE can encode an arbitrary number of additional information (qualifiers) along with the main triple while keeping the semantic roles of qualifiers and triples intact. We also demonstrate that existing benchmarks for evaluating link prediction (LP) performance on hyper-relational KGs suffer from fundamental flaws and thus develop a new Wikidata-based dataset - WD50K. Our experiments demonstrate that StarE based LP model outperforms existing approaches across multiple benchmarks. We also confirm that leveraging qualifiers is vital for link prediction with gains up to 25 MRR points compared to triple-based representations.
pdf
bib
abs
Relation-aware Graph Attention Networks with Relational Position Encodings for Emotion Recognition in Conversations
Taichi Ishiwatari
|
Yuki Yasuda
|
Taro Miyazaki
|
Jun Goto
Interest in emotion recognition in conversations (ERC) has been increasing in various fields, because it can be used to analyze user behaviors and detect fake news. Many recent ERC methods use graph-based neural networks to take the relationships between the utterances of the speakers into account. In particular, the state-of-the-art method considers self- and inter-speaker dependencies in conversations by using relational graph attention networks (RGAT). However, graph-based neural networks do not take sequential information into account. In this paper, we propose relational position encodings that provide RGAT with sequential information reflecting the relational graph structure. Accordingly, our RGAT model can capture both the speaker dependency and the sequential information. Experiments on four ERC datasets show that our model is beneficial to recognizing emotions expressed in conversations. In addition, our approach empirically outperforms the state-of-the-art on all of the benchmark datasets.
pdf
bib
abs
BERT Knows Punta Cana is not just beautiful, it’s gorgeous: Ranking Scalar Adjectives with Contextualised Representations
Aina Garí Soler
|
Marianna Apidianaki
Adjectives like pretty, beautiful and gorgeous describe positive properties of the nouns they modify but with different intensity. These differences are important for natural language understanding and reasoning. We propose a novel BERT-based approach to intensity detection for scalar adjectives. We model intensity by vectors directly derived from contextualised representations and show they can successfully rank scalar adjectives. We evaluate our models both intrinsically, on gold standard datasets, and on an Indirect Question Answering task. Our results demonstrate that BERT encodes rich knowledge about the semantics of scalar adjectives, and is able to provide better quality intensity rankings than static embeddings and previous models with access to dedicated resources.
pdf
bib
abs
Feature Adaptation of Pre-Trained Language Models across Languages and Domains with Robust Self-Training
Hai Ye
|
Qingyu Tan
|
Ruidan He
|
Juntao Li
|
Hwee Tou Ng
|
Lidong Bing
Adapting pre-trained language models (PrLMs) (e.g., BERT) to new domains has gained much attention recently. Instead of fine-tuning PrLMs as done in most previous work, we investigate how to adapt the features of PrLMs to new domains without fine-tuning. We explore unsupervised domain adaptation (UDA) in this paper. With the features from PrLMs, we adapt the models trained with labeled data from the source domain to the unlabeled target domain. Self-training is widely used for UDA, and it predicts pseudo labels on the target domain data for training. However, the predicted pseudo labels inevitably include noise, which will negatively affect training a robust model. To improve the robustness of self-training, in this paper we present class-aware feature self-distillation (CFd) to learn discriminative features from PrLMs, in which PrLM features are self-distilled into a feature adaptation module and the features from the same class are more tightly clustered. We further extend CFd to a cross-language setting, in which language discrepancy is studied. Experiments on two monolingual and multilingual Amazon review datasets show that CFd can consistently improve the performance of self-training in cross-domain and cross-language settings.
pdf
bib
abs
Textual Data Augmentation for Efficient Active Learning on Tiny Datasets
Husam Quteineh
|
Spyridon Samothrakis
|
Richard Sutcliffe
In this paper we propose a novel data augmentation approach where guided outputs of a language generation model, e.g. GPT-2, when labeled, can improve the performance of text classifiers through an active learning process. We transform the data generation task into an optimization problem which maximizes the usefulness of the generated output, using Monte Carlo Tree Search (MCTS) as the optimization strategy and incorporating entropy as one of the optimization criteria. We test our approach against a Non-Guided Data Generation (NGDG) process that does not optimize for a reward function. Starting with a small set of data, our results show an increased performance with MCTS of 26% on the TREC-6 Questions dataset, and 10% on the Stanford Sentiment Treebank SST-2 dataset. Compared with NGDG, we are able to achieve increases of 3% and 5% on TREC-6 and SST-2.
pdf
bib
abs
“I’d rather just go to bed”: Understanding Indirect Answers
Annie Louis
|
Dan Roth
|
Filip Radlinski
We revisit a pragmatic inference problem in dialog: Understanding indirect responses to questions. Humans can interpret ‘I’m starving.’ in response to ‘Hungry?’, even without direct cue words such as ‘yes’ and ‘no’. In dialog systems, allowing natural responses rather than closed vocabularies would be similarly beneficial. However, today’s systems are only as sensitive to these pragmatic moves as their language model allows. We create and release the first large-scale English language corpus ‘Circa’ with 34,268 (polar question, indirect answer) pairs to enable progress on this task. The data was collected via elaborate crowdsourcing, and contains utterances with yes/no meaning, as well as uncertain, middle-ground, and conditional responses. We also present BERT-based neural models to predict such categories for a question-answer pair. We find that while transfer learning from entailment works reasonably, performance is not yet sufficient for robust dialog. Our models reach 82-88% accuracy for a 4-class distinction, and 74-85% for 6 classes.
pdf
bib
abs
PowerTransformer: Unsupervised Controllable Revision for Biased Language Correction
Xinyao Ma
|
Maarten Sap
|
Hannah Rashkin
|
Yejin Choi
Unconscious biases continue to be prevalent in modern text and media, calling for algorithms that can assist writers with bias correction. For example, a female character in a story is often portrayed as passive and powerless (“_She daydreams about being a doctor_”) while a man is portrayed as more proactive and powerful (“_He pursues his dream of being a doctor_”). We formulate **Controllable Debiasing**, a new revision task that aims to rewrite a given text to correct the implicit and potentially undesirable bias in character portrayals. We then introduce PowerTransformer as an approach that debiases text through the lens of connotation frames (Sap et al., 2017), which encode pragmatic knowledge of implied power dynamics with respect to verb predicates. One key challenge of our task is the lack of parallel corpora. To address this challenge, we adopt an unsupervised approach using auxiliary supervision with related tasks such as paraphrasing and self-supervision based on a reconstruction loss, building on pretrained language models. Through comprehensive experiments based on automatic and human evaluations, we demonstrate that our approach outperforms ablations and existing methods from related tasks. Furthermore, we demonstrate the use of PowerTransformer as a step toward mitigating the well-documented gender bias in character portrayal in movie scripts.
pdf
bib
abs
MEGA RST Discourse Treebanks with Structure and Nuclearity from Scalable Distant Sentiment Supervision
Patrick Huber
|
Giuseppe Carenini
The lack of large and diverse discourse treebanks hinders the application of data-driven approaches, such as deep-learning, to RST-style discourse parsing. In this work, we present a novel scalable methodology to automatically generate discourse treebanks using distant supervision from sentiment annotated datasets, creating and publishing MEGA-DT, a new large-scale discourse-annotated corpus. Our approach generates discourse trees incorporating structure and nuclearity for documents of arbitrary length by relying on an efficient heuristic beam-search strategy, extended with a stochastic component. Experiments on multiple datasets indicate that a discourse parser trained on our MEGA-DT treebank delivers promising inter-domain performance gains when compared to parsers trained on human-annotated discourse corpora.
pdf
bib
abs
Centering-based Neural Coherence Modeling with Hierarchical Discourse Segments
Sungho Jeon
|
Michael Strube
Previous neural coherence models have focused on identifying semantic relations between adjacent sentences. However, they do not have the means to exploit structural information. In this work, we propose a coherence model which takes discourse structural information into account without relying on human annotations. We approximate a linguistic theory of coherence, Centering theory, which we use to track the changes of focus between discourse segments. Our model first identifies the focus of each sentence, recognized with regards to the context, and constructs the structural relationship for discourse segments by tracking the changes of the focus. The model then incorporates this structural information into a structure-aware transformer. We evaluate our model on two tasks, automated essay scoring and assessing writing quality. Our results demonstrate that our model, built on top of a pretrained language model, achieves state-of-the-art performance on both tasks. We next statistically examine the identified trees of texts assigned to different quality scores. Finally, we investigate what our model learns in terms of theoretical claims.
pdf
bib
abs
Keeping Up Appearances: Computational Modeling of Face Acts in Persuasion Oriented Discussions
Ritam Dutt
|
Rishabh Joshi
|
Carolyn Rose
The notion of face refers to the public self-image of an individual that emerges both from the individual’s own actions as well as from the interaction with others. Modeling face and understanding its state changes throughout a conversation is critical to the study of maintenance of basic human needs in and through interaction. Grounded in the politeness theory of Brown and Levinson (1978), we propose a generalized framework for modeling face acts in persuasion conversations, resulting in a reliable coding manual, an annotated corpus, and computational models. The framework reveals insights about differences in face act utilization between asymmetric roles in persuasion conversations. Using computational models, we are able to successfully identify face acts as well as predict a key conversational outcome (e.g. donation success). Finally, we model a latent representation of the conversational state to analyze the impact of predicted face acts on the probability of a positive conversational outcome and observe several correlations that corroborate previous findings.
pdf
bib
abs
HABERTOR: An Efficient and Effective Deep Hatespeech Detector
Thanh Tran
|
Yifan Hu
|
Changwei Hu
|
Kevin Yen
|
Fei Tan
|
Kyumin Lee
|
Se Rim Park
We present our HABERTOR model for detecting hatespeech in large scale user-generated content. Inspired by the recent success of the BERT model, we propose several modifications to BERT to enhance the performance on the downstream hatespeech classification task. HABERTOR inherits BERT’s architecture, but is different in four aspects: (i) it generates its own vocabularies and is pre-trained from the scratch using the largest scale hatespeech dataset; (ii) it consists of Quaternion-based factorized components, resulting in a much smaller number of parameters, faster training and inferencing, as well as less memory usage; (iii) it uses our proposed multi-source ensemble heads with a pooling layer for separate input sources, to further enhance its effectiveness; and (iv) it uses a regularized adversarial training with our proposed fine-grained and adaptive noise magnitude to enhance its robustness. Through experiments on the large-scale real-world hatespeech dataset with 1.4M annotated comments, we show that HABERTOR works better than 15 state-of-the-art hatespeech detection methods, including fine-tuning Language Models. In particular, comparing with BERT, our HABERTOR is 4 5 times faster in the training/inferencing phase, uses less than 1/3 of the memory, and has better performance, even though we pre-train it by using less than 1% of the number of words. Our generalizability analysis shows that HABERTOR transfers well to other unseen hatespeech datasets and is a more efficient and effective alternative to BERT for the hatespeech classification.
pdf
bib
abs
An Empirical Study on Large-Scale Multi-Label Text Classification Including Few and Zero-Shot Labels
Ilias Chalkidis
|
Manos Fergadiotis
|
Sotiris Kotitsas
|
Prodromos Malakasiotis
|
Nikolaos Aletras
|
Ion Androutsopoulos
Large-scale Multi-label Text Classification (LMTC) has a wide range of Natural Language Processing (NLP) applications and presents interesting challenges. First, not all labels are well represented in the training set, due to the very large label set and the skewed label distributions of datasets. Also, label hierarchies and differences in human labelling guidelines may affect graph-aware annotation proximity. Finally, the label hierarchies are periodically updated, requiring LMTC models capable of zero-shot generalization. Current state-of-the-art LMTC models employ Label-Wise Attention Networks (LWANs), which (1) typically treat LMTC as flat multi-label classification; (2) may use the label hierarchy to improve zero-shot learning, although this practice is vastly understudied; and (3) have not been combined with pre-trained Transformers (e.g. BERT), which have led to state-of-the-art results in several NLP benchmarks. Here, for the first time, we empirically evaluate a battery of LMTC methods from vanilla LWANs to hierarchical classification approaches and transfer learning, on frequent, few, and zero-shot learning on three datasets from different domains. We show that hierarchical methods based on Probabilistic Label Trees (PLTs) outperform LWANs. Furthermore, we show that Transformer-based approaches outperform the state-of-the-art in two of the datasets, and we propose a new state-of-the-art method which combines BERT with LWAN. Finally, we propose new models that leverage the label hierarchy to improve few and zero-shot learning, considering on each dataset a graph-aware annotation proximity measure that we introduce.
pdf
bib
abs
Which *BERT? A Survey Organizing Contextualized Encoders
Patrick Xia
|
Shijie Wu
|
Benjamin Van Durme
Pretrained contextualized text encoders are now a staple of the NLP community. We present a survey on language representation learning with the aim of consolidating a series of shared lessons learned across a variety of recent efforts. While significant advancements continue at a rapid pace, we find that enough has now been discovered, in different directions, that we can begin to organize advances according to common themes. Through this organization, we highlight important considerations when interpreting recent contributions and choosing which model to use.
pdf
bib
abs
Fact or Fiction: Verifying Scientific Claims
David Wadden
|
Shanchuan Lin
|
Kyle Lo
|
Lucy Lu Wang
|
Madeleine van Zuylen
|
Arman Cohan
|
Hannaneh Hajishirzi
We introduce scientific claim verification, a new task to select abstracts from the research literature containing evidence that SUPPORTS or REFUTES a given scientific claim, and to identify rationales justifying each decision. To study this task, we construct SciFact, a dataset of 1.4K expert-written scientific claims paired with evidence-containing abstracts annotated with labels and rationales. We develop baseline models for SciFact, and demonstrate that simple domain adaptation techniques substantially improve performance compared to models trained on Wikipedia or political news. We show that our system is able to verify claims related to COVID-19 by identifying evidence from the CORD-19 corpus. Our experiments indicate that SciFact will provide a challenging testbed for the development of new systems designed to retrieve and reason over corpora containing specialized domain knowledge. Data and code for this new task are publicly available at
https://github.com/allenai/scifact. A leaderboard and COVID-19 fact-checking demo are available at
https://scifact.apps.allenai.org.
pdf
bib
abs
Semantic Role Labeling as Syntactic Dependency Parsing
Tianze Shi
|
Igor Malioutov
|
Ozan Irsoy
We reduce the task of (span-based) PropBank-style semantic role labeling (SRL) to syntactic dependency parsing. Our approach is motivated by our empirical analysis that shows three common syntactic patterns account for over 98% of the SRL annotations for both English and Chinese data. Based on this observation, we present a conversion scheme that packs SRL annotations into dependency tree representations through joint labels that permit highly accurate recovery back to the original format. This representation allows us to train statistical dependency parsers to tackle SRL and achieve competitive performance with the current state of the art. Our findings show the promise of syntactic dependency trees in encoding semantic role relations within their syntactic domain of locality, and point to potential further integration of syntactic methods into semantic role labeling in the future.
pdf
bib
abs
PARADE: A New Dataset for Paraphrase Identification Requiring Computer Science Domain Knowledge
Yun He
|
Zhuoer Wang
|
Yin Zhang
|
Ruihong Huang
|
James Caverlee
We present a new benchmark dataset called PARADE for paraphrase identification that requires specialized domain knowledge. PARADE contains paraphrases that overlap very little at the lexical and syntactic level but are semantically equivalent based on computer science domain knowledge, as well as non-paraphrases that overlap greatly at the lexical and syntactic level but are not semantically equivalent based on this domain knowledge. Experiments show that both state-of-the-art neural models and non-expert human annotators have poor performance on PARADE. For example, BERT after fine-tuning achieves an F1 score of 0.709, which is much lower than its performance on other paraphrase identification datasets. PARADE can serve as a resource for researchers interested in testing models that incorporate domain knowledge. We make our data and code freely available.
pdf
bib
abs
Causal Inference of Script Knowledge
Noah Weber
|
Rachel Rudinger
|
Benjamin Van Durme
When does a sequence of events define an everyday scenario and how can this knowledge be induced from text? Prior works in inducing such scripts have relied on, in one form or another, measures of correlation between instances of events in a corpus. We argue from both a conceptual and practical sense that a purely correlation-based approach is insufficient, and instead propose an approach to script induction based on the causal effect between events, formally defined via interventions. Through both human and automatic evaluations, we show that the output of our method based on causal effects better matches the intuition of what a script represents.
pdf
bib
abs
Towards Debiasing NLU Models from Unknown Biases
Prasetya Ajie Utama
|
Nafise Sadat Moosavi
|
Iryna Gurevych
NLU models often exploit biases to achieve high dataset-specific performance without properly learning the intended task. Recently proposed debiasing methods are shown to be effective in mitigating this tendency. However, these methods rely on a major assumption that the types of bias should be known a-priori, which limits their application to many NLU tasks and datasets. In this work, we present the first step to bridge this gap by introducing a self-debiasing framework that prevents models from mainly utilizing biases without knowing them in advance. The proposed framework is general and complementary to the existing debiasing methods. We show that it allows these existing methods to retain the improvement on the challenge datasets (i.e., sets of examples designed to expose models’ reliance on biases) without specifically targeting certain biases. Furthermore, the evaluation suggests that applying the framework results in improved overall robustness.
pdf
bib
abs
On the Role of Supervision in Unsupervised Constituency Parsing
Haoyue Shi
|
Karen Livescu
|
Kevin Gimpel
We analyze several recent unsupervised constituency parsing models, which are tuned with respect to the parsing F1 score on the Wall Street Journal (WSJ) development set (1,700 sentences). We introduce strong baselines for them, by training an existing supervised parsing model (Kitaev and Klein, 2018) on the same labeled examples they access. When training on the 1,700 examples, or even when using only 50 examples for training and 5 for development, such a few-shot parsing approach can outperform all the unsupervised parsing methods by a significant margin. Few-shot parsing can be further improved by a simple data augmentation method and self-training. This suggests that, in order to arrive at fair conclusions, we should carefully consider the amount of labeled data used for model development. We propose two protocols for future work on unsupervised parsing: (i) use fully unsupervised criteria for hyperparameter tuning and model selection; (ii) use as few labeled examples as possible for model development, and compare to few-shot parsing trained on the same labeled examples.
pdf
bib
abs
Language Model Prior for Low-Resource Neural Machine Translation
Christos Baziotis
|
Barry Haddow
|
Alexandra Birch
The scarcity of large parallel corpora is an important obstacle for neural machine translation. A common solution is to exploit the knowledge of language models (LM) trained on abundant monolingual data. In this work, we propose a novel approach to incorporate a LM as prior in a neural translation model (TM). Specifically, we add a regularization term, which pushes the output distributions of the TM to be probable under the LM prior, while avoiding wrong predictions when the TM “disagrees” with the LM. This objective relates to knowledge distillation, where the LM can be viewed as teaching the TM about the target language. The proposed approach does not compromise decoding speed, because the LM is used only at training time, unlike previous work that requires it during inference. We present an analysis of the effects that different methods have on the distributions of the TM. Results on two low-resource machine translation datasets show clear improvements even with limited monolingual data.
pdf
bib
abs
Detecting Word Sense Disambiguation Biases in Machine Translation for Model-Agnostic Adversarial Attacks
Denis Emelin
|
Ivan Titov
|
Rico Sennrich
Word sense disambiguation is a well-known source of translation errors in NMT. We posit that some of the incorrect disambiguation choices are due to models’ over-reliance on dataset artifacts found in training data, specifically superficial word co-occurrences, rather than a deeper understanding of the source text. We introduce a method for the prediction of disambiguation errors based on statistical data properties, demonstrating its effectiveness across several domains and model types. Moreover, we develop a simple adversarial attack strategy that minimally perturbs sentences in order to elicit disambiguation errors to further probe the robustness of translation models. Our findings indicate that disambiguation robustness varies substantially between domains and that different models trained on the same data are vulnerable to different attacks.
pdf
bib
abs
MAD-X: An Adapter-Based Framework for Multi-Task Cross-Lingual Transfer
Jonas Pfeiffer
|
Ivan Vulić
|
Iryna Gurevych
|
Sebastian Ruder
The main goal behind state-of-the-art pre-trained multilingual models such as multilingual BERT and XLM-R is enabling and bootstrapping NLP applications in low-resource languages through zero-shot or few-shot cross-lingual transfer. However, due to limited model capacity, their transfer performance is the weakest exactly on such low-resource languages and languages unseen during pre-training. We propose MAD-X, an adapter-based framework that enables high portability and parameter-efficient transfer to arbitrary tasks and languages by learning modular language and task representations. In addition, we introduce a novel invertible adapter architecture and a strong baseline method for adapting a pre-trained multilingual model to a new language. MAD-X outperforms the state of the art in cross lingual transfer across a representative set of typologically diverse languages on named entity recognition and causal commonsense reasoning, and achieves competitive results on question answering. Our code and adapters are available at AdapterHub.ml.
pdf
bib
abs
Translation Artifacts in Cross-lingual Transfer Learning
Mikel Artetxe
|
Gorka Labaka
|
Eneko Agirre
Both human and machine translation play a central role in cross-lingual transfer learning: many multilingual datasets have been created through professional translation services, and using machine translation to translate either the test set or the training set is a widely used transfer technique. In this paper, we show that such translation process can introduce subtle artifacts that have a notable impact in existing cross-lingual models. For instance, in natural language inference, translating the premise and the hypothesis independently can reduce the lexical overlap between them, which current models are highly sensitive to. We show that some previous findings in cross-lingual transfer learning need to be reconsidered in the light of this phenomenon. Based on the gained insights, we also improve the state-of-the-art in XNLI for the translate-test and zero-shot approaches by 4.3 and 2.8 points, respectively.
pdf
bib
abs
A Time-Aware Transformer Based Model for Suicide Ideation Detection on Social Media
Ramit Sawhney
|
Harshit Joshi
|
Saumya Gandhi
|
Rajiv Ratn Shah
Social media’s ubiquity fosters a space for users to exhibit suicidal thoughts outside of traditional clinical settings. Understanding the build-up of such ideation is critical for the identification of at-risk users and suicide prevention. Suicide ideation is often linked to a history of mental depression. The emotional spectrum of a user’s historical activity on social media can be indicative of their mental state over time. In this work, we focus on identifying suicidal intent in English tweets by augmenting linguistic models with historical context. We propose STATENet, a time-aware transformer based model for preliminary screening of suicidal risk on social media. STATENet outperforms competitive methods, demonstrating the utility of emotional and temporal contextual cues for suicide risk assessment. We discuss the empirical, qualitative, practical, and ethical aspects of STATENet for suicide ideation detection.
pdf
bib
abs
Weakly Supervised Learning of Nuanced Frames for Analyzing Polarization in News Media
Shamik Roy
|
Dan Goldwasser
In this paper, we suggest a minimally supervised approach for identifying nuanced frames in news article coverage of politically divisive topics. We suggest to break the broad policy frames suggested by Boydstun et al., 2014 into fine-grained subframes which can capture differences in political ideology in a better way. We evaluate the suggested subframes and their embedding, learned using minimal supervision, over three topics, namely, immigration, gun-control, and abortion. We demonstrate the ability of the subframes to capture ideological differences and analyze political discourse in news media.
pdf
bib
abs
Where Are the Facts? Searching for Fact-checked Information to Alleviate the Spread of Fake News
Nguyen Vo
|
Kyumin Lee
Although many fact-checking systems have been developed in academia and industry, fake news is still proliferating on social media. These systems mostly focus on fact-checking but usually neglect online users who are the main drivers of the spread of misinformation. How can we use fact-checked information to improve users’ consciousness of fake news to which they are exposed? How can we stop users from spreading fake news? To tackle these questions, we propose a novel framework to search for fact-checking articles, which address the content of an original tweet (that may contain misinformation) posted by online users. The search can directly warn fake news posters and online users (e.g. the posters’ followers) about misinformation, discourage them from spreading fake news, and scale up verified content on social media. Our framework uses both text and images to search for fact-checking articles, and achieves promising results on real-world datasets. Our code and datasets are released at
https://github.com/nguyenvo09/EMNLP2020.
pdf
bib
abs
Fortifying Toxic Speech Detectors Against Veiled Toxicity
Xiaochuang Han
|
Yulia Tsvetkov
Modern toxic speech detectors are incompetent in recognizing disguised offensive language, such as adversarial attacks that deliberately avoid known toxic lexicons, or manifestations of implicit bias. Building a large annotated dataset for such veiled toxicity can be very expensive. In this work, we propose a framework aimed at fortifying existing toxic speech detectors without a large labeled corpus of veiled toxicity. Just a handful of probing examples are used to surface orders of magnitude more disguised offenses. We augment the toxic speech detector’s training data with these discovered offensive examples, thereby making it more robust to veiled toxicity while preserving its utility in detecting overt toxicity.
pdf
bib
abs
Explainable Automated Fact-Checking for Public Health Claims
Neema Kotonya
|
Francesca Toni
Fact-checking is the task of verifying the veracity of claims by assessing their assertions against credible evidence. The vast majority of fact-checking studies focus exclusively on political claims. Very little research explores fact-checking for other topics, specifically subject matters for which expertise is required. We present the first study of explainable fact-checking for claims which require specific expertise. For our case study we choose the setting of public health. To support this case study we construct a new dataset PUBHEALTH of 11.8K claims accompanied by journalist crafted, gold standard explanations (i.e., judgments) to support the fact-check labels for claims. We explore two tasks: veracity prediction and explanation generation. We also define and evaluate, with humans and computationally, three coherence properties of explanation quality. Our results indicate that, by training on in-domain data, gains can be made in explainable, automated fact-checking for claims which require specific expertise.
pdf
bib
abs
Interactive Fiction Game Playing as Multi-Paragraph Reading Comprehension with Reinforcement Learning
Xiaoxiao Guo
|
Mo Yu
|
Yupeng Gao
|
Chuang Gan
|
Murray Campbell
|
Shiyu Chang
Interactive Fiction (IF) games with real human-written natural language texts provide a new natural evaluation for language understanding techniques. In contrast to previous text games with mostly synthetic texts, IF games pose language understanding challenges on the human-written textual descriptions of diverse and sophisticated game worlds and language generation challenges on the action command generation from less restricted combinatorial space. We take a novel perspective of IF game solving and re-formulate it as Multi-Passage Reading Comprehension (MPRC) tasks. Our approaches utilize the context-query attention mechanisms and the structured prediction in MPRC to efficiently generate and evaluate action outputs and apply an object-centric historical observation retrieval strategy to mitigate the partial observability of the textual observations. Extensive experiments on the recent IF benchmark (Jericho) demonstrate clear advantages of our approaches achieving high winning rates and low data requirements compared to all previous approaches.
pdf
bib
abs
DORB: Dynamically Optimizing Multiple Rewards with Bandits
Ramakanth Pasunuru
|
Han Guo
|
Mohit Bansal
Policy gradients-based reinforcement learning has proven to be a promising approach for directly optimizing non-differentiable evaluation metrics for language generation tasks. However, optimizing for a specific metric reward leads to improvements in mostly that metric only, suggesting that the model is gaming the formulation of that metric in a particular way without often achieving real qualitative improvements. Hence, it is more beneficial to make the model optimize multiple diverse metric rewards jointly. While appealing, this is challenging because one needs to manually decide the importance and scaling weights of these metric rewards. Further, it is important to consider using a dynamic combination and curriculum of metric rewards that flexibly changes over time. Considering the above aspects, in our work, we automate the optimization of multiple metric rewards simultaneously via a multi-armed bandit approach (DORB), where at each round, the bandit chooses which metric reward to optimize next, based on expected arm gains. We use the Exp3 algorithm for bandits and formulate two approaches for bandit rewards: (1) Single Multi-reward Bandit (SM-Bandit); (2) Hierarchical Multi-reward Bandit (HM-Bandit). We empirically show the effectiveness of our approaches via various automatic metrics and human evaluation on two important NLG tasks: question generation and data-to-text generation. Finally, we present interpretable analyses of the learned bandit curriculum over the optimized rewards.
pdf
bib
abs
MedFilter: Improving Extraction of Task-relevant Utterances through Integration of Discourse Structure and Ontological Knowledge
Sopan Khosla
|
Shikhar Vashishth
|
Jill Fain Lehman
|
Carolyn Rose
Information extraction from conversational data is particularly challenging because the task-centric nature of conversation allows for effective communication of implicit information by humans, but is challenging for machines. The challenges may differ between utterances depending on the role of the speaker within the conversation, especially when relevant expertise is distributed asymmetrically across roles. Further, the challenges may also increase over the conversation as more shared context is built up through information communicated implicitly earlier in the dialogue. In this paper, we propose the novel modeling approach MedFilter, which addresses these insights in order to increase performance at identifying and categorizing task-relevant utterances, and in so doing, positively impacts performance at a downstream information extraction task. We evaluate this approach on a corpus of nearly 7,000 doctor-patient conversations where MedFilter is used to identify medically relevant contributions to the discussion (achieving a 10% improvement over SOTA baselines in terms of area under the PR curve). Identifying task-relevant utterances benefits downstream medical processing, achieving improvements of 15%, 105%, and 23% respectively for the extraction of symptoms, medications, and complaints.
pdf
bib
abs
Hierarchical Evidence Set Modeling for Automated Fact Extraction and Verification
Shyam Subramanian
|
Kyumin Lee
Automated fact extraction and verification is a challenging task that involves finding relevant evidence sentences from a reliable corpus to verify the truthfulness of a claim. Existing models either (i) concatenate all the evidence sentences, leading to the inclusion of redundant and noisy information; or (ii) process each claim-evidence sentence pair separately and aggregate all of them later, missing the early combination of related sentences for more accurate claim verification. Unlike the prior works, in this paper, we propose Hierarchical Evidence Set Modeling (HESM), a framework to extract evidence sets (each of which may contain multiple evidence sentences), and verify a claim to be supported, refuted or not enough info, by encoding and attending the claim and evidence sets at different levels of hierarchy. Our experimental results show that HESM outperforms 7 state-of-the-art methods for fact extraction and claim verification. Our source code is available at
https://github.com/ShyamSubramanian/HESM.
pdf
bib
abs
Program Enhanced Fact Verification with Verbalization and Graph Attention Network
Xiaoyu Yang
|
Feng Nie
|
Yufei Feng
|
Quan Liu
|
Zhigang Chen
|
Xiaodan Zhu
Performing fact verification based on structured data is important for many real-life applications and is a challenging research problem, particularly when it involves both symbolic operations and informal inference based on language understanding. In this paper, we present a Program-enhanced Verbalization and Graph Attention Network (ProgVGAT) to integrate programs and execution into textual inference models. Specifically, a verbalization with program execution model is proposed to accumulate evidences that are embedded in operations over the tables. Built on that, we construct the graph attention verification networks, which are designed to fuse different sources of evidences from verbalized program execution, program structures, and the original statements and tables, to make the final verification decision. To support the above framework, we propose a program selection module optimized with a new training strategy based on margin loss, to produce more accurate programs, which is shown to be effective in enhancing the final verification results. Experimental results show that the proposed framework achieves the new state-of-the-art performance, a 74.4% accuracy, on the benchmark dataset TABFACT.
pdf
bib
abs
Constrained Fact Verification for FEVER
Adithya Pratapa
|
Sai Muralidhar Jayanthi
|
Kavya Nerella
Fact-verification systems are well explored in the NLP literature with growing attention owing to shared tasks like FEVER. Though the task requires reasoning on extracted evidence to verify a claim’s factuality, there is little work on understanding the reasoning process. In this work, we propose a new methodology for fact-verification, specifically FEVER, that enforces a closed-world reliance on extracted evidence. We present an extensive evaluation of state-of-the-art verification models under these constraints.
pdf
bib
abs
Entity Linking in 100 Languages
Jan A. Botha
|
Zifei Shan
|
Daniel Gillick
We propose a new formulation for multilingual entity linking, where language-specific mentions resolve to a language-agnostic Knowledge Base. We train a dual encoder in this new setting, building on prior work with improved feature representation, negative mining, and an auxiliary entity-pairing task, to obtain a single entity retrieval model that covers 100+ languages and 20 million entities. The model outperforms state-of-the-art results from a far more limited cross-lingual linking task. Rare entities and low-resource languages pose challenges at this large-scale, so we advocate for an increased focus on zero- and few-shot evaluation. To this end, we provide Mewsli-9, a large new multilingual dataset matched to our setting, and show how frequency-based analysis provided key insights for our model and training enhancements.
pdf
bib
abs
PatchBERT: Just-in-Time, Out-of-Vocabulary Patching
Sangwhan Moon
|
Naoaki Okazaki
Large scale pre-trained language models have shown groundbreaking performance improvements for transfer learning in the domain of natural language processing. In our paper, we study a pre-trained multilingual BERT model and analyze the OOV rate on downstream tasks, how it introduces information loss, and as a side-effect, obstructs the potential of the underlying model. We then propose multiple approaches for mitigation and demonstrate that it improves performance with the same parameter count when combined with fine-tuning.
pdf
bib
abs
On the importance of pre-training data volume for compact language models
Vincent Micheli
|
Martin d’Hoffschmidt
|
François Fleuret
Recent advances in language modeling have led to computationally intensive and resource-demanding state-of-the-art models. In an effort towards sustainable practices, we study the impact of pre-training data volume on compact language models. Multiple BERT-based models are trained on gradually increasing amounts of French text. Through fine-tuning on the French Question Answering Dataset (FQuAD), we observe that well-performing models are obtained with as little as 100 MB of text. In addition, we show that past critically low amounts of pre-training data, an intermediate pre-training step on the task-specific corpus does not yield substantial improvements.
pdf
bib
abs
BERT-of-Theseus: Compressing BERT by Progressive Module Replacing
Canwen Xu
|
Wangchunshu Zhou
|
Tao Ge
|
Furu Wei
|
Ming Zhou
In this paper, we propose a novel model compression approach to effectively compress BERT by progressive module replacing. Our approach first divides the original BERT into several modules and builds their compact substitutes. Then, we randomly replace the original modules with their substitutes to train the compact modules to mimic the behavior of the original modules. We progressively increase the probability of replacement through the training. In this way, our approach brings a deeper level of interaction between the original and compact models. Compared to the previous knowledge distillation approaches for BERT compression, our approach does not introduce any additional loss function. Our approach outperforms existing knowledge distillation approaches on GLUE benchmark, showing a new perspective of model compression.
pdf
bib
abs
Recall and Learn: Fine-tuning Deep Pretrained Language Models with Less Forgetting
Sanyuan Chen
|
Yutai Hou
|
Yiming Cui
|
Wanxiang Che
|
Ting Liu
|
Xiangzhan Yu
Deep pretrained language models have achieved great success in the way of pretraining first and then fine-tuning. But such a sequential transfer learning paradigm often confronts the catastrophic forgetting problem and leads to sub-optimal performance. To fine-tune with less forgetting, we propose a recall and learn mechanism, which adopts the idea of multi-task learning and jointly learns pretraining tasks and downstream tasks. Specifically, we introduce a Pretraining Simulation mechanism to recall the knowledge from pretraining tasks without data, and an Objective Shifting mechanism to focus the learning on downstream tasks gradually. Experiments show that our method achieves state-of-the-art performance on the GLUE benchmark. Our method also enables BERT-base to achieve better average performance than directly fine-tuning of BERT-large. Further, we provide the open-source RecAdam optimizer, which integrates the proposed mechanisms into Adam optimizer, to facility the NLP community.
pdf
bib
abs
Exploring and Predicting Transferability across NLP Tasks
Tu Vu
|
Tong Wang
|
Tsendsuren Munkhdalai
|
Alessandro Sordoni
|
Adam Trischler
|
Andrew Mattarella-Micke
|
Subhransu Maji
|
Mohit Iyyer
Recent advances in NLP demonstrate the effectiveness of training large-scale language models and transferring them to downstream tasks. Can fine-tuning these models on tasks other than language modeling further improve performance? In this paper, we conduct an extensive study of the transferability between 33 NLP tasks across three broad classes of problems (text classification, question answering, and sequence labeling). Our results show that transfer learning is more beneficial than previously thought, especially when target task data is scarce, and can improve performance even with low-data source tasks that differ substantially from the target task (e.g., part-of-speech tagging transfers well to the DROP QA dataset). We also develop task embeddings that can be used to predict the most transferable source tasks for a given target task, and we validate their effectiveness in experiments controlled for source and target data size. Overall, our experiments reveal that factors such as data size, task and domain similarity, and task complexity all play a role in determining transferability.
pdf
bib
abs
To BERT or Not to BERT: Comparing Task-specific and Task-agnostic Semi-Supervised Approaches for Sequence Tagging
Kasturi Bhattacharjee
|
Miguel Ballesteros
|
Rishita Anubhai
|
Smaranda Muresan
|
Jie Ma
|
Faisal Ladhak
|
Yaser Al-Onaizan
Leveraging large amounts of unlabeled data using Transformer-like architectures, like BERT, has gained popularity in recent times owing to their effectiveness in learning general representations that can then be further fine-tuned for downstream tasks to much success. However, training these models can be costly both from an economic and environmental standpoint. In this work, we investigate how to effectively use unlabeled data: by exploring the task-specific semi-supervised approach, Cross-View Training (CVT) and comparing it with task-agnostic BERT in multiple settings that include domain and task relevant English data. CVT uses a much lighter model architecture and we show that it achieves similar performance to BERT on a set of sequence tagging tasks, with lesser financial and environmental impact.
pdf
bib
abs
Cold-start Active Learning through Self-supervised Language Modeling
Michelle Yuan
|
Hsuan-Tien Lin
|
Jordan Boyd-Graber
Active learning strives to reduce annotation costs by choosing the most critical examples to label. Typically, the active learning strategy is contingent on the classification model. For instance, uncertainty sampling depends on poorly calibrated model confidence scores. In the cold-start setting, active learning is impractical because of model instability and data scarcity. Fortunately, modern NLP provides an additional source of information: pre-trained language models. The pre-training loss can find examples that surprise the model and should be labeled for efficient fine-tuning. Therefore, we treat the language modeling loss as a proxy for classification uncertainty. With BERT, we develop a simple strategy based on the masked language modeling loss that minimizes labeling costs for text classification. Compared to other baselines, our approach reaches higher accuracy within less sampling iterations and computation time.
pdf
bib
abs
Active Learning for BERT: An Empirical Study
Liat Ein-Dor
|
Alon Halfon
|
Ariel Gera
|
Eyal Shnarch
|
Lena Dankin
|
Leshem Choshen
|
Marina Danilevsky
|
Ranit Aharonov
|
Yoav Katz
|
Noam Slonim
Real world scenarios present a challenge for text classification, since labels are usually expensive and the data is often characterized by class imbalance. Active Learning (AL) is a ubiquitous paradigm to cope with data scarcity. Recently, pre-trained NLP models, and BERT in particular, are receiving massive attention due to their outstanding performance in various NLP tasks. However, the use of AL with deep pre-trained models has so far received little consideration. Here, we present a large-scale empirical study on active learning techniques for BERT-based classification, addressing a diverse set of AL strategies and datasets. We focus on practical scenarios of binary text classification, where the annotation budget is very small, and the data is often skewed. Our results demonstrate that AL can boost BERT performance, especially in the most realistic scenario in which the initial set of labeled examples is created using keyword-based queries, resulting in a biased sample of the minority class. We release our research framework, aiming to facilitate future research along the lines explored here.
pdf
bib
abs
Transformer Based Multi-Source Domain Adaptation
Dustin Wright
|
Isabelle Augenstein
In practical machine learning settings, the data on which a model must make predictions often come from a different distribution than the data it was trained on. Here, we investigate the problem of unsupervised multi-source domain adaptation, where a model is trained on labelled data from multiple source domains and must make predictions on a domain for which no labelled data has been seen. Prior work with CNNs and RNNs has demonstrated the benefit of mixture of experts, where the predictions of multiple domain expert classifiers are combined; as well as domain adversarial training, to induce a domain agnostic representation space. Inspired by this, we investigate how such methods can be effectively applied to large pretrained transformer models. We find that domain adversarial training has an effect on the learned representations of these models while having little effect on their performance, suggesting that large transformer-based models are already relatively robust across domains. Additionally, we show that mixture of experts leads to significant performance improvements by comparing several variants of mixing functions, including one novel metric based on attention. Finally, we demonstrate that the predictions of large pretrained transformer based domain experts are highly homogenous, making it challenging to learn effective metrics for mixing their predictions.
pdf
bib
abs
Vector-Vector-Matrix Architecture: A Novel Hardware-Aware Framework for Low-Latency Inference in NLP Applications
Matthew Khoury
|
Rumen Dangovski
|
Longwu Ou
|
Preslav Nakov
|
Yichen Shen
|
Li Jing
Deep neural networks have become the standard approach to building reliable Natural Language Processing (NLP) applications, ranging from Neural Machine Translation (NMT) to dialogue systems. However, improving accuracy by increasing the model size requires a large number of hardware computations, which can slow down NLP applications significantly at inference time. To address this issue, we propose a novel vector-vector-matrix architecture (VVMA), which greatly reduces the latency at inference time for NMT. This architecture takes advantage of specialized hardware that has low-latency vector-vector operations and higher-latency vector-matrix operations. It also reduces the number of parameters and FLOPs for virtually all models that rely on efficient matrix multipliers without significantly impacting accuracy. We present empirical results suggesting that our framework can reduce the latency of sequence-to-sequence and Transformer models used for NMT by a factor of four. Finally, we show evidence suggesting that our VVMA extends to other domains, and we discuss novel hardware for its efficient use.
pdf
bib
abs
The importance of fillers for text representations of speech transcripts
Tanvi Dinkar
|
Pierre Colombo
|
Matthieu Labeau
|
Chloé Clavel
While being an essential component of spoken language, fillers (e.g. “um” or “uh”) often remain overlooked in Spoken Language Understanding (SLU) tasks. We explore the possibility of representing them with deep contextualised embeddings, showing improvements on modelling spoken language and two downstream tasks — predicting a speaker’s stance and expressed confidence.
pdf
bib
abs
The role of context in neural pitch accent detection in English
Elizabeth Nielsen
|
Mark Steedman
|
Sharon Goldwater
Prosody is a rich information source in natural language, serving as a marker for phenomena such as contrast. In order to make this information available to downstream tasks, we need a way to detect prosodic events in speech. We propose a new model for pitch accent detection, inspired by the work of Stehwien et al. (2018), who presented a CNN-based model for this task. Our model makes greater use of context by using full utterances as input and adding an LSTM layer. We find that these innovations lead to an improvement from 87.5% to 88.7% accuracy on pitch accent detection on American English speech in the Boston University Radio News Corpus, a state-of-the-art result. We also find that a simple baseline that just predicts a pitch accent on every content word yields 82.2% accuracy, and we suggest that this is the appropriate baseline for this task. Finally, we conduct ablation tests that show pitch is the most important acoustic feature for this task and this corpus.
pdf
bib
abs
VolTAGE: Volatility Forecasting via Text Audio Fusion with Graph Convolution Networks for Earnings Calls
Ramit Sawhney
|
Piyush Khanna
|
Arshiya Aggarwal
|
Taru Jain
|
Puneet Mathur
|
Rajiv Ratn Shah
Natural language processing has recently made stock movement forecasting and volatility forecasting advances, leading to improved financial forecasting. Transcripts of companies’ earnings calls are well studied for risk modeling, offering unique investment insight into stock performance. However, vocal cues in the speech of company executives present an underexplored rich source of natural language data for estimating financial risk. Additionally, most existing approaches ignore the correlations between stocks. Building on existing work, we introduce a neural model for stock volatility prediction that accounts for stock interdependence via graph convolutions while fusing verbal, vocal, and financial features in a semi-supervised multi-task risk forecasting formulation. Our proposed model, VolTAGE, outperforms existing methods demonstrating the effectiveness of multimodal learning for volatility prediction.
pdf
bib
abs
Effectively pretraining a speech translation decoder with Machine Translation data
Ashkan Alinejad
|
Anoop Sarkar
Directly translating from speech to text using an end-to-end approach is still challenging for many language pairs due to insufficient data. Although pretraining the encoder parameters using the Automatic Speech Recognition (ASR) task improves the results in low resource settings, attempting to use pretrained parameters from the Neural Machine Translation (NMT) task has been largely unsuccessful in previous works. In this paper, we will show that by using an adversarial regularizer, we can bring the encoder representations of the ASR and NMT tasks closer even though they are in different modalities, and how this helps us effectively use a pretrained NMT decoder for speech translation.
pdf
bib
abs
A Preliminary Exploration of GANs for Keyphrase Generation
Avinash Swaminathan
|
Haimin Zhang
|
Debanjan Mahata
|
Rakesh Gosangi
|
Rajiv Ratn Shah
|
Amanda Stent
We introduce a new keyphrase generation approach using Generative Adversarial Networks (GANs). For a given document, the generator produces a sequence of keyphrases, and the discriminator distinguishes between human-curated and machine-generated keyphrases. We evaluated this approach on standard benchmark datasets. We observed that our model achieves state-of-the-art performance in the generation of abstractive keyphrases and is comparable to the best performing extractive techniques. Although we achieve promising results using GANs, they are not significantly better than the state-of-the-art generative models. To our knowledge, this is one of the first works that use GANs for keyphrase generation. We present a detailed analysis of our observations and expect that these findings would help other researchers to further study the use of GANs for the task of keyphrase generation.
pdf
bib
abs
TESA: A Task in Entity Semantic Aggregation for Abstractive Summarization
Clément Jumel
|
Annie Louis
|
Jackie Chi Kit Cheung
Human-written texts contain frequent generalizations and semantic aggregation of content. In a document, they may refer to a pair of named entities such as ‘London’ and ‘Paris’ with different expressions: “the major cities”, “the capital cities” and “two European cities”. Yet generation, especially, abstractive summarization systems have so far focused heavily on paraphrasing and simplifying the source content, to the exclusion of such semantic abstraction capabilities. In this paper, we present a new dataset and task aimed at the semantic aggregation of entities. TESA contains a dataset of 5.3K crowd-sourced entity aggregations of Person, Organization, and Location named entities. The aggregations are document-appropriate, meaning that they are produced by annotators to match the situational context of a given news article from the New York Times. We then build baseline models for generating aggregations given a tuple of entities and document context. We finetune on TESA an encoder-decoder language model and compare it with simpler classification methods based on linguistically informed features. Our quantitative and qualitative evaluations show reasonable performance in making a choice from a given list of expressions, but free-form expressions are understandably harder to generate and evaluate.
pdf
bib
abs
MLSUM: The Multilingual Summarization Corpus
Thomas Scialom
|
Paul-Alexis Dray
|
Sylvain Lamprier
|
Benjamin Piwowarski
|
Jacopo Staiano
We present MLSUM, the first large-scale MultiLingual SUMmarization dataset. Obtained from online newspapers, it contains 1.5M+ article/summary pairs in five different languages – namely, French, German, Spanish, Russian, Turkish. Together with English news articles from the popular CNN/Daily mail dataset, the collected data form a large scale multilingual dataset which can enable new research directions for the text summarization community. We report cross-lingual comparative analyses based on state-of-the-art systems. These highlight existing biases which motivate the use of a multi-lingual dataset.
pdf
bib
abs
Multi-XScience: A Large-scale Dataset for Extreme Multi-document Summarization of Scientific Articles
Yao Lu
|
Yue Dong
|
Laurent Charlin
Multi-document summarization is a challenging task for which there exists little large-scale datasets. We propose Multi-XScience, a large-scale multi-document summarization dataset created from scientific articles. Multi-XScience introduces a challenging multi-document summarization task: writing the related-work section of a paper based on its abstract and the articles it references. Our work is inspired by extreme summarization, a dataset construction protocol that favours abstractive modeling approaches. Descriptive statistics and empirical results—using several state-of-the-art models trained on the Multi-XScience dataset—reveal that Multi-XScience is well suited for abstractive models.
pdf
bib
abs
Intrinsic Evaluation of Summarization Datasets
Rishi Bommasani
|
Claire Cardie
High quality data forms the bedrock for building meaningful statistical models in NLP. Consequently, data quality must be evaluated either during dataset construction or *post hoc*. Almost all popular summarization datasets are drawn from natural sources and do not come with inherent quality assurance guarantees. In spite of this, data quality has gone largely unquestioned for many of these recent datasets. We perform the first large-scale evaluation of summarization datasets by introducing 5 intrinsic metrics and applying them to 10 popular datasets. We find that data usage in recent summarization research is sometimes inconsistent with the underlying properties of the data. Further, we discover that our metrics can serve the additional purpose of being inexpensive heuristics for detecting generically low quality examples.
pdf
bib
abs
Iterative Feature Mining for Constraint-Based Data Collection to Increase Data Diversity and Model Robustness
Stefan Larson
|
Anthony Zheng
|
Anish Mahendran
|
Rishi Tekriwal
|
Adrian Cheung
|
Eric Guldan
|
Kevin Leach
|
Jonathan K. Kummerfeld
Diverse data is crucial for training robust models, but crowdsourced text often lacks diversity as workers tend to write simple variations from prompts. We propose a general approach for guiding workers to write more diverse text by iteratively constraining their writing. We show how prior workflows are special cases of our approach, and present a way to apply the approach to dialog tasks such as intent classification and slot-filling. Using our method, we create more challenging versions of test sets from prior dialog datasets and find dramatic performance drops for standard models. Finally, we show that our approach is complementary to recent work on improving data diversity, and training on data collected with our approach leads to more robust models.
pdf
bib
abs
Conversational Semantic Parsing for Dialog State Tracking
Jianpeng Cheng
|
Devang Agrawal
|
Héctor Martínez Alonso
|
Shruti Bhargava
|
Joris Driesen
|
Federico Flego
|
Dain Kaplan
|
Dimitri Kartsaklis
|
Lin Li
|
Dhivya Piraviperumal
|
Jason D. Williams
|
Hong Yu
|
Diarmuid Ó Séaghdha
|
Anders Johannsen
We consider a new perspective on dialog state tracking (DST), the task of estimating a user’s goal through the course of a dialog. By formulating DST as a semantic parsing task over hierarchical representations, we can incorporate semantic compositionality, cross-domain knowledge sharing and co-reference. We present TreeDST, a dataset of 27k conversations annotated with tree-structured dialog states and system acts. We describe an encoder-decoder framework for DST with hierarchical representations, which leads to ~20% improvement over state-of-the-art DST approaches that operate on a flat meaning space of slot-value pairs.
pdf
bib
abs
doc2dial: A Goal-Oriented Document-Grounded Dialogue Dataset
Song Feng
|
Hui Wan
|
Chulaka Gunasekara
|
Siva Patel
|
Sachindra Joshi
|
Luis Lastras
We introduce doc2dial, a new dataset of goal-oriented dialogues that are grounded in the associated documents. Inspired by how the authors compose documents for guiding end users, we first construct dialogue flows based on the content elements that corresponds to higher-level relations across text sections as well as lower-level relations between discourse units within a section. Then we present these dialogue flows to crowd contributors to create conversational utterances. The dataset includes over 4500 annotated conversations with an average of 14 turns that are grounded in over 450 documents from four domains. Compared to the prior document-grounded dialogue datasets, this dataset covers a variety of dialogue scenes in information-seeking conversations. For evaluating the versatility of the dataset, we introduce multiple dialogue modeling tasks and present baseline approaches.
pdf
bib
abs
Interview: Large-scale Modeling of Media Dialog with Discourse Patterns and Knowledge Grounding
Bodhisattwa Prasad Majumder
|
Shuyang Li
|
Jianmo Ni
|
Julian McAuley
In this work, we perform the first large-scale analysis of discourse in media dialog and its impact on generative modeling of dialog turns, with a focus on interrogative patterns and use of external knowledge. Discourse analysis can help us understand modes of persuasion, entertainment, and information elicitation in such settings, but has been limited to manual review of small corpora. We introduce **Interview**—a large-scale (105K conversations) media dialog dataset collected from news interview transcripts—which allows us to investigate such patterns at scale. We present a dialog model that leverages external knowledge as well as dialog acts via auxiliary losses and demonstrate that our model quantitatively and qualitatively outperforms strong discourse-agnostic baselines for dialog modeling—generating more specific and topical responses in interview-style conversations.
pdf
bib
abs
INSPIRED: Toward Sociable Recommendation Dialog Systems
Shirley Anugrah Hayati
|
Dongyeop Kang
|
Qingxiaoyang Zhu
|
Weiyan Shi
|
Zhou Yu
In recommendation dialogs, humans commonly disclose their preference and make recommendations in a friendly manner. However, this is a challenge when developing a sociable recommendation dialog system, due to the lack of dialog dataset annotated with such sociable strategies. Therefore, we present INSPIRED, a new dataset of 1,001 human-human dialogs for movie recommendation with measures for successful recommendations. To better understand how humans make recommendations in communication, we design an annotation scheme related to recommendation strategies based on social science theories and annotate these dialogs. Our analysis shows that sociable recommendation strategies, such as sharing personal opinions or communicating with encouragement, more frequently lead to successful recommendations. Based on our dataset, we train end-to-end recommendation dialog systems with and without our strategy labels. In both automatic and human evaluation, our model with strategy incorporation outperforms the baseline model. This work is a first step for building sociable recommendation dialog systems with a basis of social science theories.
pdf
bib
abs
Information Seeking in the Spirit of Learning: A Dataset for Conversational Curiosity
Pedro Rodriguez
|
Paul Crook
|
Seungwhan Moon
|
Zhiguang Wang
Open-ended human learning and information-seeking are increasingly mediated by digital assistants. However, such systems often ignore the user’s pre-existing knowledge. Assuming a correlation between engagement and user responses such as “liking” messages or asking followup questions, we design a Wizard-of-Oz dialog task that tests the hypothesis that engagement increases when users are presented with facts related to what they know. Through crowd-sourcing of this experiment, we collect and release 14K dialogs (181K utterances) where users and assistants converse about geographic topics like geopolitical entities and locations. This dataset is annotated with pre-existing user knowledge, message-level dialog acts, grounding to Wikipedia, and user reactions to messages. Responses using a user’s prior knowledge increase engagement. We incorporate this knowledge into a multi-task model that reproduces human assistant policies and improves over a bert content model by 13 mean reciprocal rank points.
pdf
bib
abs
Queens are Powerful too: Mitigating Gender Bias in Dialogue Generation
Emily Dinan
|
Angela Fan
|
Adina Williams
|
Jack Urbanek
|
Douwe Kiela
|
Jason Weston
Social biases present in data are often directly reflected in the predictions of models trained on that data. We analyze gender bias in dialogue data, and examine how this bias is not only replicated, but is also amplified in subsequent generative chit-chat dialogue models. We measure gender bias in six existing dialogue datasets before selecting the most biased one, the multi-player text-based fantasy adventure dataset LIGHT, as a testbed for bias mitigation techniques. We consider three techniques to mitigate gender bias: counterfactual data augmentation, targeted data collection, and bias controlled training. We show that our proposed techniques mitigate gender bias by balancing the genderedness of generated dialogue utterances, and find that they are particularly effective in combination. We evaluate model performance with a variety of quantitative methods—including the quantity of gendered words, a dialogue safety classifier, and human assessments—all of which show that our models generate less gendered, but equally engaging chit-chat responses.
pdf
bib
abs
Discriminatively-Tuned Generative Classifiers for Robust Natural Language Inference
Xiaoan Ding
|
Tianyu Liu
|
Baobao Chang
|
Zhifang Sui
|
Kevin Gimpel
While discriminative neural network classifiers are generally preferred, recent work has shown advantages of generative classifiers in term of data efficiency and robustness. In this paper, we focus on natural language inference (NLI). We propose GenNLI, a generative classifier for NLI tasks, and empirically characterize its performance by comparing it to five baselines, including discriminative models and large-scale pretrained language representation models like BERT. We explore training objectives for discriminative fine-tuning of our generative classifiers, showing improvements over log loss fine-tuning from prior work (Lewis and Fan, 2019). In particular, we find strong results with a simple unbounded modification to log loss, which we call the “infinilog loss”. Our experiments show that GenNLI outperforms both discriminative and pretrained baselines across several challenging NLI experimental settings, including small training sets, imbalanced label distributions, and label noise.
pdf
bib
abs
New Protocols and Negative Results for Textual Entailment Data Collection
Samuel R. Bowman
|
Jennimaria Palomaki
|
Livio Baldini Soares
|
Emily Pitler
Natural language inference (NLI) data has proven useful in benchmarking and, especially, as pretraining data for tasks requiring language understanding. However, the crowdsourcing protocol that was used to collect this data has known issues and was not explicitly optimized for either of these purposes, so it is likely far from ideal. We propose four alternative protocols, each aimed at improving either the ease with which annotators can produce sound training examples or the quality and diversity of those examples. Using these alternatives and a fifth baseline protocol, we collect and compare five new 8.5k-example training sets. In evaluations focused on transfer learning applications, our results are solidly negative, with models trained on our baseline dataset yielding good transfer performance to downstream tasks, but none of our four new methods (nor the recent ANLI) showing any improvements over that baseline. In a small silver lining, we observe that all four new protocols, especially those where annotators edit *pre-filled* text boxes, reduce previously observed issues with annotation artifacts.
pdf
bib
abs
The Curse of Performance Instability in Analysis Datasets: Consequences, Source, and Suggestions
Xiang Zhou
|
Yixin Nie
|
Hao Tan
|
Mohit Bansal
We find that the performance of state-of-the-art models on Natural Language Inference (NLI) and Reading Comprehension (RC) analysis/stress sets can be highly unstable. This raises three questions: (1) How will the instability affect the reliability of the conclusions drawn based on these analysis sets? (2) Where does this instability come from? (3) How should we handle this instability and what are some potential solutions? For the first question, we conduct a thorough empirical study over analysis sets and find that in addition to the unstable final performance, the instability exists all along the training curve. We also observe lower-than-expected correlations between the analysis validation set and standard validation set, questioning the effectiveness of the current model-selection routine. Next, to answer the second question, we give both theoretical explanations and empirical evidence regarding the source of the instability, demonstrating that the instability mainly comes from high inter-example correlations within analysis sets. Finally, for the third question, we discuss an initial attempt to mitigate the instability and suggest guidelines for future work such as reporting the decomposed variance for more interpretable results and fair comparison across models.
pdf
bib
abs
Universal Natural Language Processing with Limited Annotations: Try Few-shot Textual Entailment as a Start
Wenpeng Yin
|
Nazneen Fatema Rajani
|
Dragomir Radev
|
Richard Socher
|
Caiming Xiong
A standard way to address different NLP problems is by first constructing a problem-specific dataset, then building a model to fit this dataset. To build the ultimate artificial intelligence, we desire a single machine that can handle diverse new problems, for which task-specific annotations are limited. We bring up textual entailment as a unified solver for such NLP problems. However, current research of textual entailment has not spilled much ink on the following questions: (i) How well does a pretrained textual entailment system generalize across domains with only a handful of domain-specific examples? and (ii) When is it worth transforming an NLP task into textual entailment? We argue that the transforming is unnecessary if we can obtain rich annotations for this task. Textual entailment really matters particularly when the target NLP task has insufficient annotations. Universal NLP can be probably achieved through different routines. In this work, we introduce Universal Few-shot textual Entailment (UFO-Entail). We demonstrate that this framework enables a pretrained entailment model to work well on new entailment domains in a few-shot setting, and show its effectiveness as a unified solver for several downstream NLP tasks such as question answering and coreference resolution when the end-task annotations are limited.
pdf
bib
abs
ConjNLI: Natural Language Inference Over Conjunctive Sentences
Swarnadeep Saha
|
Yixin Nie
|
Mohit Bansal
Reasoning about conjuncts in conjunctive sentences is important for a deeper understanding of conjunctions in English and also how their usages and semantics differ from conjunctive and disjunctive boolean logic. Existing NLI stress tests do not consider non-boolean usages of conjunctions and use templates for testing such model knowledge. Hence, we introduce ConjNLI, a challenge stress-test for natural language inference over conjunctive sentences, where the premise differs from the hypothesis by conjuncts removed, added, or replaced. These sentences contain single and multiple instances of coordinating conjunctions (“and”, “or”, “but”, “nor”) with quantifiers, negations, and requiring diverse boolean and non-boolean inferences over conjuncts. We find that large-scale pre-trained language models like RoBERTa do not understand conjunctive semantics well and resort to shallow heuristics to make inferences over such sentences. As some initial solutions, we first present an iterative adversarial fine-tuning method that uses synthetically created training data based on boolean and non-boolean heuristics. We also propose a direct model advancement by making RoBERTa aware of predicate semantic roles. While we observe some performance gains, ConjNLI is still challenging for current methods, thus encouraging interesting future work for better understanding of conjunctions.
pdf
bib
abs
Data and Representation for Turkish Natural Language Inference
Emrah Budur
|
Rıza Özçelik
|
Tunga Gungor
|
Christopher Potts
Large annotated datasets in NLP are overwhelmingly in English. This is an obstacle to progress in other languages. Unfortunately, obtaining new annotated resources for each task in each language would be prohibitively expensive. At the same time, commercial machine translation systems are now robust. Can we leverage these systems to translate English-language datasets automatically? In this paper, we offer a positive response for natural language inference (NLI) in Turkish. We translated two large English NLI datasets into Turkish and had a team of experts validate their translation quality and fidelity to the original labels. Using these datasets, we address core issues of representation for Turkish NLI. We find that in-language embeddings are essential and that morphological parsing can be avoided where the training set is large. Finally, we show that models trained on our machine-translated datasets are successful on human-translated evaluation sets. We share all code, models, and data publicly.
pdf
bib
abs
Multitask Learning for Cross-Lingual Transfer of Broad-coverage Semantic Dependencies
Maryam Aminian
|
Mohammad Sadegh Rasooli
|
Mona Diab
We describe a method for developing broad-coverage semantic dependency parsers for languages for which no semantically annotated resource is available. We leverage a multitask learning framework coupled with annotation projection. We use syntactic parsing as the auxiliary task in our multitask setup. Our annotation projection experiments from English to Czech show that our multitask setup yields 3.1% (4.2%) improvement in labeled F1-score on in-domain (out-of-domain) test set compared to a single-task baseline.
pdf
bib
abs
Precise Task Formalization Matters in Winograd Schema Evaluations
Haokun Liu
|
William Huang
|
Dhara Mungra
|
Samuel R. Bowman
Performance on the Winograd Schema Challenge (WSC), a respected English commonsense reasoning benchmark, recently rocketed from chance accuracy to 89% on the SuperGLUE leaderboard, with relatively little corroborating evidence of a correspondingly large improvement in reasoning ability. We hypothesize that much of this improvement comes from recent changes in task formalization—the combination of input specification, loss function, and reuse of pretrained parameters—by users of the dataset, rather than improvements in the pretrained model’s reasoning ability. We perform an ablation on two Winograd Schema datasets that interpolates between the formalizations used before and after this surge, and find (i) framing the task as multiple choice improves performance dramatically and (ii)several additional techniques, including the reuse of a pretrained language modeling head, can mitigate the model’s extreme sensitivity to hyperparameters. We urge future benchmark creators to impose additional structure to minimize the impact of formalization decisions on reported results.
pdf
bib
abs
Avoiding the Hypothesis-Only Bias in Natural Language Inference via Ensemble Adversarial Training
Joe Stacey
|
Pasquale Minervini
|
Haim Dubossarsky
|
Sebastian Riedel
|
Tim Rocktäschel
Natural Language Inference (NLI) datasets contain annotation artefacts resulting in spurious correlations between the natural language utterances and their respective entailment classes. These artefacts are exploited by neural networks even when only considering the hypothesis and ignoring the premise, leading to unwanted biases. Belinkov et al. (2019b) proposed tackling this problem via adversarial training, but this can lead to learned sentence representations that still suffer from the same biases. We show that the bias can be reduced in the sentence representations by using an ensemble of adversaries, encouraging the model to jointly decrease the accuracy of these different adversaries while fitting the data. This approach produces more robust NLI models, outperforming previous de-biasing efforts when generalised to 12 other NLI datasets (Belinkov et al., 2019a; Mahabadi et al., 2020). In addition, we find that the optimal number of adversarial classifiers depends on the dimensionality of the sentence representations, with larger sentence representations being more difficult to de-bias while benefiting from using a greater number of adversaries.
pdf
bib
abs
SynSetExpan: An Iterative Framework for Joint Entity Set Expansion and Synonym Discovery
Jiaming Shen
|
Wenda Qiu
|
Jingbo Shang
|
Michelle Vanni
|
Xiang Ren
|
Jiawei Han
Entity set expansion and synonym discovery are two critical NLP tasks. Previous studies accomplish them separately, without exploring their interdependencies. In this work, we hypothesize that these two tasks are tightly coupled because two synonymous entities tend to have a similar likelihood of belonging to various semantic classes. This motivates us to design SynSetExpan, a novel framework that enables two tasks to mutually enhance each other. SynSetExpan uses a synonym discovery model to include popular entities’ infrequent synonyms into the set, which boosts the set expansion recall. Meanwhile, the set expansion model, being able to determine whether an entity belongs to a semantic class, can generate pseudo training data to fine-tune the synonym discovery model towards better accuracy. To facilitate the research on studying the interplays of these two tasks, we create the first large-scale Synonym-Enhanced Set Expansion (SE2) dataset via crowdsourcing. Extensive experiments on the SE2 dataset and previous benchmarks demonstrate the effectiveness of SynSetExpan for both entity set expansion and synonym discovery tasks.
pdf
bib
abs
Evaluating the Calibration of Knowledge Graph Embeddings for Trustworthy Link Prediction
Tara Safavi
|
Danai Koutra
|
Edgar Meij
Little is known about the trustworthiness of predictions made by knowledge graph embedding (KGE) models. In this paper we take initial steps toward this direction by investigating the calibration of KGE models, or the extent to which they output confidence scores that reflect the expected correctness of predicted knowledge graph triples. We first conduct an evaluation under the standard closed-world assumption (CWA), in which predicted triples not already in the knowledge graph are considered false, and show that existing calibration techniques are effective for KGE under this common but narrow assumption. Next, we introduce the more realistic but challenging open-world assumption (OWA), in which unobserved predictions are not considered true or false until ground-truth labels are obtained. Here, we show that existing calibration techniques are much less effective under the OWA than the CWA, and provide explanations for this discrepancy. Finally, to motivate the utility of calibration for KGE from a practitioner’s perspective, we conduct a unique case study of human-AI collaboration, showing that calibrated predictions can improve human performance in a knowledge graph completion task.
pdf
bib
abs
Text Graph Transformer for Document Classification
Haopeng Zhang
|
Jiawei Zhang
Text classification is a fundamental problem in natural language processing. Recent studies applied graph neural network (GNN) techniques to capture global word co-occurrence in a corpus. However, previous works are not scalable to large-sized corpus and ignore the heterogeneity of the text graph. To address these problems, we introduce a novel Transformer based heterogeneous graph neural network, namely Text Graph Transformer (TG-Transformer). Our model learns effective node representations by capturing structure and heterogeneity from the text graph. We propose a mini-batch text graph sampling method that significantly reduces computing and memory costs to handle large-sized corpus. Extensive experiments have been conducted on several benchmark datasets, and the results demonstrate that TG-Transformer outperforms state-of-the-art approaches on text classification task.
pdf
bib
abs
CoDEx: A Comprehensive Knowledge Graph Completion Benchmark
Tara Safavi
|
Danai Koutra
We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at
https://bit.ly/2EPbrJs.
pdf
bib
abs
META: Metadata-Empowered Weak Supervision for Text Classification
Dheeraj Mekala
|
Xinyang Zhang
|
Jingbo Shang
Recent advances in weakly supervised learning enable training high-quality text classifiers by only providing a few user-provided seed words. Existing methods mainly use text data alone to generate pseudo-labels despite the fact that metadata information (e.g., author and timestamp) is widely available across various domains. Strong label indicators exist in the metadata and it has been long overlooked mainly due to the following challenges: (1) metadata is multi-typed, requiring systematic modeling of different types and their combinations, (2) metadata is noisy, some metadata entities (e.g., authors, venues) are more compelling label indicators than others. In this paper, we propose a novel framework, META, which goes beyond the existing paradigm and leverages metadata as an additional source of weak supervision. Specifically, we organize the text data and metadata together into a text-rich network and adopt network motifs to capture appropriate combinations of metadata. Based on seed words, we rank and filter motif instances to distill highly label-indicative ones as “seed motifs”, which provide additional weak supervision. Following a bootstrapping manner, we train the classifier and expand the seed words and seed motifs iteratively. Extensive experiments and case studies on real-world datasets demonstrate superior performance and significant advantages of leveraging metadata as weak supervision.
pdf
bib
abs
Towards More Accurate Uncertainty Estimation In Text Classification
Jianfeng He
|
Xuchao Zhang
|
Shuo Lei
|
Zhiqian Chen
|
Fanglan Chen
|
Abdulaziz Alhamadani
|
Bei Xiao
|
ChangTien Lu
The uncertainty measurement of classified results is especially important in areas requiring limited human resources for higher accuracy. For instance, data-driven algorithms diagnosing diseases need accurate uncertainty score to decide whether additional but limited quantity of experts are needed for rectification. However, few uncertainty models focus on improving the performance of text classification where human resources are involved. To achieve this, we aim at generating accurate uncertainty score by improving the confidence of winning scores. Thus, a model called MSD, which includes three independent components as “mix-up”, “self-ensembling”, “distinctiveness score”, is proposed to improve the accuracy of uncertainty score by reducing the effect of overconfidence of winning score and considering the impact of different categories of uncertainty simultaneously. MSD can be applied with different Deep Neural Networks. Extensive experiments with ablation setting are conducted on four real-world datasets, on which, competitive results are obtained.
pdf
bib
abs
Chapter Captor: Text Segmentation in Novels
Charuta Pethe
|
Allen Kim
|
Steve Skiena
Books are typically segmented into chapters and sections, representing coherent sub-narratives and topics. We investigate the task of predicting chapter boundaries, as a proxy for the general task of segmenting long texts. We build a Project Gutenberg chapter segmentation data set of 9,126 English novels, using a hybrid approach combining neural inference and rule matching to recognize chapter title headers in books, achieving an F1-score of 0.77 on this task. Using this annotated data as ground truth after removing structural cues, we present cut-based and neural methods for chapter segmentation, achieving a F1-score of 0.453 on the challenging task of exact break prediction over book-length documents. Finally, we reveal interesting historical trends in the chapter structure of novels.
pdf
bib
abs
Authorship Attribution for Neural Text Generation
Adaku Uchendu
|
Thai Le
|
Kai Shu
|
Dongwon Lee
In recent years, the task of generating realistic short and long texts have made tremendous advancements. In particular, several recently proposed neural network-based language models have demonstrated their astonishing capabilities to generate texts that are challenging to distinguish from human-written texts with the naked eye. Despite many benefits and utilities of such neural methods, in some applications, being able to tell the “author” of a text in question becomes critically important. In this work, in the context of this Turing Test, we investigate the so-called authorship attribution problem in three versions: (1) given two texts T1 and T2, are both generated by the same method or not? (2) is the given text T written by a human or machine? (3) given a text T and k candidate neural methods, can we single out the method (among k alternatives) that generated T? Against one humanwritten and eight machine-generated texts (i.e., CTRL, GPT, GPT2, GROVER, XLM, XLNET, PPLM, FAIR), we empirically experiment with the performance of various models in three problems. By and large, we find that most generators still generate texts significantly different from human-written ones, thereby making three problems easier to solve. However, the qualities of texts generated by GPT2, GROVER, and FAIR are better, often confusing machine classifiers in solving three problems. All codes and datasets of our experiments are available at:
https://bit.ly/ 302zWdz
pdf
bib
abs
NwQM: A neural quality assessment framework for Wikipedia
Bhanu Prakash Reddy Guda
|
Sasi Bhushan Seelaboyina
|
Soumya Sarkar
|
Animesh Mukherjee
Millions of people irrespective of socioeconomic and demographic backgrounds, depend on Wikipedia articles everyday for keeping themselves informed regarding popular as well as obscure topics. Articles have been categorized by editors into several quality classes, which indicate their reliability as encyclopedic content. This manual designation is an onerous task because it necessitates profound knowledge about encyclopedic language, as well navigating circuitous set of wiki guidelines. In this paper we propose Neural wikipedia Quality Monitor (NwQM), a novel deep learning model which accumulates signals from several key information sources such as article text, meta data and images to obtain improved Wikipedia article representation. We present comparison of our approach against a plethora of available solutions and show 8% improvement over state-of-the-art approaches with detailed ablation studies.
pdf
bib
abs
Towards Modeling Revision Requirements in wikiHow Instructions
Irshad Bhat
|
Talita Anthonio
|
Michael Roth
wikiHow is a resource of how-to guidesthat describe the steps necessary to accomplish a goal. Guides in this resource are regularly edited by a community of users, who try to improve instructions in terms of style, clarity and correctness. In this work, we test whether the need for such edits can be predicted automatically. For this task, we extend an existing resource of textual edits with a complementary set of approx. 4 million sentences that remain unedited over time and report on the outcome of two revision modeling experiments.
pdf
bib
abs
Deep Attentive Learning for Stock Movement Prediction From Social Media Text and Company Correlations
Ramit Sawhney
|
Shivam Agarwal
|
Arnav Wadhwa
|
Rajiv Ratn Shah
In the financial domain, risk modeling and profit generation heavily rely on the sophisticated and intricate stock movement prediction task. Stock forecasting is complex, given the stochastic dynamics and non-stationary behavior of the market. Stock movements are influenced by varied factors beyond the conventionally studied historical prices, such as social media and correlations among stocks. The rising ubiquity of online content and knowledge mandates an exploration of models that factor in such multimodal signals for accurate stock forecasting. We introduce an architecture that achieves a potent blend of chaotic temporal signals from financial data, social media, and inter-stock relationships via a graph neural network in a hierarchical temporal fashion. Through experiments on real-world S&P 500 index data and English tweets, we show the practical applicability of our model as a tool for investment decision making and trading.
pdf
bib
abs
Natural Language Processing for Achieving Sustainable Development: the Case of Neural Labelling to Enhance Community Profiling
Costanza Conforti
|
Stephanie Hirmer
|
Dai Morgan
|
Marco Basaldella
|
Yau Ben Or
In recent years, there has been an increasing interest in the application of Artificial Intelligence – and especially Machine Learning – to the field of Sustainable Development (SD). However, until now, NLP has not been systematically applied in this context. In this paper, we show the high potential of NLP to enhance project sustainability. In particular, we focus on the case of community profiling in developing countries, where, in contrast to the developed world, a notable data gap exists. Here, NLP could help to address the cost and time barrier of structuring qualitative data that prohibits its widespread use and associated benefits. We propose the new extreme multi-class multi-label Automatic UserPerceived Value classification task. We release Stories2Insights, an expert-annotated dataset of interviews carried out in Uganda, we provide a detailed corpus analysis, and we implement a number of strong neural baselines to address the task. Experimental results show that the problem is challenging, and leaves considerable room for future research at the intersection of NLP and SD.
pdf
bib
abs
To Schedule or not to Schedule: Extracting Task Specific Temporal Entities and Associated Negation Constraints
Barun Patra
|
Chala Fufa
|
Pamela Bhattacharya
|
Charles Lee
State of the art research for date-time entity extraction from text is task agnostic. Consequently, while the methods proposed in literature perform well for generic date-time extraction from texts, they don’t fare as well on task specific date-time entity extraction where only a subset of the date-time entities present in the text are pertinent to solving the task. Furthermore, some tasks require identifying negation constraints associated with the date-time entities to correctly reason over time. We showcase a novel model for extracting task-specific date-time entities along with their negation constraints. We show the efficacy of our method on the task of date-time understanding in the context of scheduling meetings for an email-based digital AI scheduling assistant. Our method achieves an absolute gain of 19% f-score points compared to baseline methods in detecting the date-time entities relevant to scheduling meetings and a 4% improvement over baseline methods for detecting negation constraints over date-time entities.
pdf
bib
abs
Competence-Level Prediction and Resume & Job Description Matching Using Context-Aware Transformer Models
Changmao Li
|
Elaine Fisher
|
Rebecca Thomas
|
Steve Pittard
|
Vicki Hertzberg
|
Jinho D. Choi
This paper presents a comprehensive study on resume classification to reduce the time and labor needed to screen an overwhelming number of applications significantly, while improving the selection of suitable candidates. A total of 6,492 resumes are extracted from 24,933 job applications for 252 positions designated into four levels of experience for Clinical Research Coordinators (CRC). Each resume is manually annotated to its most appropriate CRC position by experts through several rounds of triple annotation to establish guidelines. As a result, a high Kappa score of 61% is achieved for inter-annotator agreement. Given this dataset, novel transformer-based classification models are developed for two tasks: the first task takes a resume and classifies it to a CRC level (T1), and the second task takes both a resume and a job description to apply and predicts if the application is suited to the job (T2). Our best models using section encoding and a multi-head attention decoding give results of 73.3% to T1 and 79.2% to T2. Our analysis shows that the prediction errors are mostly made among adjacent CRC levels, which are hard for even experts to distinguish, implying the practical value of our models in real HR platforms.
pdf
bib
abs
Grammatical Error Correction in Low Error Density Domains: A New Benchmark and Analyses
Simon Flachs
|
Ophélie Lacroix
|
Helen Yannakoudakis
|
Marek Rei
|
Anders Søgaard
Evaluation of grammatical error correction (GEC) systems has primarily focused on essays written by non-native learners of English, which however is only part of the full spectrum of GEC applications. We aim to broaden the target domain of GEC and release CWEB, a new benchmark for GEC consisting of website text generated by English speakers of varying levels of proficiency. Website data is a common and important domain that contains far fewer grammatical errors than learner essays, which we show presents a challenge to state-of-the-art GEC systems. We demonstrate that a factor behind this is the inability of systems to rely on a strong internal language model in low error density domains. We hope this work shall facilitate the development of open-domain GEC models that generalize to different topics and genres.
pdf
bib
abs
Deconstructing word embedding algorithms
Kian Kenyon-Dean
|
Edward Newell
|
Jackie Chi Kit Cheung
Word embeddings are reliable feature representations of words used to obtain high quality results for various NLP applications. Uncontextualized word embeddings are used in many NLP tasks today, especially in resource-limited settings where high memory capacity and GPUs are not available. Given the historical success of word embeddings in NLP, we propose a retrospective on some of the most well-known word embedding algorithms. In this work, we deconstruct Word2vec, GloVe, and others, into a common form, unveiling some of the common conditions that seem to be required for making performant word embeddings. We believe that the theoretical findings in this paper can provide a basis for more informed development of future models.
pdf
bib
abs
Sequential Modelling of the Evolution of Word Representations for Semantic Change Detection
Adam Tsakalidis
|
Maria Liakata
Semantic change detection concerns the task of identifying words whose meaning has changed over time. Current state-of-the-art approaches operating on neural embeddings detect the level of semantic change in a word by comparing its vector representation in two distinct time periods, without considering its evolution through time. In this work, we propose three variants of sequential models for detecting semantically shifted words, effectively accounting for the changes in the word representations over time. Through extensive experimentation under various settings with synthetic and real data we showcase the importance of sequential modelling of word vectors through time for semantic change detection. Finally, we compare different approaches in a quantitative manner, demonstrating that temporal modelling of word representations yields a clear-cut advantage in performance.
pdf
bib
abs
Sparsity Makes Sense: Word Sense Disambiguation Using Sparse Contextualized Word Representations
Gábor Berend
In this paper, we demonstrate that by utilizing sparse word representations, it becomes possible to surpass the results of more complex task-specific models on the task of fine-grained all-words word sense disambiguation. Our proposed algorithm relies on an overcomplete set of semantic basis vectors that allows us to obtain sparse contextualized word representations. We introduce such an information theory-inspired synset representation based on the co-occurrence of word senses and non-zero coordinates for word forms which allows us to achieve an aggregated F-score of 78.8 over a combination of five standard word sense disambiguating benchmark datasets. We also demonstrate the general applicability of our proposed framework by evaluating it towards part-of-speech tagging on four different treebanks. Our results indicate a significant improvement over the application of the dense word representations.
pdf
bib
abs
Exploring Semantic Capacity of Terms
Jie Huang
|
Zilong Wang
|
Kevin Chang
|
Wen-mei Hwu
|
JinJun Xiong
We introduce and study semantic capacity of terms. For example, the semantic capacity of artificial intelligence is higher than that of linear regression since artificial intelligence possesses a broader meaning scope. Understanding semantic capacity of terms will help many downstream tasks in natural language processing. For this purpose, we propose a two-step model to investigate semantic capacity of terms, which takes a large text corpus as input and can evaluate semantic capacity of terms if the text corpus can provide enough co-occurrence information of terms. Extensive experiments in three fields demonstrate the effectiveness and rationality of our model compared with well-designed baselines and human-level evaluations.
pdf
bib
abs
Learning to Ignore: Long Document Coreference with Bounded Memory Neural Networks
Shubham Toshniwal
|
Sam Wiseman
|
Allyson Ettinger
|
Karen Livescu
|
Kevin Gimpel
Long document coreference resolution remains a challenging task due to the large memory and runtime requirements of current models. Recent work doing incremental coreference resolution using just the global representation of entities shows practical benefits but requires keeping all entities in memory, which can be impractical for long documents. We argue that keeping all entities in memory is unnecessary, and we propose a memory-augmented neural network that tracks only a small bounded number of entities at a time, thus guaranteeing a linear runtime in length of document. We show that (a) the model remains competitive with models with high memory and computational requirements on OntoNotes and LitBank, and (b) the model learns an efficient memory management strategy easily outperforming a rule-based strategy
pdf
bib
abs
Revealing the Myth of Higher-Order Inference in Coreference Resolution
Liyan Xu
|
Jinho D. Choi
This paper analyzes the impact of higher-order inference (HOI) on the task of coreference resolution. HOI has been adapted by almost all recent coreference resolution models without taking much investigation on its true effectiveness over representation learning. To make a comprehensive analysis, we implement an end-to-end coreference system as well as four HOI approaches, attended antecedent, entity equalization, span clustering, and cluster merging, where the latter two are our original methods. We find that given a high-performing encoder such as SpanBERT, the impact of HOI is negative to marginal, providing a new perspective of HOI to this task. Our best model using cluster merging shows the Avg-F1 of 80.2 on the CoNLL 2012 shared task dataset in English.
pdf
bib
abs
Pre-training Mention Representations in Coreference Models
Yuval Varkel
|
Amir Globerson
Collecting labeled data for coreference resolution is a challenging task, requiring skilled annotators. It is thus desirable to develop coreference resolution models that can make use of unlabeled data. Here we provide such an approach for the powerful class of neural coreference models. These models rely on representations of mentions, and we show these representations can be learned in a self-supervised manner towards improving resolution accuracy. We propose two self-supervised tasks that are closely related to coreference resolution and thus improve mention representation. Applying this approach to the GAP dataset results in new state of the arts results.
pdf
bib
abs
Learning Collaborative Agents with Rule Guidance for Knowledge Graph Reasoning
Deren Lei
|
Gangrong Jiang
|
Xiaotao Gu
|
Kexuan Sun
|
Yuning Mao
|
Xiang Ren
Walk-based models have shown their advantages in knowledge graph (KG) reasoning by achieving decent performance while providing interpretable decisions. However, the sparse reward signals offered by the KG during a traversal are often insufficient to guide a sophisticated walk-based reinforcement learning (RL) model. An alternate approach is to use traditional symbolic methods (e.g., rule induction), which achieve good performance but can be hard to generalize due to the limitation of symbolic representation. In this paper, we propose RuleGuider, which leverages high-quality rules generated by symbolic-based methods to provide reward supervision for walk-based agents. Experiments on benchmark datasets shows that RuleGuider clearly improves the performance of walk-based models without losing interpretability.
pdf
bib
abs
Exploring Contextualized Neural Language Models for Temporal Dependency Parsing
Hayley Ross
|
Jonathon Cai
|
Bonan Min
Extracting temporal relations between events and time expressions has many applications such as constructing event timelines and time-related question answering. It is a challenging problem which requires syntactic and semantic information at sentence or discourse levels, which may be captured by deep contextualized language models (LMs) such as BERT (Devlin et al., 2019). In this paper, we develop several variants of BERT-based temporal dependency parser, and show that BERT significantly improves temporal dependency parsing (Zhang and Xue, 2018a). We also present a detailed analysis on why deep contextualized neural LMs help and where they may fall short. Source code and resources are made available at
https://github.com/bnmin/tdp_ranking.
pdf
bib
abs
Systematic Comparison of Neural Architectures and Training Approaches for Open Information Extraction
Patrick Hohenecker
|
Frank Mtumbuka
|
Vid Kocijan
|
Thomas Lukasiewicz
The goal of open information extraction (OIE) is to extract facts from natural language text, and to represent them as structured triples of the form <subject,predicate, object>. For example, given the sentence “Beethoven composed the Ode to Joy.”, we are expected to extract the triple <Beethoven, composed, Ode to Joy>. In this work, we systematically compare different neural network architectures and training approaches, and improve the performance of the currently best models on the OIE16 benchmark (Stanovsky and Dagan, 2016) by 0.421 F1 score and 0.420 AUC-PR, respectively, in our experiments (i.e., by more than 200% in both cases). Furthermore, we show that appropriate problem and loss formulations often affect the performance more than the network architecture.
pdf
bib
abs
SeqMix: Augmenting Active Sequence Labeling via Sequence Mixup
Rongzhi Zhang
|
Yue Yu
|
Chao Zhang
Active learning is an important technique for low-resource sequence labeling tasks. However, current active sequence labeling methods use the queried samples alone in each iteration, which is an inefficient way of leveraging human annotations. We propose a simple but effective data augmentation method to improve label efficiency of active sequence labeling. Our method, SeqMix, simply augments the queried samples by generating extra labeled sequences in each iteration. The key difficulty is to generate plausible sequences along with token-level labels. In SeqMix, we address this challenge by performing mixup for both sequences and token-level labels of the queried samples. Furthermore, we design a discriminator during sequence mixup, which judges whether the generated sequences are plausible or not. Our experiments on Named Entity Recognition and Event Detection tasks show that SeqMix can improve the standard active sequence labeling method by 2.27%–3.75% in terms of
F1 scores. The code and data for SeqMix can be found at
https://github.com/rz-zhang/SeqMix.
pdf
bib
abs
AxCell: Automatic Extraction of Results from Machine Learning Papers
Marcin Kardas
|
Piotr Czapla
|
Pontus Stenetorp
|
Sebastian Ruder
|
Sebastian Riedel
|
Ross Taylor
|
Robert Stojnic
Tracking progress in machine learning has become increasingly difficult with the recent explosion in the number of papers. In this paper, we present AxCell, an automatic machine learning pipeline for extracting results from papers. AxCell uses several novel components, including a table segmentation subtask, to learn relevant structural knowledge that aids extraction. When compared with existing methods, our approach significantly improves the state of the art for results extraction. We also release a structured, annotated dataset for training models for results extraction, and a dataset for evaluating the performance of models on this task. Lastly, we show the viability of our approach enables it to be used for semi-automated results extraction in production, suggesting our improvements make this task practically viable for the first time. Code is available on GitHub.
pdf
bib
abs
Knowledge-guided Open Attribute Value Extraction with Reinforcement Learning
Ye Liu
|
Sheng Zhang
|
Rui Song
|
Suo Feng
|
Yanghua Xiao
Open attribute value extraction for emerging entities is an important but challenging task. A lot of previous works formulate the problem as a question-answering (QA) task. While the collections of articles from web corpus provide updated information about the emerging entities, the retrieved texts can be noisy, irrelevant, thus leading to inaccurate answers. Effectively filtering out noisy articles as well as bad answers is the key to improve extraction accuracy. Knowledge graph (KG), which contains rich, well organized information about entities, provides a good resource to address the challenge. In this work, we propose a knowledge-guided reinforcement learning (RL) framework for open attribute value extraction. Informed by relevant knowledge in KG, we trained a deep Q-network to sequentially compare extracted answers to improve extraction accuracy. The proposed framework is applicable to different information extraction system. Our experimental results show that our method outperforms the baselines by 16.5 - 27.8%.
pdf
bib
abs
DualTKB: A Dual Learning Bridge between Text and Knowledge Base
Pierre Dognin
|
Igor Melnyk
|
Inkit Padhi
|
Cicero Nogueira dos Santos
|
Payel Das
In this work, we present a dual learning approach for unsupervised text to path and path to text transfers in Commonsense Knowledge Bases (KBs). We investigate the impact of weak supervision by creating a weakly supervised dataset and show that even a slight amount of supervision can significantly improve the model performance and enable better-quality transfers. We examine different model architectures, and evaluation metrics, proposing a novel Commonsense KB completion metric tailored for generative models. Extensive experimental results show that the proposed method compares very favorably to the existing baselines. This approach is a viable step towards a more advanced system for automatic KB construction/expansion and the reverse operation of KB conversion to coherent textual descriptions.
pdf
bib
abs
Incremental Neural Coreference Resolution in Constant Memory
Patrick Xia
|
João Sedoc
|
Benjamin Van Durme
We investigate modeling coreference resolution under a fixed memory constraint by extending an incremental clustering algorithm to utilize contextualized encoders and neural components. Given a new sentence, our end-to-end algorithm proposes and scores each mention span against explicit entity representations created from the earlier document context (if any). These spans are then used to update the entity’s representations before being forgotten; we only retain a fixed set of salient entities throughout the document. In this work, we successfully convert a high-performing model (Joshi et al., 2020), asymptotically reducing its memory usage to constant space with only a 0.3% relative loss in F1 on OntoNotes 5.0.
pdf
bib
abs
Improving Low Compute Language Modeling with In-Domain Embedding Initialisation
Charles Welch
|
Rada Mihalcea
|
Jonathan K. Kummerfeld
Many NLP applications, such as biomedical data and technical support, have 10-100 million tokens of in-domain data and limited computational resources for learning from it. How should we train a language model in this scenario? Most language modeling research considers either a small dataset with a closed vocabulary (like the standard 1 million token Penn Treebank), or the whole web with byte-pair encoding. We show that for our target setting in English, initialising and freezing input embeddings using in-domain data can improve language model performance by providing a useful representation of rare words, and this pattern holds across several different domains. In the process, we show that the standard convention of tying input and output embeddings does not improve perplexity when initializing with embeddings trained on in-domain data.
pdf
bib
abs
KGPT: Knowledge-Grounded Pre-Training for Data-to-Text Generation
Wenhu Chen
|
Yu Su
|
Xifeng Yan
|
William Yang Wang
Data-to-text generation has recently attracted substantial interests due to its wide applications. Existing methods have shown impressive performance on an array of tasks. However, they rely on a significant amount of labeled data for each task, which is costly to acquire and thus limits their application to new tasks and domains. In this paper, we propose to leverage pre-training and transfer learning to address this issue. We propose a knowledge-grounded pre-training (KGPT), which consists of two parts, 1) a general knowledge-grounded generation model to generate knowledge-enriched text. 2) a pre-training paradigm on a massive knowledge-grounded text corpus crawled from the web. The pre-trained model can be fine-tuned on various data-to-text generation tasks to generate task-specific text. We adopt three settings, namely fully-supervised, zero-shot, few-shot to evaluate its effectiveness. Under the fully-supervised setting, our model can achieve remarkable gains over the known baselines. Under zero-shot setting, our model without seeing any examples achieves over 30 ROUGE-L on WebNLG while all other baselines fail. Under the few-shot setting, our model only needs about one-fifteenth as many labeled examples to achieve the same level of performance as baseline models. These experiments consistently prove the strong generalization ability of our proposed framework.
pdf
bib
abs
POINTER: Constrained Progressive Text Generation via Insertion-based Generative Pre-training
Yizhe Zhang
|
Guoyin Wang
|
Chunyuan Li
|
Zhe Gan
|
Chris Brockett
|
Bill Dolan
Large-scale pre-trained language models, such as BERT and GPT-2, have achieved excellent performance in language representation learning and free-form text generation. However, these models cannot be directly employed to generate text under specified lexical constraints. To address this challenge, we present POINTER (PrOgressive INsertion-based TransformER), a simple yet novel insertion-based approach for hard-constrained text generation. The proposed method operates by progressively inserting new tokens between existing tokens in a parallel manner. This procedure is recursively applied until a sequence is completed. The resulting coarse-to-fine hierarchy makes the generation process intuitive and interpretable. We pre-train our model with the proposed progressive insertion-based objective on a 12GB Wikipedia dataset, and fine-tune it on downstream hard-constrained generation tasks. Non-autoregressive decoding yields a logarithmic time complexity during inference time. Experimental results on both News and Yelp datasets demonstrate that Pointer achieves state-of-the-art performance on constrained text generation. We released the pre-trained models and the source code to facilitate future research.
pdf
bib
abs
Unsupervised Text Style Transfer with Padded Masked Language Models
Eric Malmi
|
Aliaksei Severyn
|
Sascha Rothe
We propose Masker, an unsupervised text-editing method for style transfer. To tackle cases when no parallel source–target pairs are available, we train masked language models (MLMs) for both the source and the target domain. Then we find the text spans where the two models disagree the most in terms of likelihood. This allows us to identify the source tokens to delete to transform the source text to match the style of the target domain. The deleted tokens are replaced with the target MLM, and by using a padded MLM variant, we avoid having to predetermine the number of inserted tokens. Our experiments on sentence fusion and sentiment transfer demonstrate that Masker performs competitively in a fully unsupervised setting. Moreover, in low-resource settings, it improves supervised methods’ accuracy by over 10 percentage points when pre-training them on silver training data generated by Masker.
pdf
bib
abs
PALM: Pre-training an Autoencoding&Autoregressive Language Model for Context-conditioned Generation
Bin Bi
|
Chenliang Li
|
Chen Wu
|
Ming Yan
|
Wei Wang
|
Songfang Huang
|
Fei Huang
|
Luo Si
Self-supervised pre-training, such as BERT, MASS and BART, has emerged as a powerful technique for natural language understanding and generation. Existing pre-training techniques employ autoencoding and/or autoregressive objectives to train Transformer-based models by recovering original word tokens from corrupted text with some masked tokens. The training goals of existing techniques are often inconsistent with the goals of many language generation tasks, such as generative question answering and conversational response generation, for producing new text given context. This work presents PALM with a novel scheme that jointly pre-trains an autoencoding and autoregressive language model on a large unlabeled corpus, specifically designed for generating new text conditioned on context. The new scheme alleviates the mismatch introduced by the existing denoising scheme between pre-training and fine-tuning where generation is more than reconstructing original text. An extensive set of experiments show that PALM achieves new state-of-the-art results on a variety of language generation benchmarks covering generative question answering (Rank 1 on the official MARCO leaderboard), abstractive summarization on CNN/DailyMail as well as Gigaword, question generation on SQuAD, and conversational response generation on Cornell Movie Dialogues.
pdf
bib
abs
Gradient-guided Unsupervised Lexically Constrained Text Generation
Lei Sha
Lexically constrained generation requires the target sentence to satisfy some lexical constraints, such as containing some specific words or being the paraphrase to a given sentence, which is very important in many real-world natural language generation applications. Previous works usually apply beam-search-based methods or stochastic searching methods to lexically-constrained generation. However, when the search space is too large, beam-search-based methods always fail to find the constrained optimal solution. At the same time, stochastic search methods always cost too many steps to find the correct optimization direction. In this paper, we propose a novel method G2LC to solve the lexically-constrained generation as an unsupervised gradient-guided optimization problem. We propose a differentiable objective function and use the gradient to help determine which position in the sequence should be changed (deleted or inserted/replaced by another word). The word updating process of the inserted/replaced word also benefits from the guidance of gradient. Besides, our method is free of parallel data training, which is flexible to be used in the inference stage of any pre-trained generation model. We apply G2LC to two generation tasks: keyword-to-sentence generation and unsupervised paraphrase generation. The experiment results show that our method achieves state-of-the-art compared to previous lexically-constrained methods.
pdf
bib
abs
TeaForN: Teacher-Forcing with N-grams
Sebastian Goodman
|
Nan Ding
|
Radu Soricut
Sequence generation models trained with teacher-forcing suffer from issues related to exposure bias and lack of differentiability across timesteps. Our proposed method, Teacher-Forcing with N-grams (TeaForN), addresses both these problems directly, through the use of a stack of N decoders trained to decode along a secondary time axis that allows model-parameter updates based on N prediction steps. TeaForN can be used with a wide class of decoder architectures and requires minimal modifications from a standard teacher-forcing setup. Empirically, we show that TeaForN boosts generation quality on one Machine Translation benchmark, WMT 2014 English-French, and two News Summarization benchmarks, CNN/Dailymail and Gigaword.
pdf
bib
abs
Experience Grounds Language
Yonatan Bisk
|
Ari Holtzman
|
Jesse Thomason
|
Jacob Andreas
|
Yoshua Bengio
|
Joyce Chai
|
Mirella Lapata
|
Angeliki Lazaridou
|
Jonathan May
|
Aleksandr Nisnevich
|
Nicolas Pinto
|
Joseph Turian
Language understanding research is held back by a failure to relate language to the physical world it describes and to the social interactions it facilitates. Despite the incredible effectiveness of language processing models to tackle tasks after being trained on text alone, successful linguistic communication relies on a shared experience of the world. It is this shared experience that makes utterances meaningful. Natural language processing is a diverse field, and progress throughout its development has come from new representational theories, modeling techniques, data collection paradigms, and tasks. We posit that the present success of representation learning approaches trained on large, text-only corpora requires the parallel tradition of research on the broader physical and social context of language to address the deeper questions of communication.
pdf
bib
abs
Keep CALM and Explore: Language Models for Action Generation in Text-based Games
Shunyu Yao
|
Rohan Rao
|
Matthew Hausknecht
|
Karthik Narasimhan
Text-based games present a unique challenge for autonomous agents to operate in natural language and handle enormous action spaces. In this paper, we propose the Contextual Action Language Model (CALM) to generate a compact set of action candidates at each game state. Our key insight is to train language models on human gameplay, where people demonstrate linguistic priors and a general game sense for promising actions conditioned on game history. We combine CALM with a reinforcement learning agent which re-ranks the generated action candidates to maximize in-game rewards. We evaluate our approach using the Jericho benchmark, on games unseen by CALM during training. Our method obtains a 69% relative improvement in average game score over the previous state-of-the-art model. Surprisingly, on half of these games, CALM is competitive with or better than other models that have access to ground truth admissible actions. Code and data are available at
https://github.com/princeton-nlp/calm-textgame.
pdf
bib
abs
CapWAP: Image Captioning with a Purpose
Adam Fisch
|
Kenton Lee
|
Ming-Wei Chang
|
Jonathan Clark
|
Regina Barzilay
The traditional image captioning task uses generic reference captions to provide textual information about images. Different user populations, however, will care about different visual aspects of images. In this paper, we propose a new task, Captioning with A Purpose (CapWAP). Our goal is to develop systems that can be tailored to be useful for the information needs of an intended population, rather than merely provide generic information about an image. In this task, we use question-answer (QA) pairs—a natural expression of information need—from users, instead of reference captions, for both training and post-inference evaluation. We show that it is possible to use reinforcement learning to directly optimize for the intended information need, by rewarding outputs that allow a question answering model to provide correct answers to sampled user questions. We convert several visual question answering datasets into CapWAP datasets, and demonstrate that under a variety of scenarios our purposeful captioning system learns to anticipate and fulfill specific information needs better than its generic counterparts, as measured by QA performance on user questions from unseen images, when using the caption alone as context.
pdf
bib
abs
What is More Likely to Happen Next? Video-and-Language Future Event Prediction
Jie Lei
|
Licheng Yu
|
Tamara Berg
|
Mohit Bansal
Given a video with aligned dialogue, people can often infer what is more likely to happen next. Making such predictions requires not only a deep understanding of the rich dynamics underlying the video and dialogue, but also a significant amount of commonsense knowledge. In this work, we explore whether AI models are able to learn to make such multimodal commonsense next-event predictions. To support research in this direction, we collect a new dataset, named Video-and-Language Event Prediction (VLEP), with 28,726 future event prediction examples (along with their rationales) from 10,234 diverse TV Show and YouTube Lifestyle Vlog video clips. In order to promote the collection of non-trivial challenging examples, we employ an adversarial human-and-model-in-the-loop data collection procedure. We also present a strong baseline incorporating information from video, dialogue, and commonsense knowledge. Experiments show that each type of information is useful for this challenging task, and that compared to the high human performance on VLEP, our model provides a good starting point but leaves large room for future work.
pdf
bib
abs
X-LXMERT: Paint, Caption and Answer Questions with Multi-Modal Transformers
Jaemin Cho
|
Jiasen Lu
|
Dustin Schwenk
|
Hannaneh Hajishirzi
|
Aniruddha Kembhavi
Mirroring the success of masked language models, vision-and-language counterparts like VILBERT, LXMERT and UNITER have achieved state of the art performance on a variety of multimodal discriminative tasks like visual question answering and visual grounding. Recent work has also successfully adapted such models towards the generative task of image captioning. This begs the question: Can these models go the other way and generate images from pieces of text? Our analysis of a popular representative from this model family – LXMERT – finds that it is unable to generate rich and semantically meaningful imagery with its current training setup. We introduce X-LXMERT, an extension to LXMERT with training refinements including: discretizing visual representations, using uniform masking with a large range of masking ratios and aligning the right pre-training datasets to the right objectives which enables it to paint. X-LXMERT’s image generation capabilities rival state of the art generative models while its question answering and captioning abilities remains comparable to LXMERT. Finally, we demonstrate the generality of these training refinements by adding image generation capabilities into UNITER to produce X-UNITER.
pdf
bib
abs
Towards Understanding Sample Variance in Visually Grounded Language Generation: Evaluations and Observations
Wanrong Zhu
|
Xin Wang
|
Pradyumna Narayana
|
Kazoo Sone
|
Sugato Basu
|
William Yang Wang
A major challenge in visually grounded language generation is to build robust benchmark datasets and models that can generalize well in real-world settings. To do this, it is critical to ensure that our evaluation protocols are correct, and benchmarks are reliable. In this work, we set forth to design a set of experiments to understand an important but often ignored problem in visually grounded language generation: given that humans have different utilities and visual attention, how will the sample variance in multi-reference datasets affect the models’ performance? Empirically, we study several multi-reference datasets and corresponding vision-and-language tasks. We show that it is of paramount importance to report variance in experiments; that human-generated references could vary drastically in different datasets/tasks, revealing the nature of each task; that metric-wise, CIDEr has shown systematically larger variances than others. Our evaluations on reference-per-instance shed light on the design of reliable datasets in the future.
pdf
bib
abs
Beyond Instructional Videos: Probing for More Diverse Visual-Textual Grounding on YouTube
Jack Hessel
|
Zhenhai Zhu
|
Bo Pang
|
Radu Soricut
Pretraining from unlabelled web videos has quickly become the de-facto means of achieving high performance on many video understanding tasks. Features are learned via prediction of grounded relationships between visual content and automatic speech recognition (ASR) tokens. However, prior pretraining work has been limited to only instructional videos; a priori, we expect this domain to be relatively “easy:” speakers in instructional videos will often reference the literal objects/actions being depicted. We ask: can similar models be trained on more diverse video corpora? And, if so, what types of videos are “grounded” and what types are not? We fit a representative pretraining model to the diverse YouTube8M dataset, and study its success and failure cases. We find that visual-textual grounding is indeed possible across previously unexplored video categories, and that pretraining on a more diverse set results in representations that generalize to both non-instructional and instructional domains.
pdf
bib
abs
Hierarchical Graph Network for Multi-hop Question Answering
Yuwei Fang
|
Siqi Sun
|
Zhe Gan
|
Rohit Pillai
|
Shuohang Wang
|
Jingjing Liu
In this paper, we present Hierarchical Graph Network (HGN) for multi-hop question answering. To aggregate clues from scattered texts across multiple paragraphs, a hierarchical graph is created by constructing nodes on different levels of granularity (questions, paragraphs, sentences, entities), the representations of which are initialized with pre-trained contextual encoders. Given this hierarchical graph, the initial node representations are updated through graph propagation, and multi-hop reasoning is performed via traversing through the graph edges for each subsequent sub-task (e.g., paragraph selection, supporting facts extraction, answer prediction). By weaving heterogeneous nodes into an integral unified graph, this hierarchical differentiation of node granularity enables HGN to support different question answering sub-tasks simultaneously. Experiments on the HotpotQA benchmark demonstrate that the proposed model achieves new state of the art, outperforming existing multi-hop QA approaches.
pdf
bib
abs
A Simple Yet Strong Pipeline for HotpotQA
Dirk Groeneveld
|
Tushar Khot
|
Mausam
|
Ashish Sabharwal
State-of-the-art models for multi-hop question answering typically augment large-scale language models like BERT with additional, intuitively useful capabilities such as named entity recognition, graph-based reasoning, and question decomposition. However, does their strong performance on popular multi-hop datasets really justify this added design complexity? Our results suggest that the answer may be no, because even our simple pipeline based on BERT, named , performs surprisingly well. Specifically, on HotpotQA, Quark outperforms these models on both question answering and support identification (and achieves performance very close to a RoBERTa model). Our pipeline has three steps: 1) use BERT to identify potentially relevant sentences independently of each other; 2) feed the set of selected sentences as context into a standard BERT span prediction model to choose an answer; and 3) use the sentence selection model, now with the chosen answer, to produce supporting sentences. The strong performance of Quark resurfaces the importance of carefully exploring simple model designs before using popular benchmarks to justify the value of complex techniques.
pdf
bib
abs
Is Multihop QA in DiRe Condition? Measuring and Reducing Disconnected Reasoning
Harsh Trivedi
|
Niranjan Balasubramanian
|
Tushar Khot
|
Ashish Sabharwal
Has there been real progress in multi-hop question-answering? Models often exploit dataset artifacts to produce correct answers, without connecting information across multiple supporting facts. This limits our ability to measure true progress and defeats the purpose of building multi-hop QA datasets. We make three contributions towards addressing this. First, we formalize such undesirable behavior as disconnected reasoning across subsets of supporting facts. This allows developing a model-agnostic probe for measuring how much any model can cheat via disconnected reasoning. Second, using a notion of contrastive support sufficiency, we introduce an automatic transformation of existing datasets that reduces the amount of disconnected reasoning. Third, our experiments suggest that there hasn’t been much progress in multi-hop QA in the reading comprehension setting. For a recent large-scale model (XLNet), we show that only 18 points out of its answer F1 score of 72 on HotpotQA are obtained through multifact reasoning, roughly the same as that of a simpler RNN baseline. Our transformation substantially reduces disconnected reasoning (19 points in answer F1). It is complementary to adversarial approaches, yielding further reductions in conjunction.
pdf
bib
abs
Unsupervised Question Decomposition for Question Answering
Ethan Perez
|
Patrick Lewis
|
Wen-tau Yih
|
Kyunghyun Cho
|
Douwe Kiela
We aim to improve question answering (QA) by decomposing hard questions into simpler sub-questions that existing QA systems are capable of answering. Since labeling questions with decompositions is cumbersome, we take an unsupervised approach to produce sub-questions, also enabling us to leverage millions of questions from the internet. Specifically, we propose an algorithm for One-to-N Unsupervised Sequence transduction (ONUS) that learns to map one hard, multi-hop question to many simpler, single-hop sub-questions. We answer sub-questions with an off-the-shelf QA model and give the resulting answers to a recomposition model that combines them into a final answer. We show large QA improvements on HotpotQA over a strong baseline on the original, out-of-domain, and multi-hop dev sets. ONUS automatically learns to decompose different kinds of questions, while matching the utility of supervised and heuristic decomposition methods for QA and exceeding those methods in fluency. Qualitatively, we find that using sub-questions is promising for shedding light on why a QA system makes a prediction.
pdf
bib
abs
SRLGRN: Semantic Role Labeling Graph Reasoning Network
Chen Zheng
|
Parisa Kordjamshidi
This work deals with the challenge of learning and reasoning over multi-hop question answering (QA). We propose a graph reasoning network based on the semantic structure of the sentences to learn cross paragraph reasoning paths and find the supporting facts and the answer jointly. The proposed graph is a heterogeneous document-level graph that contains nodes of type sentence (question, title, and other sentences), and semantic role labeling sub-graphs per sentence that contain arguments as nodes and predicates as edges. Incorporating the argument types, the argument phrases, and the semantics of the edges originated from SRL predicates into the graph encoder helps in finding and also the explainability of the reasoning paths. Our proposed approach shows competitive performance on the HotpotQA distractor setting benchmark compared to the recent state-of-the-art models.
pdf
bib
abs
CancerEmo: A Dataset for Fine-Grained Emotion Detection
Tiberiu Sosea
|
Cornelia Caragea
Emotions are an important element of human nature, often affecting the overall wellbeing of a person. Therefore, it is no surprise that the health domain is a valuable area of interest for emotion detection, as it can provide medical staff or caregivers with essential information about patients. However, progress on this task has been hampered by the absence of large labeled datasets. To this end, we introduce CancerEmo, an emotion dataset created from an online health community and annotated with eight fine-grained emotions. We perform a comprehensive analysis of these emotions and develop deep learning models on the newly created dataset. Our best BERT model achieves an average F1 of 71%, which we improve further using domain-specific pre-training.
pdf
bib
abs
Exploring the Role of Argument Structure in Online Debate Persuasion
Jialu Li
|
Esin Durmus
|
Claire Cardie
Online debate forums provide users a platform to express their opinions on controversial topics while being exposed to opinions from diverse set of viewpoints. Existing work in Natural Language Processing (NLP) has shown that linguistic features extracted from the debate text and features encoding the characteristics of the audience are both critical in persuasion studies. In this paper, we aim to further investigate the role of discourse structure of the arguments from online debates in their persuasiveness. In particular, we use the factor graph model to obtain features for the argument structure of debates from an online debating platform and incorporate these features to an LSTM-based model to predict the debater that makes the most convincing arguments. We find that incorporating argument structure features play an essential role in achieving the best predictive performance in assessing the persuasiveness of the arguments on online debates.
pdf
bib
abs
Zero-Shot Stance Detection: A Dataset and Model using Generalized Topic Representations
Emily Allaway
|
Kathleen McKeown
Stance detection is an important component of understanding hidden influences in everyday life. Since there are thousands of potential topics to take a stance on, most with little to no training data, we focus on zero-shot stance detection: classifying stance from no training examples. In this paper, we present a new dataset for zero-shot stance detection that captures a wider range of topics and lexical variation than in previous datasets. Additionally, we propose a new model for stance detection that implicitly captures relationships between topics using generalized topic representations and show that this model improves performance on a number of challenging linguistic phenomena.
pdf
bib
abs
Sentiment Analysis of Tweets using Heterogeneous Multi-layer Network Representation and Embedding
Loitongbam Gyanendro Singh
|
Anasua Mitra
|
Sanasam Ranbir Singh
Sentiment classification on tweets often needs to deal with the problems of under-specificity, noise, and multilingual content. This study proposes a heterogeneous multi-layer network-based representation of tweets to generate multiple representations of a tweet and address the above issues. The generated representations are further ensembled and classified using a neural-based early fusion approach. Further, we propose a centrality aware random-walk for node embedding and tweet representations suitable for the multi-layer network. From various experimental analysis, it is evident that the proposed method can address the problem of under-specificity, noisy text, and multilingual content present in a tweet and provides better classification performance than the text-based counterparts. Further, the proposed centrality aware based random walk provides better representations than unbiased and other biased counterparts.
pdf
bib
abs
Introducing Syntactic Structures into Target Opinion Word Extraction with Deep Learning
Amir Pouran Ben Veyseh
|
Nasim Nouri
|
Franck Dernoncourt
|
Dejing Dou
|
Thien Huu Nguyen
Targeted opinion word extraction (TOWE) is a sub-task of aspect based sentiment analysis (ABSA) which aims to find the opinion words for a given aspect-term in a sentence. Despite their success for TOWE, the current deep learning models fail to exploit the syntactic information of the sentences that have been proved to be useful for TOWE in the prior research. In this work, we propose to incorporate the syntactic structures of the sentences into the deep learning models for TOWE, leveraging the syntax-based opinion possibility scores and the syntactic connections between the words. We also introduce a novel regularization technique to improve the performance of the deep learning models based on the representation distinctions between the words in TOWE. The proposed model is extensively analyzed and achieves the state-of-the-art performance on four benchmark datasets.
pdf
bib
abs
EmoTag1200: Understanding the Association between Emojis and Emotions
Abu Awal Md Shoeb
|
Gerard de Melo
Given the growing ubiquity of emojis in language, there is a need for methods and resources that shed light on their meaning and communicative role. One conspicuous aspect of emojis is their use to convey affect in ways that may otherwise be non-trivial to achieve. In this paper, we seek to explore the connection between emojis and emotions by means of a new dataset consisting of human-solicited association ratings. We additionally conduct experiments to assess to what extent such associations can be inferred from existing data in an unsupervised manner. Our experiments show that this succeeds when high-quality word-level information is available.
pdf
bib
abs
MIME: MIMicking Emotions for Empathetic Response Generation
Navonil Majumder
|
Pengfei Hong
|
Shanshan Peng
|
Jiankun Lu
|
Deepanway Ghosal
|
Alexander Gelbukh
|
Rada Mihalcea
|
Soujanya Poria
Current approaches to empathetic response generation view the set of emotions expressed in the input text as a flat structure, where all the emotions are treated uniformly. We argue that empathetic responses often mimic the emotion of the user to a varying degree, depending on its positivity or negativity and content. We show that the consideration of these polarity-based emotion clusters and emotional mimicry results in improved empathy and contextual relevance of the response as compared to the state-of-the-art. Also, we introduce stochasticity into the emotion mixture that yields emotionally more varied empathetic responses than the previous work. We demonstrate the importance of these factors to empathetic response generation using both automatic- and human-based evaluations. The implementation of MIME is publicly available at
https://github.com/declare-lab/MIME.
pdf
bib
abs
Exploiting Structured Knowledge in Text via Graph-Guided Representation Learning
Tao Shen
|
Yi Mao
|
Pengcheng He
|
Guodong Long
|
Adam Trischler
|
Weizhu Chen
In this work, we aim at equipping pre-trained language models with structured knowledge. We present two self-supervised tasks learning over raw text with the guidance from knowledge graphs. Building upon entity-level masked language models, our first contribution is an entity masking scheme that exploits relational knowledge underlying the text. This is fulfilled by using a linked knowledge graph to select informative entities and then masking their mentions. In addition, we use knowledge graphs to obtain distractors for the masked entities, and propose a novel distractor-suppressed ranking objective that is optimized jointly with masked language model. In contrast to existing paradigms, our approach uses knowledge graphs implicitly, only during pre-training, to inject language models with structured knowledge via learning from raw text. It is more efficient than retrieval-based methods that perform entity linking and integration during finetuning and inference, and generalizes more effectively than the methods that directly learn from concatenated graph triples. Experiments show that our proposed model achieves improved performance on five benchmarks, including question answering and knowledge base completion.
pdf
bib
abs
Named Entity Recognition Only from Word Embeddings
Ying Luo
|
Hai Zhao
|
Junlang Zhan
Deep neural network models have helped named entity recognition achieve amazing performance without handcrafting features. However, existing systems require large amounts of human annotated training data. Efforts have been made to replace human annotations with external knowledge (e.g., NE dictionary, part-of-speech tags), while it is another challenge to obtain such effective resources. In this work, we propose a fully unsupervised NE recognition model which only needs to take informative clues from pre-trained word embeddings.We first apply Gaussian Hidden Markov Model and Deep Autoencoding Gaussian Mixture Model on word embeddings for entity span detection and type prediction, and then further design an instance selector based on reinforcement learning to distinguish positive sentences from noisy sentences and then refine these coarse-grained annotations through neural networks. Extensive experiments on two CoNLL benchmark NER datasets (CoNLL-2003 English dataset and CoNLL-2002 Spanish dataset) demonstrate that our proposed light NE recognition model achieves remarkable performance without using any annotated lexicon or corpus.
pdf
bib
abs
Text Classification Using Label Names Only: A Language Model Self-Training Approach
Yu Meng
|
Yunyi Zhang
|
Jiaxin Huang
|
Chenyan Xiong
|
Heng Ji
|
Chao Zhang
|
Jiawei Han
Current text classification methods typically require a good number of human-labeled documents as training data, which can be costly and difficult to obtain in real applications. Humans can perform classification without seeing any labeled examples but only based on a small set of words describing the categories to be classified. In this paper, we explore the potential of only using the label name of each class to train classification models on unlabeled data, without using any labeled documents. We use pre-trained neural language models both as general linguistic knowledge sources for category understanding and as representation learning models for document classification. Our method (1) associates semantically related words with the label names, (2) finds category-indicative words and trains the model to predict their implied categories, and (3) generalizes the model via self-training. We show that our model achieves around 90% accuracy on four benchmark datasets including topic and sentiment classification without using any labeled documents but learning from unlabeled data supervised by at most 3 words (1 in most cases) per class as the label name.
pdf
bib
abs
Neural Topic Modeling with Cycle-Consistent Adversarial Training
Xuemeng Hu
|
Rui Wang
|
Deyu Zhou
|
Yuxuan Xiong
Advances on deep generative models have attracted significant research interest in neural topic modeling. The recently proposed Adversarial-neural Topic Model models topics with an adversarially trained generator network and employs Dirichlet prior to capture the semantic patterns in latent topics. It is effective in discovering coherent topics but unable to infer topic distributions for given documents or utilize available document labels. To overcome such limitations, we propose Topic Modeling with Cycle-consistent Adversarial Training (ToMCAT) and its supervised version sToMCAT. ToMCAT employs a generator network to interpret topics and an encoder network to infer document topics. Adversarial training and cycle-consistent constraints are used to encourage the generator and the encoder to produce realistic samples that coordinate with each other. sToMCAT extends ToMCAT by incorporating document labels into the topic modeling process to help discover more coherent topics. The effectiveness of the proposed models is evaluated on unsupervised/supervised topic modeling and text classification. The experimental results show that our models can produce both coherent and informative topics, outperforming a number of competitive baselines.
pdf
bib
abs
Data Boost: Text Data Augmentation Through Reinforcement Learning Guided Conditional Generation
Ruibo Liu
|
Guangxuan Xu
|
Chenyan Jia
|
Weicheng Ma
|
Lili Wang
|
Soroush Vosoughi
Data augmentation is proven to be effective in many NLU tasks, especially for those suffering from data scarcity. In this paper, we present a powerful and easy to deploy text augmentation framework, Data Boost, which augments data through reinforcement learning guided conditional generation. We evaluate Data Boost on three diverse text classification tasks under five different classifier architectures. The result shows that Data Boost can boost the performance of classifiers especially in low-resource data scenarios. For instance, Data Boost improves F1 for the three tasks by 8.7% on average when given only 10% of the whole data for training. We also compare Data Boost with six prior text augmentation methods. Through human evaluations (N=178), we confirm that Data Boost augmentation has comparable quality as the original data with respect to readability and class consistency.
pdf
bib
abs
A State-independent and Time-evolving Network for Early Rumor Detection in Social Media
Rui Xia
|
Kaizhou Xuan
|
Jianfei Yu
In this paper, we study automatic rumor detection for in social media at the event level where an event consists of a sequence of posts organized according to the posting time. It is common that the state of an event is dynamically evolving. However, most of the existing methods to this task ignored this problem, and established a global representation based on all the posts in the event’s life cycle. Such coarse-grained methods failed to capture the event’s unique features in different states. To address this limitation, we propose a state-independent and time-evolving Network (STN) for rumor detection based on fine-grained event state detection and segmentation. Given an event composed of a sequence of posts, STN first predicts the corresponding sequence of states and segments the event into several state-independent sub-events. For each sub-event, STN independently trains an encoder to learn the feature representation for that sub-event and incrementally fuses the representation of the current sub-event with previous ones for rumor prediction. This framework can more accurately learn the representation of an event in the initial stage and enable early rumor detection. Experiments on two benchmark datasets show that STN can significantly improve the rumor detection accuracy in comparison with some strong baseline systems. We also design a new evaluation metric to measure the performance of early rumor detection, under which STN shows a higher advantage in comparison.
pdf
bib
abs
PyMT5: multi-mode translation of natural language and Python code with transformers
Colin Clement
|
Dawn Drain
|
Jonathan Timcheck
|
Alexey Svyatkovskiy
|
Neel Sundaresan
Simultaneously modeling source code and natural language has many exciting applications in automated software development and understanding. Pursuant to achieving such technology, we introduce PyMT5, the Python method text-to-text transfer transformer, which is trained to translate between all pairs of Python method feature combinations: a single model that can both predict whole methods from natural language documentation strings (docstrings) and summarize code into docstrings of any common style. We present an analysis and modeling effort of a large-scale parallel corpus of 26 million Python methods and 7.7 million method-docstring pairs, demonstrating that for docstring and method generation, PyMT5 outperforms similarly-sized auto-regressive language models (GPT2) which were English pre-trained or randomly initialized. On the CodeSearchNet test set, our best model predicts 92.1% syntactically correct method bodies, achieved a BLEU score of 8.59 for method generation and 16.3 for docstring generation (summarization), and achieved a ROUGE-L F-score of 24.8 for method generation and 36.7 for docstring generation.
pdf
bib
abs
PathQG: Neural Question Generation from Facts
Siyuan Wang
|
Zhongyu Wei
|
Zhihao Fan
|
Zengfeng Huang
|
Weijian Sun
|
Qi Zhang
|
Xuanjing Huang
Existing research for question generation encodes the input text as a sequence of tokens without explicitly modeling fact information. These models tend to generate irrelevant and uninformative questions. In this paper, we explore to incorporate facts in the text for question generation in a comprehensive way. We present a novel task of question generation given a query path in the knowledge graph constructed from the input text. We divide the task into two steps, namely, query representation learning and query-based question generation. We formulate query representation learning as a sequence labeling problem for identifying the involved facts to form a query and employ an RNN-based generator for question generation. We first train the two modules jointly in an end-to-end fashion, and further enforce the interaction between these two modules in a variational framework. We construct the experimental datasets on top of SQuAD and results show that our model outperforms other state-of-the-art approaches, and the performance margin is larger when target questions are complex. Human evaluation also proves that our model is able to generate relevant and informative questions.
pdf
bib
abs
What time is it? Temporal Analysis of Novels
Allen Kim
|
Charuta Pethe
|
Steve Skiena
Recognizing the flow of time in a story is a crucial aspect of understanding it. Prior work related to time has primarily focused on identifying temporal expressions or relative sequencing of events, but here we propose computationally annotating each line of a book with wall clock times, even in the absence of explicit time-descriptive phrases. To do so, we construct a data set of hourly time phrases from 52,183 fictional books. We then construct a time-of-day classification model that achieves an average error of 2.27 hours. Furthermore, we show that by analyzing a book in whole using dynamic programming of breakpoints, we can roughly partition a book into segments that each correspond to a particular time-of-day. This approach improves upon baselines by over two hour. Finally, we apply our model to a corpus of literature categorized by different periods in history, to show interesting trends of hourly activity throughout the past. Among several observations we find that the fraction of events taking place past 10 P.M jumps past 1880 - coincident with the advent of the electric light bulb and city lights.
pdf
bib
abs
COGS: A Compositional Generalization Challenge Based on Semantic Interpretation
Najoung Kim
|
Tal Linzen
Natural language is characterized by compositionality: the meaning of a complex expression is constructed from the meanings of its constituent parts. To facilitate the evaluation of the compositional abilities of language processing architectures, we introduce COGS, a semantic parsing dataset based on a fragment of English. The evaluation portion of COGS contains multiple systematic gaps that can only be addressed by compositional generalization; these include new combinations of familiar syntactic structures, or new combinations of familiar words and familiar structures. In experiments with Transformers and LSTMs, we found that in-distribution accuracy on the COGS test set was near-perfect (96–99%), but generalization accuracy was substantially lower (16–35%) and showed high sensitivity to random seed (+-6–8%). These findings indicate that contemporary standard NLP models are limited in their compositional generalization capacity, and position COGS as a good way to measure progress.
pdf
bib
abs
An Analysis of Natural Language Inference Benchmarks through the Lens of Negation
Md Mosharaf Hossain
|
Venelin Kovatchev
|
Pranoy Dutta
|
Tiffany Kao
|
Elizabeth Wei
|
Eduardo Blanco
Negation is underrepresented in existing natural language inference benchmarks. Additionally, one can often ignore the few negations in existing benchmarks and still make the right inference judgments. In this paper, we present a new benchmark for natural language inference in which negation plays a critical role. We also show that state-of-the-art transformers struggle making inference judgments with the new pairs.
pdf
bib
abs
On the Sentence Embeddings from Pre-trained Language Models
Bohan Li
|
Hao Zhou
|
Junxian He
|
Mingxuan Wang
|
Yiming Yang
|
Lei Li
Pre-trained contextual representations like BERT have achieved great success in natural language processing. However, the sentence embeddings from the pre-trained language models without fine-tuning have been found to poorly capture semantic meaning of sentences. In this paper, we argue that the semantic information in the BERT embeddings is not fully exploited. We first reveal the theoretical connection between the masked language model pre-training objective and the semantic similarity task theoretically, and then analyze the BERT sentence embeddings empirically. We find that BERT always induces a non-smooth anisotropic semantic space of sentences, which harms its performance of semantic similarity. To address this issue, we propose to transform the anisotropic sentence embedding distribution to a smooth and isotropic Gaussian distribution through normalizing flows that are learned with an unsupervised objective. Experimental results show that our proposed BERT-flow method obtains significant performance gains over the state-of-the-art sentence embeddings on a variety of semantic textual similarity tasks. The code is available at
https://github.com/bohanli/BERT-flow.
pdf
bib
abs
What Can We Learn from Collective Human Opinions on Natural Language Inference Data?
Yixin Nie
|
Xiang Zhou
|
Mohit Bansal
Despite the subjective nature of many NLP tasks, most NLU evaluations have focused on using the majority label with presumably high agreement as the ground truth. Less attention has been paid to the distribution of human opinions. We collect ChaosNLI, a dataset with a total of 464,500 annotations to study Collective HumAn OpinionS in oft-used NLI evaluation sets. This dataset is created by collecting 100 annotations per example for 3,113 examples in SNLI and MNLI and 1,532 examples in αNLI. Analysis reveals that: (1) high human disagreement exists in a noticeable amount of examples in these datasets; (2) the state-of-the-art models lack the ability to recover the distribution over human labels; (3) models achieve near-perfect accuracy on the subset of data with a high level of human agreement, whereas they can barely beat a random guess on the data with low levels of human agreement, which compose most of the common errors made by state-of-the-art models on the evaluation sets. This questions the validity of improving model performance on old metrics for the low-agreement part of evaluation datasets. Hence, we argue for a detailed examination of human agreement in future data collection efforts, and evaluating model outputs against the distribution over collective human opinions.
pdf
bib
abs
Improving Text Generation with Student-Forcing Optimal Transport
Jianqiao Li
|
Chunyuan Li
|
Guoyin Wang
|
Hao Fu
|
Yuhchen Lin
|
Liqun Chen
|
Yizhe Zhang
|
Chenyang Tao
|
Ruiyi Zhang
|
Wenlin Wang
|
Dinghan Shen
|
Qian Yang
|
Lawrence Carin
Neural language models are often trained with maximum likelihood estimation (MLE), where the next word is generated conditioned on the ground-truth word tokens. During testing, however, the model is instead conditioned on previously generated tokens, resulting in what is termed exposure bias. To reduce this gap between training and testing, we propose using optimal transport (OT) to match the sequences generated in these two modes. We examine the necessity of adding Student-Forcing scheme during training with an imitation learning interpretation. An extension is further proposed to improve the OT learning for long sequences, based on the structural and contextual information of the text sequences. The effectiveness of the proposed method is validated on machine translation, text summarization, and text generation tasks.
pdf
bib
abs
UNION: An Unreferenced Metric for Evaluating Open-ended Story Generation
Jian Guan
|
Minlie Huang
Despite the success of existing referenced metrics (e.g., BLEU and MoverScore), they correlate poorly with human judgments for open-ended text generation including story or dialog generation because of the notorious one-to-many issue: there are many plausible outputs for the same input, which may differ substantially in literal or semantics from the limited number of given references. To alleviate this issue, we propose UNION, a learnable UNreferenced metrIc for evaluating Open-eNded story generation, which measures the quality of a generated story without any reference. Built on top of BERT, UNION is trained to distinguish human-written stories from negative samples and recover the perturbation in negative stories. We propose an approach of constructing negative samples by mimicking the errors commonly observed in existing NLG models, including repeated plots, conflicting logic, and long-range incoherence. Experiments on two story datasets demonstrate that UNION is a reliable measure for evaluating the quality of generated stories, which correlates better with human judgments and is more generalizable than existing state-of-the-art metrics.
pdf
bib
abs
Fˆ2-Softmax: Diversifying Neural Text Generation via Frequency Factorized Softmax
Byung-Ju Choi
|
Jimin Hong
|
David Park
|
Sang Wan Lee
Despite recent advances in neural text generation, encoding the rich diversity in human language remains elusive. We argue that the sub-optimal text generation is mainly attributable to the imbalanced token distribution, which particularly misdirects the learning model when trained with the maximum-likelihood objective. As a simple yet effective remedy, we propose two novel methods, Fˆ2-Softmax and MefMax, for a balanced training even with the skewed frequency distribution. MefMax assigns tokens uniquely to frequency classes, trying to group tokens with similar frequencies and equalize frequency mass between the classes. Fˆ2-Softmax then decomposes a probability distribution of the target token into a product of two conditional probabilities of (1) frequency class, and (2) token from the target frequency class. Models learn more uniform probability distributions because they are confined to subsets of vocabularies. Significant performance gains on seven relevant metrics suggest the supremacy of our approach in improving not only the diversity but also the quality of generated texts.
pdf
bib
abs
Partially-Aligned Data-to-Text Generation with Distant Supervision
Zihao Fu
|
Bei Shi
|
Wai Lam
|
Lidong Bing
|
Zhiyuan Liu
The Data-to-Text task aims to generate human-readable text for describing some given structured data enabling more interpretability. However, the typical generation task is confined to a few particular domains since it requires well-aligned data which is difficult and expensive to obtain. Using partially-aligned data is an alternative way of solving the dataset scarcity problem. This kind of data is much easier to obtain since it can be produced automatically. However, using this kind of data induces the over-generation problem posing difficulties for existing models, which tends to add unrelated excerpts during the generation procedure. In order to effectively utilize automatically annotated partially-aligned datasets, we extend the traditional generation task to a refined task called Partially-Aligned Data-to-Text Generation (PADTG) which is more practical since it utilizes automatically annotated data for training and thus considerably expands the application domains. To tackle this new task, we propose a novel distant supervision generation framework. It firstly estimates the input data’s supportiveness for each target word with an estimator and then applies a supportiveness adaptor and a rebalanced beam search to harness the over-generation problem in the training and generation phases respectively. We also contribute a partially-aligned dataset (The data and source code of this paper can be obtained from
https://github.com/fuzihaofzh/distant_supervision_nlg) by sampling sentences from Wikipedia and automatically extracting corresponding KB triples for each sentence from Wikidata. The experimental results show that our framework outperforms all baseline models as well as verify the feasibility of utilizing partially-aligned data.
pdf
bib
abs
Like hiking? You probably enjoy nature: Persona-grounded Dialog with Commonsense Expansions
Bodhisattwa Prasad Majumder
|
Harsh Jhamtani
|
Taylor Berg-Kirkpatrick
|
Julian McAuley
Existing persona-grounded dialog models often fail to capture simple implications of given persona descriptions, something which humans are able to do seamlessly. For example, state-of-the-art models cannot infer that interest in hiking might imply love for nature or longing for a break. In this paper, we propose to expand available persona sentences using existing commonsense knowledge bases and paraphrasing resources to imbue dialog models with access to an expanded and richer set of persona descriptions. Additionally, we introduce fine-grained grounding on personas by encouraging the model to make a discrete choice among persona sentences while synthesizing a dialog response. Since such a choice is not observed in the data, we model it using a discrete latent random variable and use variational learning to sample from hundreds of persona expansions. Our model outperforms competitive baselines on the Persona-Chat dataset in terms of dialog quality and diversity while achieving persona-consistent and controllable dialog generation.
pdf
bib
abs
A Probabilistic End-To-End Task-Oriented Dialog Model with Latent Belief States towards Semi-Supervised Learning
Yichi Zhang
|
Zhijian Ou
|
Min Hu
|
Junlan Feng
Structured belief states are crucial for user goal tracking and database query in task-oriented dialog systems. However, training belief trackers often requires expensive turn-level annotations of every user utterance. In this paper we aim at alleviating the reliance on belief state labels in building end-to-end dialog systems, by leveraging unlabeled dialog data towards semi-supervised learning. We propose a probabilistic dialog model, called the LAtent BElief State (LABES) model, where belief states are represented as discrete latent variables and jointly modeled with system responses given user inputs. Such latent variable modeling enables us to develop semi-supervised learning under the principled variational learning framework. Furthermore, we introduce LABES-S2S, which is a copy-augmented Seq2Seq model instantiation of LABES. In supervised experiments, LABES-S2S obtains strong results on three benchmark datasets of different scales. In utilizing unlabeled dialog data, semi-supervised LABES-S2S significantly outperforms both supervised-only and semi-supervised baselines. Remarkably, we can reduce the annotation demands to 50% without performance loss on MultiWOZ.
pdf
bib
abs
The World is Not Binary: Learning to Rank with Grayscale Data for Dialogue Response Selection
Zibo Lin
|
Deng Cai
|
Yan Wang
|
Xiaojiang Liu
|
Haitao Zheng
|
Shuming Shi
Response selection plays a vital role in building retrieval-based conversation systems. Despite that response selection is naturally a learning-to-rank problem, most prior works take a point-wise view and train binary classifiers for this task: each response candidate is labeled either relevant (one) or irrelevant (zero). On the one hand, this formalization can be sub-optimal due to its ignorance of the diversity of response quality. On the other hand, annotating grayscale data for learning-to-rank can be prohibitively expensive and challenging. In this work, we show that grayscale data can be automatically constructed without human effort. Our method employs off-the-shelf response retrieval models and response generation models as automatic grayscale data generators. With the constructed grayscale data, we propose multi-level ranking objectives for training, which can (1) teach a matching model to capture more fine-grained context-response relevance difference and (2) reduce the train-test discrepancy in terms of distractor strength. Our method is simple, effective, and universal. Experiments on three benchmark datasets and four state-of-the-art matching models show that the proposed approach brings significant and consistent performance improvements.
pdf
bib
abs
GRADE: Automatic Graph-Enhanced Coherence Metric for Evaluating Open-Domain Dialogue Systems
Lishan Huang
|
Zheng Ye
|
Jinghui Qin
|
Liang Lin
|
Xiaodan Liang
Automatically evaluating dialogue coherence is a challenging but high-demand ability for developing high-quality open-domain dialogue systems. However, current evaluation metrics consider only surface features or utterance-level semantics, without explicitly considering the fine-grained topic transition dynamics of dialogue flows. Here, we first consider that the graph structure constituted with topics in a dialogue can accurately depict the underlying communication logic, which is a more natural way to produce persuasive metrics. Capitalized on the topic-level dialogue graph, we propose a new evaluation metric GRADE, which stands for Graph-enhanced Representations for Automatic Dialogue Evaluation. Specifically, GRADE incorporates both coarse-grained utterance-level contextualized representations and fine-grained topic-level graph representations to evaluate dialogue coherence. The graph representations are obtained by reasoning over topic-level dialogue graphs enhanced with the evidence from a commonsense graph, including k-hop neighboring representations and hop-attention weights. Experimental results show that our GRADE significantly outperforms other state-of-the-art metrics on measuring diverse dialogue models in terms of the Pearson and Spearman correlations with human judgments. Besides, we release a new large-scale human evaluation benchmark to facilitate future research on automatic metrics.
pdf
bib
abs
MedDialog: Large-scale Medical Dialogue Datasets
Guangtao Zeng
|
Wenmian Yang
|
Zeqian Ju
|
Yue Yang
|
Sicheng Wang
|
Ruisi Zhang
|
Meng Zhou
|
Jiaqi Zeng
|
Xiangyu Dong
|
Ruoyu Zhang
|
Hongchao Fang
|
Penghui Zhu
|
Shu Chen
|
Pengtao Xie
Medical dialogue systems are promising in assisting in telemedicine to increase access to healthcare services, improve the quality of patient care, and reduce medical costs. To facilitate the research and development of medical dialogue systems, we build large-scale medical dialogue datasets – MedDialog, which contain 1) a Chinese dataset with 3.4 million conversations between patients and doctors, 11.3 million utterances, 660.2 million tokens, covering 172 specialties of diseases, and 2) an English dataset with 0.26 million conversations, 0.51 million utterances, 44.53 million tokens, covering 96 specialties of diseases. To our best knowledge, MedDialog is the largest medical dialogue dataset to date. We pretrain several dialogue generation models on the Chinese MedDialog dataset, including Transformer, GPT, BERT-GPT, and compare their performance. It is shown that models trained on MedDialog are able to generate clinically correct and doctor-like medical dialogues. We also study the transferability of models trained on MedDialog to low-resource medical dialogue generation tasks. It is shown that via transfer learning which finetunes the models pretrained on MedDialog, the performance on medical dialogue generation tasks with small datasets can be greatly improved, as shown in human evaluation and automatic evaluation. The datasets and code are available at
https://github.com/UCSD-AI4H/Medical-Dialogue-Systempdf
bib
abs
An information theoretic view on selecting linguistic probes
Zining Zhu
|
Frank Rudzicz
There is increasing interest in assessing the linguistic knowledge encoded in neural representations. A popular approach is to attach a diagnostic classifier – or ”probe” – to perform supervised classification from internal representations. However, how to select a good probe is in debate. Hewitt and Liang (2019) showed that a high performance on diagnostic classification itself is insufficient, because it can be attributed to either ”the representation being rich in knowledge”, or ”the probe learning the task”, which Pimentel et al. (2020) challenged. We show this dichotomy is valid information-theoretically. In addition, we find that the ”good probe” criteria proposed by the two papers, *selectivity* (Hewitt and Liang, 2019) and *information gain* (Pimentel et al., 2020), are equivalent – the errors of their approaches are identical (modulo irrelevant terms). Empirically, these two selection criteria lead to results that highly agree with each other.
pdf
bib
abs
With Little Power Comes Great Responsibility
Dallas Card
|
Peter Henderson
|
Urvashi Khandelwal
|
Robin Jia
|
Kyle Mahowald
|
Dan Jurafsky
Despite its importance to experimental design, statistical power (the probability that, given a real effect, an experiment will reject the null hypothesis) has largely been ignored by the NLP community. Underpowered experiments make it more difficult to discern the difference between statistical noise and meaningful model improvements, and increase the chances of exaggerated findings. By meta-analyzing a set of existing NLP papers and datasets, we characterize typical power for a variety of settings and conclude that underpowered experiments are common in the NLP literature. In particular, for several tasks in the popular GLUE benchmark, small test sets mean that most attempted comparisons to state of the art models will not be adequately powered. Similarly, based on reasonable assumptions, we find that the most typical experimental design for human rating studies will be underpowered to detect small model differences, of the sort that are frequently studied. For machine translation, we find that typical test sets of 2000 sentences have approximately 75% power to detect differences of 1 BLEU point. To improve the situation going forward, we give an overview of best practices for power analysis in NLP and release a series of notebooks to assist with future power analyses.
pdf
bib
abs
Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics
Swabha Swayamdipta
|
Roy Schwartz
|
Nicholas Lourie
|
Yizhong Wang
|
Hannaneh Hajishirzi
|
Noah A. Smith
|
Yejin Choi
Large datasets have become commonplace in NLP research. However, the increased emphasis on data quantity has made it challenging to assess the quality of data. We introduce Data Maps—a model-based tool to characterize and diagnose datasets. We leverage a largely ignored source of information: the behavior of the model on individual instances during training (training dynamics) for building data maps. This yields two intuitive measures for each example—the model’s confidence in the true class, and the variability of this confidence across epochs—obtained in a single run of training. Experiments on four datasets show that these model-dependent measures reveal three distinct regions in the data map, each with pronounced characteristics. First, our data maps show the presence of “ambiguous” regions with respect to the model, which contribute the most towards out-of-distribution generalization. Second, the most populous regions in the data are “easy to learn” for the model, and play an important role in model optimization. Finally, data maps uncover a region with instances that the model finds “hard to learn”; these often correspond to labeling errors. Our results indicate that a shift in focus from quantity to quality of data could lead to robust models and improved out-of-distribution generalization.
pdf
bib
abs
Evaluating and Characterizing Human Rationales
Samuel Carton
|
Anirudh Rathore
|
Chenhao Tan
Two main approaches for evaluating the quality of machine-generated rationales are: 1) using human rationales as a gold standard; and 2) automated metrics based on how rationales affect model behavior. An open question, however, is how human rationales fare with these automatic metrics. Analyzing a variety of datasets and models, we find that human rationales do not necessarily perform well on these metrics. To unpack this finding, we propose improved metrics to account for model-dependent baseline performance. We then propose two methods to further characterize rationale quality, one based on model retraining and one on using “fidelity curves” to reveal properties such as irrelevance and redundancy. Our work leads to actionable suggestions for evaluating and characterizing rationales.
pdf
bib
abs
On Extractive and Abstractive Neural Document Summarization with Transformer Language Models
Jonathan Pilault
|
Raymond Li
|
Sandeep Subramanian
|
Chris Pal
We present a method to produce abstractive summaries of long documents that exceed several thousand words via neural abstractive summarization. We perform a simple extractive step before generating a summary, which is then used to condition the transformer language model on relevant information before being tasked with generating a summary. We also show that this approach produces more abstractive summaries compared to prior work that employs a copy mechanism while still achieving higher ROUGE scores. We provide extensive comparisons with strong baseline methods, prior state of the art work as well as multiple variants of our approach including those using only transformers, only extractive techniques and combinations of the two. We examine these models using four different summarization tasks and datasets: arXiv papers, PubMed papers, the Newsroom and BigPatent datasets. We find that transformer based methods produce summaries with fewer n-gram copies, leading to n-gram copying statistics that are more similar to human generated abstracts. We include a human evaluation, finding that transformers are ranked highly for coherence and fluency, but purely extractive methods score higher for informativeness and relevance. We hope that these architectures and experiments may serve as strong points of comparison for future work. Note: The abstract above was collaboratively written by the authors and one of the models presented in this paper based on an earlier draft of this paper.
pdf
bib
abs
Multi-Fact Correction in Abstractive Text Summarization
Yue Dong
|
Shuohang Wang
|
Zhe Gan
|
Yu Cheng
|
Jackie Chi Kit Cheung
|
Jingjing Liu
Pre-trained neural abstractive summarization systems have dominated extractive strategies on news summarization performance, at least in terms of ROUGE. However, system-generated abstractive summaries often face the pitfall of factual inconsistency: generating incorrect facts with respect to the source text. To address this challenge, we propose Span-Fact, a suite of two factual correction models that leverages knowledge learned from question answering models to make corrections in system-generated summaries via span selection. Our models employ single or multi-masking strategies to either iteratively or auto-regressively replace entities in order to ensure semantic consistency w.r.t. the source text, while retaining the syntactic structure of summaries generated by abstractive summarization models. Experiments show that our models significantly boost the factual consistency of system-generated summaries without sacrificing summary quality in terms of both automatic metrics and human evaluation.
pdf
bib
abs
Evaluating the Factual Consistency of Abstractive Text Summarization
Wojciech Kryscinski
|
Bryan McCann
|
Caiming Xiong
|
Richard Socher
The most common metrics for assessing summarization algorithms do not account for whether summaries are factually consistent with source documents. We propose a weakly-supervised, model-based approach for verifying factual consistency and identifying conflicts between source documents and generated summaries. Training data is generated by applying a series of rule-based transformations to the sentences of source documents. The factual consistency model is then trained jointly for three tasks: 1) predict whether each summary sentence is factually consistent or not, 2) in either case, extract a span in the source document to support this consistency prediction, 3) for each summary sentence that is deemed inconsistent, extract the inconsistent span from it. Transferring this model to summaries generated by several neural models reveals that this highly scalable approach outperforms previous models, including those trained with strong supervision using datasets from related domains, such as natural language inference and fact checking. Additionally, human evaluation shows that the auxiliary span extraction tasks provide useful assistance in the process of verifying factual consistency. We also release a manually annotated dataset for factual consistency verification, code for training data generation, and trained model weights at
https://github.com/salesforce/factCC.
pdf
bib
abs
Re-evaluating Evaluation in Text Summarization
Manik Bhandari
|
Pranav Narayan Gour
|
Atabak Ashfaq
|
Pengfei Liu
|
Graham Neubig
Automated evaluation metrics as a stand-in for manual evaluation are an essential part of the development of text-generation tasks such as text summarization. However, while the field has progressed, our standard metrics have not – for nearly 20 years ROUGE has been the standard evaluation in most summarization papers. In this paper, we make an attempt to re-evaluate the evaluation method for text summarization: assessing the reliability of automatic metrics using top-scoring system outputs, both abstractive and extractive, on recently popular datasets for both system-level and summary-level evaluation settings. We find that conclusions about evaluation metrics on older datasets do not necessarily hold on modern datasets and systems. We release a dataset of human judgments that are collected from 25 top-scoring neural summarization systems (14 abstractive and 11 extractive).
pdf
bib
abs
VMSMO: Learning to Generate Multimodal Summary for Video-based News Articles
Mingzhe Li
|
Xiuying Chen
|
Shen Gao
|
Zhangming Chan
|
Dongyan Zhao
|
Rui Yan
A popular multimedia news format nowadays is providing users with a lively video and a corresponding news article, which is employed by influential news media including CNN, BBC, and social media including Twitter and Weibo. In such a case, automatically choosing a proper cover frame of the video and generating an appropriate textual summary of the article can help editors save time, and readers make the decision more effectively. Hence, in this paper, we propose the task of Video-based Multimodal Summarization with Multimodal Output (VMSMO) to tackle such a problem. The main challenge in this task is to jointly model the temporal dependency of video with semantic meaning of article. To this end, we propose a Dual-Interaction-based Multimodal Summarizer (DIMS), consisting of a dual interaction module and multimodal generator. In the dual interaction module, we propose a conditional self-attention mechanism that captures local semantic information within video and a global-attention mechanism that handles the semantic relationship between news text and video from a high level. Extensive experiments conducted on a large-scale real-world VMSMO dataset show that DIMS achieves the state-of-the-art performance in terms of both automatic metrics and human evaluations.
uppdf
bib
Findings of the Association for Computational Linguistics: EMNLP 2020
Trevor Cohn
|
Yulan He
|
Yang Liu
pdf
bib
abs
Fully Quantized Transformer for Machine Translation
Gabriele Prato
|
Ella Charlaix
|
Mehdi Rezagholizadeh
State-of-the-art neural machine translation methods employ massive amounts of parameters. Drastically reducing computational costs of such methods without affecting performance has been up to this point unsuccessful. To this end, we propose FullyQT: an all-inclusive quantization strategy for the Transformer. To the best of our knowledge, we are the first to show that it is possible to avoid any loss in translation quality with a fully quantized Transformer. Indeed, compared to full-precision, our 8-bit models score greater or equal BLEU on most tasks. Comparing ourselves to all previously proposed methods, we achieve state-of-the-art quantization results.
pdf
bib
abs
Summarizing Chinese Medical Answer with Graph Convolution Networks and Question-focused Dual Attention
Ningyu Zhang
|
Shumin Deng
|
Juan Li
|
Xi Chen
|
Wei Zhang
|
Huajun Chen
Online search engines are a popular source of medical information for users, where users can enter questions and obtain relevant answers. It is desirable to generate answer summaries for online search engines, particularly summaries that can reveal direct answers to questions. Moreover, answer summaries are expected to reveal the most relevant information in response to questions; hence, the summaries should be generated with a focus on the question, which is a challenging topic-focused summarization task. In this paper, we propose an approach that utilizes graph convolution networks and question-focused dual attention for Chinese medical answer summarization. We first organize the original long answer text into a medical concept graph with graph convolution networks to better understand the internal structure of the text and the correlation between medical concepts. Then, we introduce a question-focused dual attention mechanism to generate summaries relevant to questions. Experimental results demonstrate that the proposed model can generate more coherent and informative summaries compared with baseline models.
pdf
bib
abs
Stay Hungry, Stay Focused: Generating Informative and Specific Questions in Information-Seeking Conversations
Peng Qi
|
Yuhao Zhang
|
Christopher D. Manning
We investigate the problem of generating informative questions in information-asymmetric conversations. Unlike previous work on question generation which largely assumes knowledge of what the answer might be, we are interested in the scenario where the questioner is not given the context from which answers are drawn, but must reason pragmatically about how to acquire new information, given the shared conversation history. We identify two core challenges: (1) formally defining the informativeness of potential questions, and (2) exploring the prohibitively large space of potential questions to find the good candidates. To generate pragmatic questions, we use reinforcement learning to optimize an informativeness metric we propose, combined with a reward function designed to promote more specific questions. We demonstrate that the resulting pragmatic questioner substantially improves the informativeness and specificity of questions generated over a baseline model, as evaluated by our metrics as well as humans.
pdf
bib
abs
Adapting BERT for Word Sense Disambiguation with Gloss Selection Objective and Example Sentences
Boon Peng Yap
|
Andrew Koh
|
Eng Siong Chng
Domain adaptation or transfer learning using pre-trained language models such as BERT has proven to be an effective approach for many natural language processing tasks. In this work, we propose to formulate word sense disambiguation as a relevance ranking task, and fine-tune BERT on sequence-pair ranking task to select the most probable sense definition given a context sentence and a list of candidate sense definitions. We also introduce a data augmentation technique for WSD using existing example sentences from WordNet. Using the proposed training objective and data augmentation technique, our models are able to achieve state-of-the-art results on the English all-words benchmark datasets.
pdf
bib
abs
Adversarial Text Generation via Sequence Contrast Discrimination
Ke Wang
|
Xiaojun Wan
In this paper, we propose a sequence contrast loss driven text generation framework, which learns the difference between real texts and generated texts and uses that difference. Specifically, our discriminator contains a discriminative sequence generator instead of a binary classifier, and measures the ‘relative realism’ of generated texts against real texts by making use of them simultaneously. Moreover, our generator uses discriminative sequences to directly improve itself, which not only replaces the gradient propagation process from the discriminator to the generator, but also avoids the time-consuming sampling process of estimating rewards in some previous methods. We conduct extensive experiments with various metrics, substantiating that our framework brings improvements in terms of training stability and the quality of generated texts.
pdf
bib
abs
GRACE: Gradient Harmonized and Cascaded Labeling for Aspect-based Sentiment Analysis
Huaishao Luo
|
Lei Ji
|
Tianrui Li
|
Daxin Jiang
|
Nan Duan
In this paper, we focus on the imbalance issue, which is rarely studied in aspect term extraction and aspect sentiment classification when regarding them as sequence labeling tasks. Besides, previous works usually ignore the interaction between aspect terms when labeling polarities. We propose a GRadient hArmonized and CascadEd labeling model (GRACE) to solve these problems. Specifically, a cascaded labeling module is developed to enhance the interchange between aspect terms and improve the attention of sentiment tokens when labeling sentiment polarities. The polarities sequence is designed to depend on the generated aspect terms labels. To alleviate the imbalance issue, we extend the gradient harmonized mechanism used in object detection to the aspect-based sentiment analysis by adjusting the weight of each label dynamically. The proposed GRACE adopts a post-pretraining BERT as its backbone. Experimental results demonstrate that the proposed model achieves consistency improvement on multiple benchmark datasets and generates state-of-the-art results.
pdf
bib
abs
Reducing Sentiment Bias in Language Models via Counterfactual Evaluation
Po-Sen Huang
|
Huan Zhang
|
Ray Jiang
|
Robert Stanforth
|
Johannes Welbl
|
Jack Rae
|
Vishal Maini
|
Dani Yogatama
|
Pushmeet Kohli
Advances in language modeling architectures and the availability of large text corpora have driven progress in automatic text generation. While this results in models capable of generating coherent texts, it also prompts models to internalize social biases present in the training corpus. This paper aims to quantify and reduce a particular type of bias exhibited by language models: bias in the sentiment of generated text. Given a conditioning context (e.g., a writing prompt) and a language model, we analyze if (and how) the sentiment of the generated text is affected by changes in values of sensitive attributes (e.g., country names, occupations, genders) in the conditioning context using a form of counterfactual evaluation. We quantify sentiment bias by adopting individual and group fairness metrics from the fair machine learning literature, and demonstrate that large-scale models trained on two different corpora (news articles, and Wikipedia) exhibit considerable levels of bias. We then propose embedding and sentiment prediction-derived regularization on the language model’s latent representations. The regularizations improve fairness metrics while retaining comparable levels of perplexity and semantic similarity.
pdf
bib
abs
Improving Text Understanding via Deep Syntax-Semantics Communication
Hao Fei
|
Yafeng Ren
|
Donghong Ji
Recent studies show that integrating syntactic tree models with sequential semantic models can bring improved task performance, while these methods mostly employ shallow integration of syntax and semantics. In this paper, we propose a deep neural communication model between syntax and semantics to improve the performance of text understanding. Local communication is performed between syntactic tree encoder and sequential semantic encoder for mutual learning of information exchange. Global communication can further ensure comprehensive information propagation. Results on multiple syntax-dependent tasks show that our model outperforms strong baselines by a large margin. In-depth analysis indicates that our method is highly effective in composing sentence semantics.
pdf
bib
abs
GRUEN for Evaluating Linguistic Quality of Generated Text
Wanzheng Zhu
|
Suma Bhat
Automatic evaluation metrics are indispensable for evaluating generated text. To date, these metrics have focused almost exclusively on the content selection aspect of the system output, ignoring the linguistic quality aspect altogether. We bridge this gap by proposing GRUEN for evaluating Grammaticality, non-Redundancy, focUs, structure and coherENce of generated text. GRUEN utilizes a BERT-based model and a class of syntactic, semantic, and contextual features to examine the system output. Unlike most existing evaluation metrics which require human references as an input, GRUEN is reference-less and requires only the system output. Besides, it has the advantage of being unsupervised, deterministic, and adaptable to various tasks. Experiments on seven datasets over four language generation tasks show that the proposed metric correlates highly with human judgments.
pdf
bib
abs
A Greedy Bit-flip Training Algorithm for Binarized Knowledge Graph Embeddings
Katsuhiko Hayashi
|
Koki Kishimoto
|
Masashi Shimbo
This paper presents a simple and effective discrete optimization method for training binarized knowledge graph embedding model B-CP. Unlike the prior work using a SGD-based method and quantization of real-valued vectors, the proposed method directly optimizes binary embedding vectors by a series of bit flipping operations. On the standard knowledge graph completion tasks, the B-CP model trained with the proposed method achieved comparable performance with that trained with SGD as well as state-of-the-art real-valued models with similar embedding dimensions.
pdf
bib
abs
Difference-aware Knowledge Selection for Knowledge-grounded Conversation Generation
Chujie Zheng
|
Yunbo Cao
|
Daxin Jiang
|
Minlie Huang
In a multi-turn knowledge-grounded dialog, the difference between the knowledge selected at different turns usually provides potential clues to knowledge selection, which has been largely neglected in previous research. In this paper, we propose a difference-aware knowledge selection method. It first computes the difference between the candidate knowledge sentences provided at the current turn and those chosen in the previous turns. Then, the differential information is fused with or disentangled from the contextual information to facilitate final knowledge selection. Automatic, human observational, and interactive evaluation shows that our method is able to select knowledge more accurately and generate more informative responses, significantly outperforming the state-of-the-art baselines.
pdf
bib
abs
An Attentive Recurrent Model for Incremental Prediction of Sentence-final Verbs
Wenyan Li
|
Alvin Grissom II
|
Jordan Boyd-Graber
Verb prediction is important for understanding human processing of verb-final languages, with practical applications to real-time simultaneous interpretation from verb-final to verb-medial languages. While previous approaches use classical statistical models, we introduce an attention-based neural model to incrementally predict final verbs on incomplete sentences in Japanese and German SOV sentences. To offer flexibility to the model, we further incorporate synonym awareness. Our approach both better predicts the final verbs in Japanese and German and provides more interpretable explanations of why those verbs are selected.
pdf
bib
abs
Transformer-GCRF: Recovering Chinese Dropped Pronouns with General Conditional Random Fields
Jingxuan Yang
|
Kerui Xu
|
Jun Xu
|
Si Li
|
Sheng Gao
|
Jun Guo
|
Ji-Rong Wen
|
Nianwen Xue
Pronouns are often dropped in Chinese conversations and recovering the dropped pronouns is important for NLP applications such as Machine Translation. Existing approaches usually formulate this as a sequence labeling task of predicting whether there is a dropped pronoun before each token and its type. Each utterance is considered to be a sequence and labeled independently. Although these approaches have shown promise, labeling each utterance independently ignores the dependencies between pronouns in neighboring utterances. Modeling these dependencies is critical to improving the performance of dropped pronoun recovery. In this paper, we present a novel framework that combines the strength of Transformer network with General Conditional Random Fields (GCRF) to model the dependencies between pronouns in neighboring utterances. Results on three Chinese conversation datasets show that the Transformer-GCRF model outperforms the state-of-the-art dropped pronoun recovery models. Exploratory analysis also demonstrates that the GCRF did help to capture the dependencies between pronouns in neighboring utterances, thus contributes to the performance improvements.
pdf
bib
abs
Neural Speed Reading Audited
Anders Søgaard
Several approaches to neural speed reading have been presented at major NLP and machine learning conferences in 2017–20; i.e., “human-inspired” recurrent network architectures that learn to “read” text faster by skipping irrelevant words, typically optimizing the joint objective of minimizing classification error rate and FLOPs used at inference time. This paper reflects on the meaningfulness of the speed reading task, showing that (a) better and faster approaches to, say, document classification, already exist, which also learn to ignore part of the input (I give an example with 7% error reduction and a 136x speed-up over the state of the art in neural speed reading); and that (b) any claims that neural speed reading is “human-inspired”, are ill-founded.
pdf
bib
abs
Converting the Point of View of Messages Spoken to Virtual Assistants
Gunhee Lee
|
Vera Zu
|
Sai Srujana Buddi
|
Dennis Liang
|
Purva Kulkarni
|
Jack FitzGerald
Virtual Assistants can be quite literal at times. If the user says “tell Bob I love him,” most virtual assistants will extract the message “I love him” and send it to the user’s contact named Bob, rather than properly converting the message to “I love you.” We designed a system to allow virtual assistants to take a voice message from one user, convert the point of view of the message, and then deliver the result to its target user. We developed a rule-based model, which integrates a linear text classification model, part-of-speech tagging, and constituency parsing with rule-based transformation methods. We also investigated Neural Machine Translation (NMT) approaches, including LSTMs, CopyNet, and T5. We explored 5 metrics to gauge both naturalness and faithfulness automatically, and we chose to use BLEU plus METEOR for faithfulness and relative perplexity using a separately trained language model (GPT) for naturalness. Transformer-Copynet and T5 performed similarly on faithfulness metrics, with T5 achieving slight edge, a BLEU score of 63.8 and a METEOR score of 83.0. CopyNet was the most natural, with a relative perplexity of 1.59. CopyNet also has 37 times fewer parameters than T5. We have publicly released our dataset, which is composed of 46,565 crowd-sourced samples.
pdf
bib
abs
Robustness to Modification with Shared Words in Paraphrase Identification
Zhouxing Shi
|
Minlie Huang
Revealing the robustness issues of natural language processing models and improving their robustness is important to their performance under difficult situations. In this paper, we study the robustness of paraphrase identification models from a new perspective – via modification with shared words, and we show that the models have significant robustness issues when facing such modifications. To modify an example consisting of a sentence pair, we either replace some words shared by both sentences or introduce new shared words. We aim to construct a valid new example such that a target model makes a wrong prediction. To find a modification solution, we use beam search constrained by heuristic rules, and we leverage a BERT masked language model for generating substitution words compatible with the context. Experiments show that the performance of the target models has a dramatic drop on the modified examples, thereby revealing the robustness issue. We also show that adversarial training can mitigate this issue.
pdf
bib
abs
Few-shot Natural Language Generation for Task-Oriented Dialog
Baolin Peng
|
Chenguang Zhu
|
Chunyuan Li
|
Xiujun Li
|
Jinchao Li
|
Michael Zeng
|
Jianfeng Gao
As a crucial component in task-oriented dialog systems, the Natural Language Generation (NLG) module converts a dialog act represented in a semantic form into a response in natural language. The success of traditional template-based or statistical models typically relies on heavily annotated data, which is infeasible for new domains. Therefore, it is pivotal for an NLG system to generalize well with limited labelled data in real applications. To this end, we present FewshotWOZ, the first NLG benchmark to simulate the few-shot learning setting in task-oriented dialog systems. Further, we develop the SC-GPT model. It is pre-trained on a large set of annotated NLG corpus to acquire the controllable generation ability, and fine-tuned with only a few domain-specific labels to adapt to new domains. Experiments on FewshotWOZ and the large Multi-Domain-WOZ datasets show that the proposed SC-GPT significantly outperforms existing methods, measured by various automatic metrics and human evaluations.
pdf
bib
abs
Mimic and Conquer: Heterogeneous Tree Structure Distillation for Syntactic NLP
Hao Fei
|
Yafeng Ren
|
Donghong Ji
Syntax has been shown useful for various NLP tasks, while existing work mostly encodes singleton syntactic tree using one hierarchical neural network. In this paper, we investigate a simple and effective method, Knowledge Distillation, to integrate heterogeneous structure knowledge into a unified sequential LSTM encoder. Experimental results on four typical syntax-dependent tasks show that our method outperforms tree encoders by effectively integrating rich heterogeneous structure syntax, meanwhile reducing error propagation, and also outperforms ensemble methods, in terms of both the efficiency and accuracy.
pdf
bib
abs
A Hierarchical Network for Abstractive Meeting Summarization with Cross-Domain Pretraining
Chenguang Zhu
|
Ruochen Xu
|
Michael Zeng
|
Xuedong Huang
With the abundance of automatic meeting transcripts, meeting summarization is of great interest to both participants and other parties. Traditional methods of summarizing meetings depend on complex multi-step pipelines that make joint optimization intractable. Meanwhile, there are a handful of deep neural models for text summarization and dialogue systems. However, the semantic structure and styles of meeting transcripts are quite different from articles and conversations. In this paper, we propose a novel abstractive summary network that adapts to the meeting scenario. We design a hierarchical structure to accommodate long meeting transcripts and a role vector to depict the difference among speakers. Furthermore, due to the inadequacy of meeting summary data, we pretrain the model on large-scale news summary data. Empirical results show that our model outperforms previous approaches in both automatic metrics and human evaluation. For example, on ICSI dataset, the ROUGE-1 score increases from 34.66% to 46.28%.
pdf
bib
abs
Active Testing: An Unbiased Evaluation Method for Distantly Supervised Relation Extraction
Pengshuai Li
|
Xinsong Zhang
|
Weijia Jia
|
Wei Zhao
Distant supervision has been a widely used method for neural relation extraction for its convenience of automatically labeling datasets. However, existing works on distantly supervised relation extraction suffer from the low quality of test set, which leads to considerable biased performance evaluation. These biases not only result in unfair evaluations but also mislead the optimization of neural relation extraction. To mitigate this problem, we propose a novel evaluation method named active testing through utilizing both the noisy test set and a few manual annotations. Experiments on a widely used benchmark show that our proposed approach can yield approximately unbiased evaluations for distantly supervised relation extractors.
pdf
bib
abs
Semantic Matching for Sequence-to-Sequence Learning
Ruiyi Zhang
|
Changyou Chen
|
Xinyuan Zhang
|
Ke Bai
|
Lawrence Carin
In sequence-to-sequence models, classical optimal transport (OT) can be applied to semantically match generated sentences with target sentences. However, in non-parallel settings, target sentences are usually unavailable. To tackle this issue without losing the benefits of classical OT, we present a semantic matching scheme based on the Optimal Partial Transport (OPT). Specifically, our approach partially matches semantically meaningful words between source and partial target sequences. To overcome the difficulty of detecting active regions in OPT (corresponding to the words needed to be matched), we further exploit prior knowledge to perform partial matching. Extensive experiments are conducted to evaluate the proposed approach, showing consistent improvements over sequence-to-sequence tasks.
pdf
bib
abs
How Decoding Strategies Affect the Verifiability of Generated Text
Luca Massarelli
|
Fabio Petroni
|
Aleksandra Piktus
|
Myle Ott
|
Tim Rocktäschel
|
Vassilis Plachouras
|
Fabrizio Silvestri
|
Sebastian Riedel
Recent progress in pre-trained language models led to systems that are able to generate text of an increasingly high quality. While several works have investigated the fluency and grammatical correctness of such models, it is still unclear to which extent the generated text is consistent with factual world knowledge. Here, we go beyond fluency and also investigate the verifiability of text generated by state-of-the-art pre-trained language models. A generated sentence is verifiable if it can be corroborated or disproved by Wikipedia, and we find that the verifiability of generated text strongly depends on the decoding strategy. In particular, we discover a tradeoff between factuality (i.e., the ability of generating Wikipedia corroborated text) and repetitiveness. While decoding strategies such as top-k and nucleus sampling lead to less repetitive generations, they also produce less verifiable text. Based on these finding, we introduce a simple and effective decoding strategy which, in comparison to previously used decoding strategies, produces less repetitive and more verifiable text.
pdf
bib
abs
Minimize Exposure Bias of Seq2Seq Models in Joint Entity and Relation Extraction
Ranran Haoran Zhang
|
Qianying Liu
|
Aysa Xuemo Fan
|
Heng Ji
|
Daojian Zeng
|
Fei Cheng
|
Daisuke Kawahara
|
Sadao Kurohashi
Joint entity and relation extraction aims to extract relation triplets from plain text directly. Prior work leverages Sequence-to-Sequence (Seq2Seq) models for triplet sequence generation. However, Seq2Seq enforces an unnecessary order on the unordered triplets and involves a large decoding length associated with error accumulation. These methods introduce exposure bias, which may cause the models overfit to the frequent label combination, thus limiting the generalization ability. We propose a novel Sequence-to-Unordered-Multi-Tree (Seq2UMTree) model to minimize the effects of exposure bias by limiting the decoding length to three within a triplet and removing the order among triplets. We evaluate our model on two datasets, DuIE and NYT, and systematically study how exposure bias alters the performance of Seq2Seq models. Experiments show that the state-of-the-art Seq2Seq model overfits to both datasets while Seq2UMTree shows significantly better generalization. Our code is available at
https://github.com/WindChimeRan/OpenJERE.
pdf
bib
abs
Gradient-based Analysis of NLP Models is Manipulable
Junlin Wang
|
Jens Tuyls
|
Eric Wallace
|
Sameer Singh
Gradient-based analysis methods, such as saliency map visualizations and adversarial input perturbations, have found widespread use in interpreting neural NLP models due to their simplicity, flexibility, and most importantly, the fact that they directly reflect the model internals. In this paper, however, we demonstrate that the gradients of a model are easily manipulable, and thus bring into question the reliability of gradient-based analyses. In particular, we merge the layers of a target model with a Facade Model that overwhelms the gradients without affecting the predictions. This Facade Model can be trained to have gradients that are misleading and irrelevant to the task, such as focusing only on the stop words in the input. On a variety of NLP tasks (sentiment analysis, NLI, and QA), we show that the merged model effectively fools different analysis tools: saliency maps differ significantly from the original model’s, input reduction keeps more irrelevant input tokens, and adversarial perturbations identify unimportant tokens as being highly important.
pdf
bib
abs
Pretrain-KGE: Learning Knowledge Representation from Pretrained Language Models
Zhiyuan Zhang
|
Xiaoqian Liu
|
Yi Zhang
|
Qi Su
|
Xu Sun
|
Bin He
Conventional knowledge graph embedding (KGE) often suffers from limited knowledge representation, leading to performance degradation especially on the low-resource problem. To remedy this, we propose to enrich knowledge representation via pretrained language models by leveraging world knowledge from pretrained models. Specifically, we present a universal training framework named Pretrain-KGE consisting of three phases: semantic-based fine-tuning phase, knowledge extracting phase and KGE training phase. Extensive experiments show that our proposed Pretrain-KGE can improve results over KGE models, especially on solving the low-resource problem.
pdf
bib
abs
A Self-Refinement Strategy for Noise Reduction in Grammatical Error Correction
Masato Mita
|
Shun Kiyono
|
Masahiro Kaneko
|
Jun Suzuki
|
Kentaro Inui
Existing approaches for grammatical error correction (GEC) largely rely on supervised learning with manually created GEC datasets. However, there has been little focus on verifying and ensuring the quality of the datasets, and on how lower-quality data might affect GEC performance. We indeed found that there is a non-negligible amount of “noise” where errors were inappropriately edited or left uncorrected. To address this, we designed a self-refinement method where the key idea is to denoise these datasets by leveraging the prediction consistency of existing models, and outperformed strong denoising baseline methods. We further applied task-specific techniques and achieved state-of-the-art performance on the CoNLL-2014, JFLEG, and BEA-2019 benchmarks. We then analyzed the effect of the proposed denoising method, and found that our approach leads to improved coverage of corrections and facilitated fluency edits which are reflected in higher recall and overall performance.
pdf
bib
abs
Understanding tables with intermediate pre-training
Julian Eisenschlos
|
Syrine Krichene
|
Thomas Müller
Table entailment, the binary classification task of finding if a sentence is supported or refuted by the content of a table, requires parsing language and table structure as well as numerical and discrete reasoning. While there is extensive work on textual entailment, table entailment is less well studied. We adapt TAPAS (Herzig et al., 2020), a table-based BERT model, to recognize entailment. Motivated by the benefits of data augmentation, we create a balanced dataset of millions of automatically created training examples which are learned in an intermediate step prior to fine-tuning. This new data is not only useful for table entailment, but also for SQA (Iyyer et al., 2017), a sequential table QA task. To be able to use long examples as input of BERT models, we evaluate table pruning techniques as a pre-processing step to drastically improve the training and prediction efficiency at a moderate drop in accuracy. The different methods set the new state-of-the-art on the TabFact (Chen et al., 2020) and SQA datasets.
pdf
bib
abs
Enhance Robustness of Sequence Labelling with Masked Adversarial Training
Luoxin Chen
|
Xinyue Liu
|
Weitong Ruan
|
Jianhua Lu
Adversarial training (AT) has shown strong regularization effects on deep learning algorithms by introducing small input perturbations to improve model robustness. In language tasks, adversarial training brings word-level robustness by adding input noise, which is beneficial for text classification. However, it lacks sufficient contextual information enhancement and thus is less useful for sequence labelling tasks such as chunking and named entity recognition (NER). To address this limitation, we propose masked adversarial training (MAT) to improve robustness from contextual information in sequence labelling. MAT masks or replaces some words in the sentence when computing adversarial loss from perturbed inputs and consequently enhances model robustness using more context-level information. In our experiments, our method shows significant improvements on accuracy and robustness of sequence labelling. By further incorporating with ELMo embeddings, our model achieves better or comparable results to state-of-the-art on CoNLL 2000 and 2003 benchmarks using much less parameters.
pdf
bib
abs
Multilingual Argument Mining: Datasets and Analysis
Orith Toledo-Ronen
|
Matan Orbach
|
Yonatan Bilu
|
Artem Spector
|
Noam Slonim
The growing interest in argument mining and computational argumentation brings with it a plethora of Natural Language Understanding (NLU) tasks and corresponding datasets. However, as with many other NLU tasks, the dominant language is English, with resources in other languages being few and far between. In this work, we explore the potential of transfer learning using the multilingual BERT model to address argument mining tasks in non-English languages, based on English datasets and the use of machine translation. We show that such methods are well suited for classifying the stance of arguments and detecting evidence, but less so for assessing the quality of arguments, presumably because quality is harder to preserve under translation. In addition, focusing on the translate-train approach, we show how the choice of languages for translation, and the relations among them, affect the accuracy of the resultant model. Finally, to facilitate evaluation of transfer learning on argument mining tasks, we provide a human-generated dataset with more than 10k arguments in multiple languages, as well as machine translation of the English datasets.
pdf
bib
abs
Improving Grammatical Error Correction with Machine Translation Pairs
Wangchunshu Zhou
|
Tao Ge
|
Chang Mu
|
Ke Xu
|
Furu Wei
|
Ming Zhou
We propose a novel data synthesis method to generate diverse error-corrected sentence pairs for improving grammatical error correction, which is based on a pair of machine translation models (e.g., Chinese to English) of different qualities (i.e., poor and good). The poor translation model can resemble the ESL (English as a second language) learner and tends to generate translations of low quality in terms of fluency and grammaticality, while the good translation model generally generates fluent and grammatically correct translations. With the pair of translation models, we can generate unlimited numbers of poor to good English sentence pairs from text in the source language (e.g., Chinese) of the translators. Our approach can generate various error-corrected patterns and nicely complement the other data synthesis approaches for GEC. Experimental results demonstrate the data generated by our approach can effectively help a GEC model to improve the performance and achieve the state-of-the-art single-model performance in BEA-19 and CoNLL-14 benchmark datasets.
pdf
bib
abs
Machines Getting with the Program: Understanding Intent Arguments of Non-Canonical Directives
Won Ik Cho
|
Youngki Moon
|
Sangwhan Moon
|
Seok Min Kim
|
Nam Soo Kim
Modern dialog managers face the challenge of having to fulfill human-level conversational skills as part of common user expectations, including but not limited to discourse with no clear objective. Along with these requirements, agents are expected to extrapolate intent from the user’s dialogue even when subjected to non-canonical forms of speech. This depends on the agent’s comprehension of paraphrased forms of such utterances. Especially in low-resource languages, the lack of data is a bottleneck that prevents advancements of the comprehension performance for these types of agents. In this regard, here we demonstrate the necessity of extracting the intent argument of non-canonical directives in a natural language format, which may yield more accurate parsing, and suggest guidelines for building a parallel corpus for this purpose. Following the guidelines, we construct a Korean corpus of 50K instances of question/command-intent pairs, including the labels for classification of the utterance type. We also propose a method for mitigating class imbalance, demonstrating the potential applications of the corpus generation method and its multilingual extensibility.
pdf
bib
abs
The RELX Dataset and Matching the Multilingual Blanks for Cross-Lingual Relation Classification
Abdullatif Köksal
|
Arzucan Özgür
Relation classification is one of the key topics in information extraction, which can be used to construct knowledge bases or to provide useful information for question answering. Current approaches for relation classification are mainly focused on the English language and require lots of training data with human annotations. Creating and annotating a large amount of training data for low-resource languages is impractical and expensive. To overcome this issue, we propose two cross-lingual relation classification models: a baseline model based on Multilingual BERT and a new multilingual pretraining setup, which significantly improves the baseline with distant supervision. For evaluation, we introduce a new public benchmark dataset for cross-lingual relation classification in English, French, German, Spanish, and Turkish, called RELX. We also provide the RELX-Distant dataset, which includes hundreds of thousands of sentences with relations from Wikipedia and Wikidata collected by distant supervision for these languages. Our code and data are available at:
https://github.com/boun-tabi/RELXpdf
bib
abs
Control, Generate, Augment: A Scalable Framework for Multi-Attribute Text Generation
Giuseppe Russo
|
Nora Hollenstein
|
Claudiu Cristian Musat
|
Ce Zhang
We introduce CGA, a conditional VAE architecture, to control, generate, and augment text. CGA is able to generate natural English sentences controlling multiple semantic and syntactic attributes by combining adversarial learning with a context-aware loss and a cyclical word dropout routine. We demonstrate the value of the individual model components in an ablation study. The scalability of our approach is ensured through a single discriminator, independently of the number of attributes. We show high quality, diversity and attribute control in the generated sentences through a series of automatic and human assessments. As the main application of our work, we test the potential of this new NLG model in a data augmentation scenario. In a downstream NLP task, the sentences generated by our CGA model show significant improvements over a strong baseline, and a classification performance often comparable to adding same amount of additional real data.
pdf
bib
abs
Open-Ended Visual Question Answering by Multi-Modal Domain Adaptation
Yiming Xu
|
Lin Chen
|
Zhongwei Cheng
|
Lixin Duan
|
Jiebo Luo
We study the problem of visual question answering (VQA) in images by exploiting supervised domain adaptation, where there is a large amount of labeled data in the source domain but only limited labeled data in the target domain, with the goal to train a good target model. A straightforward solution is to fine-tune a pre-trained source model by using those limited labeled target data, but it usually cannot work well due to the considerable difference between the data distributions of the source and target domains. Moreover, the availability of multiple modalities (i.e., images, questions and answers) in VQA poses further challenges in modeling the transferability between various modalities. In this paper, we address the above issues by proposing a novel supervised multi-modal domain adaptation method for VQA to learn joint feature embeddings across different domains and modalities. Specifically, we align the data distributions of the source and target domains by considering those modalities both jointly and separately. Extensive experiments on the benchmark VQA 2.0 and VizWiz datasets demonstrate that our proposed method outperforms the existing state-of-the-art baselines for open-ended VQA in this challenging domain adaptation setting.
pdf
bib
abs
Dual Low-Rank Multimodal Fusion
Tao Jin
|
Siyu Huang
|
Yingming Li
|
Zhongfei Zhang
Tensor-based fusion methods have been proven effective in multimodal fusion tasks. However, existing tensor-based methods make a poor use of the fine-grained temporal dynamics of multimodal sequential features. Motivated by this observation, this paper proposes a novel multimodal fusion method called Fine-Grained Temporal Low-Rank Multimodal Fusion (FT-LMF). FT-LMF correlates the features of individual time steps between multiple modalities, while it involves multiplications of high-order tensors in its calculation. This paper further proposes Dual Low-Rank Multimodal Fusion (Dual-LMF) to reduce the computational complexity of FT-LMF through low-rank tensor approximation along dual dimensions of input features. Dual-LMF is conceptually simple and practically effective and efficient. Empirical studies on benchmark multimodal analysis tasks show that our proposed methods outperform the state-of-the-art tensor-based fusion methods with a similar computational complexity.
pdf
bib
abs
Contextual Modulation for Relation-Level Metaphor Identification
Omnia Zayed
|
John P. McCrae
|
Paul Buitelaar
Identifying metaphors in text is very challenging and requires comprehending the underlying comparison. The automation of this cognitive process has gained wide attention lately. However, the majority of existing approaches concentrate on word-level identification by treating the task as either single-word classification or sequential labelling without explicitly modelling the interaction between the metaphor components. On the other hand, while existing relation-level approaches implicitly model this interaction, they ignore the context where the metaphor occurs. In this work, we address these limitations by introducing a novel architecture for identifying relation-level metaphoric expressions of certain grammatical relations based on contextual modulation. In a methodology inspired by works in visual reasoning, our approach is based on conditioning the neural network computation on the deep contextualised features of the candidate expressions using feature-wise linear modulation. We demonstrate that the proposed architecture achieves state-of-the-art results on benchmark datasets. The proposed methodology is generic and could be applied to other textual classification problems that benefit from contextual interaction.
pdf
bib
abs
Context-aware Stand-alone Neural Spelling Correction
Xiangci Li
|
Hairong Liu
|
Liang Huang
Existing natural language processing systems are vulnerable to noisy inputs resulting from misspellings. On the contrary, humans can easily infer the corresponding correct words from their misspellings and surrounding context. Inspired by this, we address the stand-alone spelling correction problem, which only corrects the spelling of each token without additional token insertion or deletion, by utilizing both spelling information and global context representations. We present a simple yet powerful solution that jointly detects and corrects misspellings as a sequence labeling task by fine-turning a pre-trained language model. Our solution outperform the previous state-of-the-art result by 12.8% absolute F0.5 score.
pdf
bib
abs
A Novel Workflow for Accurately and Efficiently Crowdsourcing Predicate Senses and Argument Labels
Youxuan Jiang
|
Huaiyu Zhu
|
Jonathan K. Kummerfeld
|
Yunyao Li
|
Walter Lasecki
Resources for Semantic Role Labeling (SRL) are typically annotated by experts at great expense. Prior attempts to develop crowdsourcing methods have either had low accuracy or required substantial expert annotation. We propose a new multi-stage crowd workflow that substantially reduces expert involvement without sacrificing accuracy. In particular, we introduce a unique filter stage based on the key observation that crowd workers are able to almost perfectly filter out incorrect options for labels. Our three-stage workflow produces annotations with 95% accuracy for predicate labels and 93% for argument labels, which is comparable to expert agreement. Compared to prior work on crowdsourcing for SRL, we decrease expert effort by 4x, from 56% to 14% of cases. Our approach enables more scalable annotation of SRL, and could enable annotation of NLP tasks that have previously been considered too complex to effectively crowdsource.
pdf
bib
abs
KorNLI and KorSTS: New Benchmark Datasets for Korean Natural Language Understanding
Jiyeon Ham
|
Yo Joong Choe
|
Kyubyong Park
|
Ilji Choi
|
Hyungjoon Soh
Natural language inference (NLI) and semantic textual similarity (STS) are key tasks in natural language understanding (NLU). Although several benchmark datasets for those tasks have been released in English and a few other languages, there are no publicly available NLI or STS datasets in the Korean language. Motivated by this, we construct and release new datasets for Korean NLI and STS, dubbed KorNLI and KorSTS, respectively. Following previous approaches, we machine-translate existing English training sets and manually translate development and test sets into Korean. To accelerate research on Korean NLU, we also establish baselines on KorNLI and KorSTS. Our datasets are publicly available at
https://github.com/kakaobrain/KorNLUDatasets.
pdf
bib
abs
Dialogue Generation on Infrequent Sentence Functions via Structured Meta-Learning
Yifan Gao
|
Piji Li
|
Wei Bi
|
Xiaojiang Liu
|
Michael Lyu
|
Irwin King
Sentence function is an important linguistic feature indicating the communicative purpose in uttering a sentence. Incorporating sentence functions into conversations has shown improvements in the quality of generated responses. However, the number of utterances for different types of fine-grained sentence functions is extremely imbalanced. Besides a small number of high-resource sentence functions, a large portion of sentence functions is infrequent. Consequently, dialogue generation conditioned on these infrequent sentence functions suffers from data deficiency. In this paper, we investigate a structured meta-learning (SML) approach for dialogue generation on infrequent sentence functions. We treat dialogue generation conditioned on different sentence functions as separate tasks, and apply model-agnostic meta-learning to high-resource sentence functions data. Furthermore, SML enhances meta-learning effectiveness by promoting knowledge customization among different sentence functions but simultaneously preserving knowledge generalization for similar sentence functions. Experimental results demonstrate that SML not only improves the informativeness and relevance of generated responses, but also can generate responses consistent with the target sentence functions. Code will be public to facilitate the research along this line.
pdf
bib
abs
Exploring Versatile Generative Language Model Via Parameter-Efficient Transfer Learning
Zhaojiang Lin
|
Andrea Madotto
|
Pascale Fung
Fine-tuning pre-trained generative language models to down-stream language generation tasks has shown promising results. However, this comes with the cost of having a single, large model for each task, which is not ideal in low-memory/power scenarios (e.g., mobile). In this paper, we propose an effective way to fine-tune multiple down-stream generation tasks simultaneously using a single, large pretrained model. The experiments on five diverse language generation tasks show that by just using an additional 2-3% parameters for each task, our model can maintain or even improve the performance of fine-tuning the whole model.
pdf
bib
abs
A Fully Hyperbolic Neural Model for Hierarchical Multi-Class Classification
Federico López
|
Michael Strube
Label inventories for fine-grained entity typing have grown in size and complexity. Nonetheless, they exhibit a hierarchical structure. Hyperbolic spaces offer a mathematically appealing approach for learning hierarchical representations of symbolic data. However, it is not clear how to integrate hyperbolic components into downstream tasks. This is the first work that proposes a fully hyperbolic model for multi-class multi-label classification, which performs all operations in hyperbolic space. We evaluate the proposed model on two challenging datasets and compare to different baselines that operate under Euclidean assumptions. Our hyperbolic model infers the latent hierarchy from the class distribution, captures implicit hyponymic relations in the inventory, and shows performance on par with state-of-the-art methods on fine-grained classification with remarkable reduction of the parameter size. A thorough analysis sheds light on the impact of each component in the final prediction and showcases its ease of integration with Euclidean layers.
pdf
bib
abs
Claim Check-Worthiness Detection as Positive Unlabelled Learning
Dustin Wright
|
Isabelle Augenstein
As the first step of automatic fact checking, claim check-worthiness detection is a critical component of fact checking systems. There are multiple lines of research which study this problem: check-worthiness ranking from political speeches and debates, rumour detection on Twitter, and citation needed detection from Wikipedia. To date, there has been no structured comparison of these various tasks to understand their relatedness, and no investigation into whether or not a unified approach to all of them is achievable. In this work, we illuminate a central challenge in claim check-worthiness detection underlying all of these tasks, being that they hinge upon detecting both how factual a sentence is, as well as how likely a sentence is to be believed without verification. As such, annotators only mark those instances they judge to be clear-cut check-worthy. Our best performing method is a unified approach which automatically corrects for this using a variant of positive unlabelled learning that finds instances which were incorrectly labelled as not check-worthy. In applying this, we out-perform the state of the art in two of the three tasks studied for claim check-worthiness detection in English.
pdf
bib
abs
ConceptBert: Concept-Aware Representation for Visual Question Answering
François Gardères
|
Maryam Ziaeefard
|
Baptiste Abeloos
|
Freddy Lecue
Visual Question Answering (VQA) is a challenging task that has received increasing attention from both the computer vision and the natural language processing communities. A VQA model combines visual and textual features in order to answer questions grounded in an image. Current works in VQA focus on questions which are answerable by direct analysis of the question and image alone. We present a concept-aware algorithm, ConceptBert, for questions which require common sense, or basic factual knowledge from external structured content. Given an image and a question in natural language, ConceptBert requires visual elements of the image and a Knowledge Graph (KG) to infer the correct answer. We introduce a multi-modal representation which learns a joint Concept-Vision-Language embedding inspired by the popular BERT architecture. We exploit ConceptNet KG for encoding the common sense knowledge and evaluate our methodology on the Outside Knowledge-VQA (OK-VQA) and VQA datasets.
pdf
bib
abs
Bootstrapping a Crosslingual Semantic Parser
Tom Sherborne
|
Yumo Xu
|
Mirella Lapata
Recent progress in semantic parsing scarcely considers languages other than English but professional translation can be prohibitively expensive. We adapt a semantic parser trained on a single language, such as English, to new languages and multiple domains with minimal annotation. We query if machine translation is an adequate substitute for training data, and extend this to investigate bootstrapping using joint training with English, paraphrasing, and multilingual pre-trained models. We develop a Transformer-based parser combining paraphrases by ensembling attention over multiple encoders and present new versions of ATIS and Overnight in German and Chinese for evaluation. Experimental results indicate that MT can approximate training data in a new language for accurate parsing when augmented with paraphrasing through multiple MT engines. Considering when MT is inadequate, we also find that using our approach achieves parsing accuracy within 2% of complete translation using only 50% of training data.
pdf
bib
abs
Revisiting Representation Degeneration Problem in Language Modeling
Zhong Zhang
|
Chongming Gao
|
Cong Xu
|
Rui Miao
|
Qinli Yang
|
Junming Shao
Weight tying is now a common setting in many language generation tasks such as language modeling and machine translation. However, a recent study reveals that there is a potential flaw in weight tying. They find that the learned word embeddings are likely to degenerate and lie in a narrow cone when training a language model. They call it the representation degeneration problem and propose a cosine regularization to solve it. Nevertheless, we prove that the cosine regularization is insufficient to solve the problem, as the degeneration is still likely to happen under certain conditions. In this paper, we revisit the representation degeneration problem and theoretically analyze the limitations of the previously proposed solution. Afterward, we propose an alternative regularization method called Laplacian regularization to tackle the problem. Experiments on language modeling demonstrate the effectiveness of the proposed Laplacian regularization.
pdf
bib
abs
The workweek is the best time to start a family – A Study of GPT-2 Based Claim Generation
Shai Gretz
|
Yonatan Bilu
|
Edo Cohen-Karlik
|
Noam Slonim
Argument generation is a challenging task whose research is timely considering its potential impact on social media and the dissemination of information. Here we suggest a pipeline based on GPT-2 for generating coherent claims, and explore the types of claims that it produces, and their veracity, using an array of manual and automatic assessments. In addition, we explore the interplay between this task and the task of Claim Retrieval, showing how they can complement one another.
pdf
bib
abs
Dynamic Data Selection for Curriculum Learning via Ability Estimation
John P. Lalor
|
Hong Yu
Curriculum learning methods typically rely on heuristics to estimate the difficulty of training examples or the ability of the model. In this work, we propose replacing difficulty heuristics with learned difficulty parameters. We also propose Dynamic Data selection for Curriculum Learning via Ability Estimation (DDaCLAE), a strategy that probes model ability at each training epoch to select the best training examples at that point. We show that models using learned difficulty and/or ability outperform heuristic-based curriculum learning models on the GLUE classification tasks.
pdf
bib
abs
Fixed Encoder Self-Attention Patterns in Transformer-Based Machine Translation
Alessandro Raganato
|
Yves Scherrer
|
Jörg Tiedemann
Transformer-based models have brought a radical change to neural machine translation. A key feature of the Transformer architecture is the so-called multi-head attention mechanism, which allows the model to focus simultaneously on different parts of the input. However, recent works have shown that most attention heads learn simple, and often redundant, positional patterns. In this paper, we propose to replace all but one attention head of each encoder layer with simple fixed – non-learnable – attentive patterns that are solely based on position and do not require any external knowledge. Our experiments with different data sizes and multiple language pairs show that fixing the attention heads on the encoder side of the Transformer at training time does not impact the translation quality and even increases BLEU scores by up to 3 points in low-resource scenarios.
pdf
bib
abs
ZEST: Zero-shot Learning from Text Descriptions using Textual Similarity and Visual Summarization
Tzuf Paz-Argaman
|
Reut Tsarfaty
|
Gal Chechik
|
Yuval Atzmon
We study the problem of recognizing visual entities from the textual descriptions of their classes. Specifically, given birds’ images with free-text descriptions of their species, we learn to classify images of previously-unseen species based on specie descriptions. This setup has been studied in the vision community under the name zero-shot learning from text, focusing on learning to transfer knowledge about visual aspects of birds from seen classes to previously-unseen ones. Here, we suggest focusing on the textual description and distilling from the description the most relevant information to effectively match visual features to the parts of the text that discuss them. Specifically, (1) we propose to leverage the similarity between species, reflected in the similarity between text descriptions of the species. (2) we derive visual summaries of the texts, i.e., extractive summaries that focus on the visual features that tend to be reflected in images. We propose a simple attention-based model augmented with the similarity and visual summaries components. Our empirical results consistently and significantly outperform the state-of-the-art on the largest benchmarks for text-based zero-shot learning, illustrating the critical importance of texts for zero-shot image-recognition.
pdf
bib
abs
Few-Shot Multi-Hop Relation Reasoning over Knowledge Bases
Chuxu Zhang
|
Lu Yu
|
Mandana Saebi
|
Meng Jiang
|
Nitesh Chawla
Multi-hop relation reasoning over knowledge base is to generate effective and interpretable relation prediction through reasoning paths. The current methods usually require sufficient training data (fact triples) for each query relation, impairing their performances over few-shot relations (with limited triples) which are common in knowledge base. To this end, we propose FIRE, a novel few-shot multi-hop relation learning model. FIRE applies reinforcement learning to model the sequential steps of multi-hop reasoning, besides performs heterogeneous structure encoding and knowledge-aware search space pruning. The meta-learning technique is employed to optimize model parameters that could quickly adapt to few-shot relations. Empirical study on two datasets demonstrate that FIRE outperforms state-of-the-art methods.
pdf
bib
abs
A structure-enhanced graph convolutional network for sentiment analysis
Fanyu Meng
|
Junlan Feng
|
Danping Yin
|
Si Chen
|
Min Hu
Syntactic information is essential for both sentiment analysis(SA) and aspect-based sentiment analysis(ABSA). Previous work has already achieved great progress utilizing Graph Convolutional Network(GCN) over dependency tree of a sentence. However, these models do not fully exploit the syntactic information obtained from dependency parsing such as the diversified types of dependency relations. The message passing process of GCN should be distinguished based on these syntactic information. To tackle this problem, we design a novel weighted graph convolutional network(WGCN) which can exploit rich syntactic information based on the feature combination. Furthermore, we utilize BERT instead of Bi-LSTM to generate contextualized representations as inputs for GCN and present an alignment method to keep word-level dependencies consistent with wordpiece unit of BERT. With our proposal, we are able to improve the state-of-the-art on four ABSA tasks out of six and two SA tasks out of three.
pdf
bib
abs
PBoS: Probabilistic Bag-of-Subwords for Generalizing Word Embedding
Zhao Jinman
|
Shawn Zhong
|
Xiaomin Zhang
|
Yingyu Liang
We look into the task of generalizing word embeddings: given a set of pre-trained word vectors over a finite vocabulary, the goal is to predict embedding vectors for out-of-vocabulary words, without extra contextual information. We rely solely on the spellings of words and propose a model, along with an efficient algorithm, that simultaneously models subword segmentation and computes subword-based compositional word embedding. We call the model probabilistic bag-of-subwords (PBoS), as it applies bag-of-subwords for all possible segmentations based on their likelihood. Inspections and affix prediction experiment show that PBoS is able to produce meaningful subword segmentations and subword rankings without any source of explicit morphological knowledge. Word similarity and POS tagging experiments show clear advantages of PBoS over previous subword-level models in the quality of generated word embeddings across languages.
pdf
bib
abs
Interpretable Entity Representations through Large-Scale Typing
Yasumasa Onoe
|
Greg Durrett
In standard methodology for natural language processing, entities in text are typically embedded in dense vector spaces with pre-trained models. The embeddings produced this way are effective when fed into downstream models, but they require end-task fine-tuning and are fundamentally difficult to interpret. In this paper, we present an approach to creating entity representations that are human readable and achieve high performance on entity-related tasks out of the box. Our representations are vectors whose values correspond to posterior probabilities over fine-grained entity types, indicating the confidence of a typing model’s decision that the entity belongs to the corresponding type. We obtain these representations using a fine-grained entity typing model, trained either on supervised ultra-fine entity typing data (Choi et al. 2018) or distantly-supervised examples from Wikipedia. On entity probing tasks involving recognizing entity identity, our embeddings used in parameter-free downstream models achieve competitive performance with ELMo- and BERT-based embeddings in trained models. We also show that it is possible to reduce the size of our type set in a learning-based way for particular domains. Finally, we show that these embeddings can be post-hoc modified through a small number of rules to incorporate domain knowledge and improve performance.
pdf
bib
abs
Empirical Studies of Institutional Federated Learning For Natural Language Processing
Xinghua Zhu
|
Jianzong Wang
|
Zhenhou Hong
|
Jing Xiao
Federated learning has sparkled new interests in the deep learning society to make use of isolated data sources from independent institutes. With the development of novel training tools, we have successfully deployed federated natural language processing networks on GPU-enabled server clusters. This paper demonstrates federated training of a popular NLP model, TextCNN, with applications in sentence intent classification. Furthermore, differential privacy is introduced to protect participants in the training process, in a manageable manner. Distinguished from previous client-level privacy protection schemes, the proposed differentially private federated learning procedure is defined in the dataset sample level, inherent with the applications among institutions instead of individual users. Optimal settings of hyper-parameters for the federated TextCNN model are studied through comprehensive experiments. We also evaluated the performance of federated TextCNN model under imbalanced data load configuration. Experiments show that, the sampling ratio has a large impact on the performance of the FL models, causing up to 38.4% decrease in the test accuracy, while they are robust to different noise multiplier levels, with less than 3% variance in the test accuracy. It is also found that the FL models are sensitive to data load balancedness among client datasets. When the data load is imbalanced, model performance dropped by up to 10%.
pdf
bib
abs
NeuReduce: Reducing Mixed Boolean-Arithmetic Expressions by Recurrent Neural Network
Weijie Feng
|
Binbin Liu
|
Dongpeng Xu
|
Qilong Zheng
|
Yun Xu
Mixed Boolean-Arithmetic (MBA) expressions involve both arithmetic calculation (e.g.,plus, minus, multiply) and bitwise computation (e.g., and, or, negate, xor). MBA expressions have been widely applied in software obfuscation, transforming programs from a simple form to a complex form. MBA expressions are challenging to be simplified, because the interleaving bitwise and arithmetic operations causing mathematical reduction laws to be ineffective. Our goal is to recover the original, simple form from an obfuscated MBA expression. In this paper, we first propose NeuReduce, a string to string method based on neural networks to automatically learn and reduce complex MBA expressions. We develop a comprehensive MBA dataset, including one million diversified MBA expression samples and corresponding simplified forms. After training on the dataset, NeuReduce can reduce MBA rules to homelier but mathematically equivalent forms. By comparing with three state-of-the-art MBA reduction methods, our evaluation result shows that NeuReduce outperforms all other tools in terms of accuracy, solving time, and performance overhead.
pdf
bib
abs
From Language to Language-ish: How Brain-Like is an LSTM’s Representation of Nonsensical Language Stimuli?
Maryam Hashemzadeh
|
Greta Kaufeld
|
Martha White
|
Andrea E. Martin
|
Alona Fyshe
The representations generated by many models of language (word embeddings, recurrent neural networks and transformers) correlate to brain activity recorded while people read. However, these decoding results are usually based on the brain’s reaction to syntactically and semantically sound language stimuli. In this study, we asked: how does an LSTM (long short term memory) language model, trained (by and large) on semantically and syntactically intact language, represent a language sample with degraded semantic or syntactic information? Does the LSTM representation still resemble the brain’s reaction? We found that, even for some kinds of nonsensical language, there is a statistically significant relationship between the brain’s activity and the representations of an LSTM. This indicates that, at least in some instances, LSTMs and the human brain handle nonsensical data similarly.
pdf
bib
abs
Revisiting Pre-Trained Models for Chinese Natural Language Processing
Yiming Cui
|
Wanxiang Che
|
Ting Liu
|
Bing Qin
|
Shijin Wang
|
Guoping Hu
Bidirectional Encoder Representations from Transformers (BERT) has shown marvelous improvements across various NLP tasks, and consecutive variants have been proposed to further improve the performance of the pre-trained language models. In this paper, we target on revisiting Chinese pre-trained language models to examine their effectiveness in a non-English language and release the Chinese pre-trained language model series to the community. We also propose a simple but effective model called MacBERT, which improves upon RoBERTa in several ways, especially the masking strategy that adopts MLM as correction (Mac). We carried out extensive experiments on eight Chinese NLP tasks to revisit the existing pre-trained language models as well as the proposed MacBERT. Experimental results show that MacBERT could achieve state-of-the-art performances on many NLP tasks, and we also ablate details with several findings that may help future research.
https://github.com/ymcui/MacBERTpdf
bib
abs
Cascaded Semantic and Positional Self-Attention Network for Document Classification
Juyong Jiang
|
Jie Zhang
|
Kai Zhang
Transformers have shown great success in learning representations for language modelling. However, an open challenge still remains on how to systematically aggregate semantic information (word embedding) with positional (or temporal) information (word orders). In this work, we propose a new architecture to aggregate the two sources of information using cascaded semantic and positional self-attention network (CSPAN) in the context of document classification. The CSPAN uses a semantic self-attention layer cascaded with Bi-LSTM to process the semantic and positional information in a sequential manner, and then adaptively combine them together through a residue connection. Compared with commonly used positional encoding schemes, CSPAN can exploit the interaction between semantics and word positions in a more interpretable and adaptive manner, and the classification performance can be notably improved while simultaneously preserving a compact model size and high convergence rate. We evaluate the CSPAN model on several benchmark data sets for document classification with careful ablation studies, and demonstrate the encouraging results compared with state of the art.
pdf
bib
abs
Toward Recognizing More Entity Types in NER: An Efficient Implementation using Only Entity Lexicons
Minlong Peng
|
Ruotian Ma
|
Qi Zhang
|
Lujun Zhao
|
Mengxi Wei
|
Changlong Sun
|
Xuanjing Huang
In this work, we explore the way to quickly adjust an existing named entity recognition (NER) system to make it capable of recognizing entity types not defined in the system. As an illustrative example, consider the case that a NER system has been built to recognize person and organization names, and now it requires to additionally recognize job titles. Such a situation is common in the industrial areas, where the entity types required to recognize vary a lot in different products and keep changing. To avoid laborious data labeling and achieve fast adaptation, we propose to adjust the existing NER system using the previously labeled data and entity lexicons of the newly introduced entity types. We formulate such a task as a partially supervised learning problem and accordingly propose an effective algorithm to solve the problem. Comprehensive experimental studies on several public NER datasets validate the effectiveness of our method.
pdf
bib
abs
From Disjoint Sets to Parallel Data to Train Seq2Seq Models for Sentiment Transfer
Paulo Cavalin
|
Marisa Vasconcelos
|
Marcelo Grave
|
Claudio Pinhanez
|
Victor Henrique Alves Ribeiro
We present a method for creating parallel data to train Seq2Seq neural networks for sentiment transfer. Most systems for this task, which can be viewed as monolingual machine translation (MT), have relied on unsupervised methods, such as Generative Adversarial Networks (GANs)-inspired approaches, for coping with the lack of parallel corpora. Given that the literature shows that Seq2Seq methods have been consistently outperforming unsupervised methods in MT-related tasks, in this work we exploit the use of semantic similarity computation for converting non-parallel data onto a parallel corpus. That allows us to train a transformer neural network for the sentiment transfer task, and compare its performance against unsupervised approaches. With experiments conducted on two well-known public datasets, i.e. Yelp and Amazon, we demonstrate that the proposed methodology outperforms existing unsupervised methods very consistently in fluency, and presents competitive results in terms of sentiment conversion and content preservation. We believe that this works opens up an opportunity for seq2seq neural networks to be better exploited in problems for which they have not been applied owing to the lack of parallel training data.
pdf
bib
abs
Learning to Stop: A Simple yet Effective Approach to Urban Vision-Language Navigation
Jiannan Xiang
|
Xin Wang
|
William Yang Wang
Vision-and-Language Navigation (VLN) is a natural language grounding task where an agent learns to follow language instructions and navigate to specified destinations in real-world environments. A key challenge is to recognize and stop at the correct location, especially for complicated outdoor environments. Existing methods treat the STOP action equally as other actions, which results in undesirable behaviors that the agent often fails to stop at the destination even though it might be on the right path. Therefore, we propose Learning to Stop (L2Stop), a simple yet effective policy module that differentiates STOP and other actions. Our approach achieves the new state of the art on a challenging urban VLN dataset Touchdown, outperforming the baseline by 6.89% (absolute improvement) on Success weighted by Edit Distance (SED).
pdf
bib
abs
Document Ranking with a Pretrained Sequence-to-Sequence Model
Rodrigo Nogueira
|
Zhiying Jiang
|
Ronak Pradeep
|
Jimmy Lin
This work proposes the use of a pretrained sequence-to-sequence model for document ranking. Our approach is fundamentally different from a commonly adopted classification-based formulation based on encoder-only pretrained transformer architectures such as BERT. We show how a sequence-to-sequence model can be trained to generate relevance labels as “target tokens”, and how the underlying logits of these target tokens can be interpreted as relevance probabilities for ranking. Experimental results on the MS MARCO passage ranking task show that our ranking approach is superior to strong encoder-only models. On three other document retrieval test collections, we demonstrate a zero-shot transfer-based approach that outperforms previous state-of-the-art models requiring in-domain cross-validation. Furthermore, we find that our approach significantly outperforms an encoder-only architecture in a data-poor setting. We investigate this observation in more detail by varying target tokens to probe the model’s use of latent knowledge. Surprisingly, we find that the choice of target tokens impacts effectiveness, even for words that are closely related semantically. This finding sheds some light on why our sequence-to-sequence formulation for document ranking is effective. Code and models are available at pygaggle.ai.
pdf
bib
abs
Pruning Redundant Mappings in Transformer Models via Spectral-Normalized Identity Prior
Zi Lin
|
Jeremiah Liu
|
Zi Yang
|
Nan Hua
|
Dan Roth
Traditional (unstructured) pruning methods for a Transformer model focus on regularizing the individual weights by penalizing them toward zero. In this work, we explore spectral-normalized identity priors (SNIP), a structured pruning approach which penalizes an entire residual module in a Transformer model toward an identity mapping. Our method identifies and discards unimportant non-linear mappings in the residual connections by applying a thresholding operator on the function norm, and is applicable to any structured module including a single attention head, an entire attention blocks, or a feed-forward subnetwork. Furthermore, we introduce spectral normalization to stabilize the distribution of the post-activation values of the Transformer layers, further improving the pruning effectiveness of the proposed methodology. We conduct experiments with BERT on 5 GLUE benchmark tasks to demonstrate that SNIP achieves effective pruning results while maintaining comparable performance. Specifically, we improve the performance over the state-of-the-art by 0.5 to 1.0% on average at 50% compression ratio.
pdf
bib
abs
Rethinking Self-Attention: Towards Interpretability in Neural Parsing
Khalil Mrini
|
Franck Dernoncourt
|
Quan Hung Tran
|
Trung Bui
|
Walter Chang
|
Ndapa Nakashole
Attention mechanisms have improved the performance of NLP tasks while allowing models to remain explainable. Self-attention is currently widely used, however interpretability is difficult due to the numerous attention distributions. Recent work has shown that model representations can benefit from label-specific information, while facilitating interpretation of predictions. We introduce the Label Attention Layer: a new form of self-attention where attention heads represent labels. We test our novel layer by running constituency and dependency parsing experiments and show our new model obtains new state-of-the-art results for both tasks on both the Penn Treebank (PTB) and Chinese Treebank. Additionally, our model requires fewer self-attention layers compared to existing work. Finally, we find that the Label Attention heads learn relations between syntactic categories and show pathways to analyze errors.
pdf
bib
abs
PolicyQA: A Reading Comprehension Dataset for Privacy Policies
Wasi Ahmad
|
Jianfeng Chi
|
Yuan Tian
|
Kai-Wei Chang
Privacy policy documents are long and verbose. A question answering (QA) system can assist users in finding the information that is relevant and important to them. Prior studies in this domain frame the QA task as retrieving the most relevant text segment or a list of sentences from the policy document given a question. On the contrary, we argue that providing users with a short text span from policy documents reduces the burden of searching the target information from a lengthy text segment. In this paper, we present PolicyQA, a dataset that contains 25,017 reading comprehension style examples curated from an existing corpus of 115 website privacy policies. PolicyQA provides 714 human-annotated questions written for a wide range of privacy practices. We evaluate two existing neural QA models and perform rigorous analysis to reveal the advantages and challenges offered by PolicyQA.
pdf
bib
abs
A Linguistic Analysis of Visually Grounded Dialogues Based on Spatial Expressions
Takuma Udagawa
|
Takato Yamazaki
|
Akiko Aizawa
Recent models achieve promising results in visually grounded dialogues. However, existing datasets often contain undesirable biases and lack sophisticated linguistic analyses, which make it difficult to understand how well current models recognize their precise linguistic structures. To address this problem, we make two design choices: first, we focus on OneCommon Corpus (CITATION), a simple yet challenging common grounding dataset which contains minimal bias by design. Second, we analyze their linguistic structures based on spatial expressions and provide comprehensive and reliable annotation for 600 dialogues. We show that our annotation captures important linguistic structures including predicate-argument structure, modification and ellipsis. In our experiments, we assess the model’s understanding of these structures through reference resolution. We demonstrate that our annotation can reveal both the strengths and weaknesses of baseline models in essential levels of detail. Overall, we propose a novel framework and resource for investigating fine-grained language understanding in visually grounded dialogues.
pdf
bib
abs
Efficient Context and Schema Fusion Networks for Multi-Domain Dialogue State Tracking
Su Zhu
|
Jieyu Li
|
Lu Chen
|
Kai Yu
Dialogue state tracking (DST) aims at estimating the current dialogue state given all the preceding conversation. For multi-domain DST, the data sparsity problem is a major obstacle due to increased numbers of state candidates and dialogue lengths. To encode the dialogue context efficiently, we utilize the previous dialogue state (predicted) and the current dialogue utterance as the input for DST. To consider relations among different domain-slots, the schema graph involving prior knowledge is exploited. In this paper, a novel context and schema fusion network is proposed to encode the dialogue context and schema graph by using internal and external attention mechanisms. Experiment results show that our approach can outperform strong baselines, and the previous state-of-the-art method (SOM-DST) can also be improved by our proposed schema graph.
pdf
bib
abs
Syntactic and Semantic-driven Learning for Open Information Extraction
Jialong Tang
|
Yaojie Lu
|
Hongyu Lin
|
Xianpei Han
|
Le Sun
|
Xinyan Xiao
|
Hua Wu
One of the biggest bottlenecks in building accurate, high coverage neural open IE systems is the need for large labelled corpora. The diversity of open domain corpora and the variety of natural language expressions further exacerbate this problem. In this paper, we propose a syntactic and semantic-driven learning approach, which can learn neural open IE models without any human-labelled data by leveraging syntactic and semantic knowledge as noisier, higher-level supervision. Specifically, we first employ syntactic patterns as data labelling functions and pretrain a base model using the generated labels. Then we propose a syntactic and semantic-driven reinforcement learning algorithm, which can effectively generalize the base model to open situations with high accuracy. Experimental results show that our approach significantly outperforms the supervised counterparts, and can even achieve competitive performance to supervised state-of-the-art (SoA) model.
pdf
bib
abs
Group-wise Contrastive Learning for Neural Dialogue Generation
Hengyi Cai
|
Hongshen Chen
|
Yonghao Song
|
Zhuoye Ding
|
Yongjun Bao
|
Weipeng Yan
|
Xiaofang Zhao
Neural dialogue response generation has gained much popularity in recent years. Maximum Likelihood Estimation (MLE) objective is widely adopted in existing dialogue model learning. However, models trained with MLE objective function are plagued by the low-diversity issue when it comes to the open-domain conversational setting. Inspired by the observation that humans not only learn from the positive signals but also benefit from correcting behaviors of undesirable actions, in this work, we introduce contrastive learning into dialogue generation, where the model explicitly perceives the difference between the well-chosen positive and negative utterances. Specifically, we employ a pretrained baseline model as a reference. During contrastive learning, the target dialogue model is trained to give higher conditional probabilities for the positive samples, and lower conditional probabilities for those negative samples, compared to the reference model. To manage the multi-mapping relations prevalent in human conversation, we augment contrastive dialogue learning with group-wise dual sampling. Extensive experimental results show that the proposed group-wise contrastive learning framework is suited for training a wide range of neural dialogue generation models with very favorable performance over the baseline training approaches.
pdf
bib
abs
E-BERT: Efficient-Yet-Effective Entity Embeddings for BERT
Nina Poerner
|
Ulli Waltinger
|
Hinrich Schütze
We present a novel way of injecting factual knowledge about entities into the pretrained BERT model (Devlin et al., 2019): We align Wikipedia2Vec entity vectors (Yamada et al., 2016) with BERT’s native wordpiece vector space and use the aligned entity vectors as if they were wordpiece vectors. The resulting entity-enhanced version of BERT (called E-BERT) is similar in spirit to ERNIE (Zhang et al., 2019) and KnowBert (Peters et al., 2019), but it requires no expensive further pre-training of the BERT encoder. We evaluate E-BERT on unsupervised question answering (QA), supervised relation classification (RC) and entity linking (EL). On all three tasks, E-BERT outperforms BERT and other baselines. We also show quantitatively that the original BERT model is overly reliant on the surface form of entity names (e.g., guessing that someone with an Italian-sounding name speaks Italian), and that E-BERT mitigates this problem.
pdf
bib
abs
A Multi-task Learning Framework for Opinion Triplet Extraction
Chen Zhang
|
Qiuchi Li
|
Dawei Song
|
Benyou Wang
The state-of-the-art Aspect-based Sentiment Analysis (ABSA) approaches are mainly based on either detecting aspect terms and their corresponding sentiment polarities, or co-extracting aspect and opinion terms. However, the extraction of aspect-sentiment pairs lacks opinion terms as a reference, while co-extraction of aspect and opinion terms would not lead to meaningful pairs without determining their sentiment dependencies. To address the issue, we present a novel view of ABSA as an opinion triplet extraction task, and propose a multi-task learning framework to jointly extract aspect terms and opinion terms, and simultaneously parses sentiment dependencies between them with a biaffine scorer. At inference phase, the extraction of triplets is facilitated by a triplet decoding method based on the above outputs. We evaluate the proposed framework on four SemEval benchmarks for ASBA. The results demonstrate that our approach significantly outperforms a range of strong baselines and state-of-the-art approaches.
pdf
bib
abs
Event Extraction as Multi-turn Question Answering
Fayuan Li
|
Weihua Peng
|
Yuguang Chen
|
Quan Wang
|
Lu Pan
|
Yajuan Lyu
|
Yong Zhu
Event extraction, which aims to identify event triggers of pre-defined event types and their arguments of specific roles, is a challenging task in NLP. Most traditional approaches formulate this task as classification problems, with event types or argument roles taken as golden labels. Such approaches fail to model rich interactions among event types and arguments of different roles, and cannot generalize to new types or roles. This work proposes a new paradigm that formulates event extraction as multi-turn question answering. Our approach, MQAEE, casts the extraction task into a series of reading comprehension problems, by which it extracts triggers and arguments successively from a given sentence. A history answer embedding strategy is further adopted to model question answering history in the multi-turn process. By this new formulation, MQAEE makes full use of dependency among arguments and event types, and generalizes well to new types with new argument roles. Empirical results on ACE 2005 shows that MQAEE outperforms current state-of-the-art, pushing the final F1 of argument extraction to 53.4% (+2.0%). And it also has a good generalization ability, achieving competitive performance on 13 new event types even if trained only with a few samples of them.
pdf
bib
abs
Improving QA Generalization by Concurrent Modeling of Multiple Biases
Mingzhu Wu
|
Nafise Sadat Moosavi
|
Andreas Rücklé
|
Iryna Gurevych
Existing NLP datasets contain various biases that models can easily exploit to achieve high performances on the corresponding evaluation sets. However, focusing on dataset-specific biases limits their ability to learn more generalizable knowledge about the task from more general data patterns. In this paper, we investigate the impact of debiasing methods for improving generalization and propose a general framework for improving the performance on both in-domain and out-of-domain datasets by concurrent modeling of multiple biases in the training data. Our framework weights each example based on the biases it contains and the strength of those biases in the training data. It then uses these weights in the training objective so that the model relies less on examples with high bias weights. We extensively evaluate our framework on extractive question answering with training data from various domains with multiple biases of different strengths. We perform the evaluations in two different settings, in which the model is trained on a single domain or multiple domains simultaneously, and show its effectiveness in both settings compared to state-of-the-art debiasing methods.
pdf
bib
abs
Actor-Double-Critic: Incorporating Model-Based Critic for Task-Oriented Dialogue Systems
Yen-chen Wu
|
Bo-Hsiang Tseng
|
Milica Gasic
In order to improve the sample-efficiency of deep reinforcement learning (DRL), we implemented imagination augmented agent (I2A) in spoken dialogue systems (SDS). Although I2A achieves a higher success rate than baselines by augmenting predicted future into a policy network, its complicated architecture introduces unwanted instability. In this work, we propose actor-double-critic (ADC) to improve the stability and overall performance of I2A. ADC simplifies the architecture of I2A to reduce excessive parameters and hyper-parameters. More importantly, a separate model-based critic shares parameters between actions and makes back-propagation explicit. In our experiments on Cambridge Restaurant Booking task, ADC enhances success rates considerably and shows robustness to imperfect environment models. In addition, ADC exhibits the stability and sample-efficiency as significantly reducing the baseline standard deviation of success rates and reaching the 80% success rate with half training data.
pdf
bib
abs
Controlled Hallucinations: Learning to Generate Faithfully from Noisy Data
Katja Filippova
Neural text generation (data- or text-to-text) demonstrates remarkable performance when training data is abundant which for many applications is not the case. To collect a large corpus of parallel data, heuristic rules are often used but they inevitably let noise into the data, such as phrases in the output which cannot be explained by the input. Consequently, models pick up on the noise and may hallucinate–generate fluent but unsupported text. Our contribution is a simple but powerful technique to treat such hallucinations as a controllable aspect of the generated text, without dismissing any input and without modifying the model architecture. On the WikiBio corpus (Lebret et al., 2016), a particularly noisy dataset, we demonstrate the efficacy of the technique both in an automatic and in a human evaluation.
pdf
bib
abs
Sequential Span Classification with Neural Semi-Markov CRFs for Biomedical Abstracts
Kosuke Yamada
|
Tsutomu Hirao
|
Ryohei Sasano
|
Koichi Takeda
|
Masaaki Nagata
Dividing biomedical abstracts into several segments with rhetorical roles is essential for supporting researchers’ information access in the biomedical domain. Conventional methods have regarded the task as a sequence labeling task based on sequential sentence classification, i.e., they assign a rhetorical label to each sentence by considering the context in the abstract. However, these methods have a critical problem: they are prone to mislabel longer continuous sentences with the same rhetorical label. To tackle the problem, we propose sequential span classification that assigns a rhetorical label, not to a single sentence but to a span that consists of continuous sentences. Accordingly, we introduce Neural Semi-Markov Conditional Random Fields to assign the labels to such spans by considering all possible spans of various lengths. Experimental results obtained from PubMed 20k RCT and NICTA-PIBOSO datasets demonstrate that our proposed method achieved the best micro sentence-F1 score as well as the best micro span-F1 score.
pdf
bib
abs
Where to Submit? Helping Researchers to Choose the Right Venue
Konstantin Kobs
|
Tobias Koopmann
|
Albin Zehe
|
David Fernes
|
Philipp Krop
|
Andreas Hotho
Whenever researchers write a paper, the same question occurs: “Where to submit?” In this work, we introduce WTS, an open and interpretable NLP system that recommends conferences and journals to researchers based on the title, abstract, and/or keywords of a given paper. We adapt the TextCNN architecture and automatically analyze its predictions using the Integrated Gradients method to highlight words and phrases that led to the recommendation of a scientific venue. We train and test our method on publications from the fields of artificial intelligence (AI) and medicine, both derived from the Semantic Scholar dataset. WTS achieves an Accuracy@5 of approximately 83% for AI papers and 95% in the field of medicine. It is open source and available for testing on
https://wheretosubmit.ml.
pdf
bib
abs
AirConcierge: Generating Task-Oriented Dialogue via Efficient Large-Scale Knowledge Retrieval
Chieh-Yang Chen
|
Pei-Hsin Wang
|
Shih-Chieh Chang
|
Da-Cheng Juan
|
Wei Wei
|
Jia-Yu Pan
Despite recent success in neural task-oriented dialogue systems, developing such a real-world system involves accessing large-scale knowledge bases (KBs), which cannot be simply encoded by neural approaches, such as memory network mechanisms. To alleviate the above problem, we propose , an end-to-end trainable text-to-SQL guided framework to learn a neural agent that interacts with KBs using the generated SQL queries. Specifically, the neural agent first learns to ask and confirm the customer’s intent during the multi-turn interactions, then dynamically determining when to ground the user constraints into executable SQL queries so as to fetch relevant information from KBs. With the help of our method, the agent can use less but more accurate fetched results to generate useful responses efficiently, instead of incorporating the entire KBs. We evaluate the proposed method on the AirDialogue dataset, a large corpus released by Google, containing the conversations of customers booking flight tickets from the agent. The experimental results show that significantly improves over previous work in terms of accuracy and the BLEU score, which demonstrates not only the ability to achieve the given task but also the good quality of the generated dialogues.
pdf
bib
abs
DocStruct: A Multimodal Method to Extract Hierarchy Structure in Document for General Form Understanding
Zilong Wang
|
Mingjie Zhan
|
Xuebo Liu
|
Ding Liang
Form understanding depends on both textual contents and organizational structure. Although modern OCR performs well, it is still challenging to realize general form understanding because forms are commonly used and of various formats. The table detection and handcrafted features in previous works cannot apply to all forms because of their requirements on formats. Therefore, we concentrate on the most elementary components, the key-value pairs, and adopt multimodal methods to extract features. We consider the form structure as a tree-like or graph-like hierarchy of text fragments. The parent-child relation corresponds to the key-value pairs in forms. We utilize the state-of-the-art models and design targeted extraction modules to extract multimodal features from semantic contents, layout information, and visual images. A hybrid fusion method of concatenation and feature shifting is designed to fuse the heterogeneous features and provide an informative joint representation. We adopt an asymmetric algorithm and negative sampling in our model as well. We validate our method on two benchmarks, MedForm and FUNSD, and extensive experiments demonstrate the effectiveness of our method.
pdf
bib
abs
Pretrained Language Models for Dialogue Generation with Multiple Input Sources
Yu Cao
|
Wei Bi
|
Meng Fang
|
Dacheng Tao
Large-scale pretrained language models have achieved outstanding performance on natural language understanding tasks. However, it is still under investigating how to apply them to dialogue generation tasks, especially those with responses conditioned on multiple sources. Previous work simply concatenates all input sources or averages information from different input sources. In this work, we study dialogue models with multiple input sources adapted from the pretrained language model GPT2. We explore various methods to fuse multiple separate attention information corresponding to different sources. Our experimental results show that proper fusion methods deliver higher relevance with dialogue history than simple fusion baselines.
pdf
bib
abs
A Study in Improving BLEU Reference Coverage with Diverse Automatic Paraphrasing
Rachel Bawden
|
Biao Zhang
|
Lisa Yankovskaya
|
Andre Tättar
|
Matt Post
We investigate a long-perceived shortcoming in the typical use of BLEU: its reliance on a single reference. Using modern neural paraphrasing techniques, we study whether automatically generating additional *diverse* references can provide better coverage of the space of valid translations and thereby improve its correlation with human judgments. Our experiments on the into-English language directions of the WMT19 metrics task (at both the system and sentence level) show that using paraphrased references does generally improve BLEU, and when it does, the more diverse the better. However, we also show that better results could be achieved if those paraphrases were to specifically target the parts of the space most relevant to the MT outputs being evaluated. Moreover, the gains remain slight even when human paraphrases are used, suggesting inherent limitations to BLEU’s capacity to correctly exploit multiple references. Surprisingly, we also find that adequacy appears to be less important, as shown by the high results of a strong sampling approach, which even beats human paraphrases when used with sentence-level BLEU.
pdf
bib
abs
Cross-lingual Alignment Methods for Multilingual BERT: A Comparative Study
Saurabh Kulshreshtha
|
Jose Luis Redondo Garcia
|
Ching-Yun Chang
Multilingual BERT (mBERT) has shown reasonable capability for zero-shot cross-lingual transfer when fine-tuned on downstream tasks. Since mBERT is not pre-trained with explicit cross-lingual supervision, transfer performance can further be improved by aligning mBERT with cross-lingual signal. Prior work propose several approaches to align contextualised embeddings. In this paper we analyse how different forms of cross-lingual supervision and various alignment methods influence the transfer capability of mBERT in zero-shot setting. Specifically, we compare parallel corpora vs dictionary-based supervision and rotational vs fine-tuning based alignment methods. We evaluate the performance of different alignment methodologies across eight languages on two tasks: Name Entity Recognition and Semantic Slot Filling. In addition, we propose a novel normalisation method which consistently improves the performance of rotation-based alignment including a notable 3% F1 improvement for distant and typologically dissimilar languages. Importantly we identify the biases of the alignment methods to the type of task and proximity to the transfer language. We also find that supervision from parallel corpus is generally superior to dictionary alignments.
pdf
bib
abs
Hybrid Emoji-Based Masked Language Models for Zero-Shot Abusive Language Detection
Michele Corazza
|
Stefano Menini
|
Elena Cabrio
|
Sara Tonelli
|
Serena Villata
Recent studies have demonstrated the effectiveness of cross-lingual language model pre-training on different NLP tasks, such as natural language inference and machine translation. In our work, we test this approach on social media data, which are particularly challenging to process within this framework, since the limited length of the textual messages and the irregularity of the language make it harder to learn meaningful encodings. More specifically, we propose a hybrid emoji-based Masked Language Model (MLM) to leverage the common information conveyed by emojis across different languages and improve the learned cross-lingual representation of short text messages, with the goal to perform zero- shot abusive language detection. We compare the results obtained with the original MLM to the ones obtained by our method, showing improved performance on German, Italian and Spanish.
pdf
bib
abs
SeNsER: Learning Cross-Building Sensor Metadata Tagger
Yang Jiao
|
Jiacheng Li
|
Jiaman Wu
|
Dezhi Hong
|
Rajesh Gupta
|
Jingbo Shang
Sensor metadata tagging, akin to the named entity recognition task, provides key contextual information (e.g., measurement type and location) about sensors for running smart building applications. Unfortunately, sensor metadata in different buildings often follows distinct naming conventions. Therefore, learning a tagger currently requires extensive annotations on a per building basis. In this work, we propose a novel framework, SeNsER, which learns a sensor metadata tagger for a new building based on its raw metadata and some existing fully annotated building. It leverages the commonality between different buildings: At the character level, it employs bidirectional neural language models to capture the shared underlying patterns between two buildings and thus regularizes the feature learning process; At the word level, it leverages as features the k-mers existing in the fully annotated building. During inference, we further incorporate the information obtained from sources such as Wikipedia as prior knowledge. As a result, SeNsER shows promising results in extensive experiments on multiple real-world buildings.
pdf
bib
abs
Persian Ezafe Recognition Using Transformers and Its Role in Part-Of-Speech Tagging
Ehsan Doostmohammadi
|
Minoo Nassajian
|
Adel Rahimi
Ezafe is a grammatical particle in some Iranian languages that links two words together. Regardless of the important information it conveys, it is almost always not indicated in Persian script, resulting in mistakes in reading complex sentences and errors in natural language processing tasks. In this paper, we experiment with different machine learning methods to achieve state-of-the-art results in the task of ezafe recognition. Transformer-based methods, BERT and XLMRoBERTa, achieve the best results, the latter achieving 2.68% F1-score more than the previous state-of-the-art. We, moreover, use ezafe information to improve Persian part-of-speech tagging results and show that such information will not be useful to transformer-based methods and explain why that might be the case.
pdf
bib
abs
Scene Graph Modification Based on Natural Language Commands
Xuanli He
|
Quan Hung Tran
|
Gholamreza Haffari
|
Walter Chang
|
Zhe Lin
|
Trung Bui
|
Franck Dernoncourt
|
Nhan Dam
Structured representations like graphs and parse trees play a crucial role in many Natural Language Processing systems. In recent years, the advancements in multi-turn user interfaces necessitate the need for controlling and updating these structured representations given new sources of information. Although there have been many efforts focusing on improving the performance of the parsers that map text to graphs or parse trees, very few have explored the problem of directly manipulating these representations. In this paper, we explore the novel problem of graph modification, where the systems need to learn how to update an existing scene graph given a new user’s command. Our novel models based on graph-based sparse transformer and cross attention information fusion outperform previous systems adapted from the machine translation and graph generation literature. We further contribute our large graph modification datasets to the research community to encourage future research for this new problem.
pdf
bib
abs
LiMiT: The Literal Motion in Text Dataset
Irene Manotas
|
Ngoc Phuoc An Vo
|
Vadim Sheinin
Motion recognition is one of the basic cognitive capabilities of many life forms, yet identifying motion of physical entities in natural language have not been explored extensively and empirically. We present the Literal-Motion-in-Text (LiMiT) dataset, a large human-annotated collection of English text sentences describing physical occurrence of motion, with annotated physical entities in motion. We describe the annotation process for the dataset, analyze its scale and diversity, and report results of several baseline models. We also present future research directions and applications of the LiMiT dataset and share it publicly as a new resource for the research community.
pdf
bib
abs
Transition-based Parsing with Stack-Transformers
Ramón Fernandez Astudillo
|
Miguel Ballesteros
|
Tahira Naseem
|
Austin Blodgett
|
Radu Florian
Modeling the parser state is key to good performance in transition-based parsing. Recurrent Neural Networks considerably improved the performance of transition-based systems by modelling the global state, e.g. stack-LSTM parsers, or local state modeling of contextualized features, e.g. Bi-LSTM parsers. Given the success of Transformer architectures in recent parsing systems, this work explores modifications of the sequence-to-sequence Transformer architecture to model either global or local parser states in transition-based parsing. We show that modifications of the cross attention mechanism of the Transformer considerably strengthen performance both on dependency and Abstract Meaning Representation (AMR) parsing tasks, particularly for smaller models or limited training data.
pdf
bib
abs
Generative Data Augmentation for Commonsense Reasoning
Yiben Yang
|
Chaitanya Malaviya
|
Jared Fernandez
|
Swabha Swayamdipta
|
Ronan Le Bras
|
Ji-Ping Wang
|
Chandra Bhagavatula
|
Yejin Choi
|
Doug Downey
Recent advances in commonsense reasoning depend on large-scale human-annotated training sets to achieve peak performance. However, manual curation of training sets is expensive and has been shown to introduce annotation artifacts that neural models can readily exploit and overfit to. We propose a novel generative data augmentation technique, G-DAUGˆC, that aims to achieve more accurate and robust learning in a low-resource setting. Our approach generates synthetic examples using pretrained language models and selects the most informative and diverse set of examples for data augmentation. On experiments with multiple commonsense reasoning benchmarks, G-DAUGˆC consistently outperforms existing data augmentation methods based on back-translation, establishing a new state-of-the-art on WinoGrande, CODAH, and CommonsenseQA, as well as enhances out-of-distribution generalization, proving to be robust against adversaries or perturbations. Our analysis demonstrates that G-DAUGˆC produces a diverse set of fluent training examples, and that its selection and training approaches are important for performance.
pdf
bib
abs
HybridQA: A Dataset of Multi-Hop Question Answering over Tabular and Textual Data
Wenhu Chen
|
Hanwen Zha
|
Zhiyu Chen
|
Wenhan Xiong
|
Hong Wang
|
William Yang Wang
Existing question answering datasets focus on dealing with homogeneous information, based either only on text or KB/Table information alone. However, as human knowledge is distributed over heterogeneous forms, using homogeneous information alone might lead to severe coverage problems. To fill in the gap, we present HybridQA, a new large-scale question-answering dataset that requires reasoning on heterogeneous information. Each question is aligned with a Wikipedia table and multiple free-form corpora linked with the entities in the table. The questions are designed to aggregate both tabular information and text information, i.e., lack of either form would render the question unanswerable. We test with three different models: 1) a table-only model. 2) text-only model. 3) a hybrid model that combines heterogeneous information to find the answer. The experimental results show that the EM scores obtained by two baselines are below 20%, while the hybrid model can achieve an EM over 40%. This gap suggests the necessity to aggregate heterogeneous information in HybridQA. However, the hybrid model’s score is still far behind human performance. Hence, HybridQA can serve as a challenging benchmark to study question answering with heterogeneous information.
pdf
bib
abs
PhoBERT: Pre-trained language models for Vietnamese
Dat Quoc Nguyen
|
Anh Tuan Nguyen
We present PhoBERT with two versions, PhoBERT-base and PhoBERT-large, the first public large-scale monolingual language models pre-trained for Vietnamese. Experimental results show that PhoBERT consistently outperforms the recent best pre-trained multilingual model XLM-R (Conneau et al., 2020) and improves the state-of-the-art in multiple Vietnamese-specific NLP tasks including Part-of-speech tagging, Dependency parsing, Named-entity recognition and Natural language inference. We release PhoBERT to facilitate future research and downstream applications for Vietnamese NLP. Our PhoBERT models are available at
https://github.com/VinAIResearch/PhoBERTpdf
bib
abs
ESTeR: Combining Word Co-occurrences and Word Associations for Unsupervised Emotion Detection
Sujatha Das Gollapalli
|
Polina Rozenshtein
|
See-Kiong Ng
Accurate detection of emotions in user- generated text was shown to have several applications for e-commerce, public well-being, and disaster management. Currently, the state-of-the-art performance for emotion detection in text is obtained using complex, deep learning models trained on domain-specific, labeled data. In this paper, we propose ESTeR , an unsupervised model for identifying emotions using a novel similarity function based on random walks on graphs. Our model combines large-scale word co-occurrence information with word-associations from lexicons avoiding not only the dependence on labeled datasets, but also an explicit mapping of words to latent spaces used in emotion-enriched word embeddings. Our similarity function can also be computed efficiently. We study a range of datasets including recent tweets related to COVID-19 to illustrate the superior performance of our model and report insights on public emotions during the on-going pandemic.
pdf
bib
abs
Make Templates Smarter: A Template Based Data2Text System Powered by Text Stitch Model
Bingfeng Luo
|
Zuo Bai
|
Kunfeng Lai
|
Jianping Shen
Neural network (NN) based data2text models achieve state-of-the-art (SOTA) performance in most metrics, but they sometimes drop or modify the information in the input, and it is hard to control the generation contents. Moreover, it requires paired training data that are usually expensive to collect. Template-based methods have good fidelity and controllability but require heavy human involvement. We propose a novel template-based data2text system powered by a text stitch model. It ensures fidelity and controllability by using templates to produce the main contents. In addition, it reduces human involvement in template design by using a text stitch model to automatically stitch adjacent template units, which is a step that usually requires careful template design and limits template reusability. The text stitch model can be trained in self-supervised fashion, which only requires free texts. The experiments on a benchmark dataset show that our system outperforms SOTA NN-based systems in fidelity and surpasses template-based systems in diversity and human involvement.
pdf
bib
abs
GCDST: A Graph-based and Copy-augmented Multi-domain Dialogue State Tracking
Peng Wu
|
Bowei Zou
|
Ridong Jiang
|
AiTi Aw
As an essential component of task-oriented dialogue systems, Dialogue State Tracking (DST) takes charge of estimating user intentions and requests in dialogue contexts and extracting substantial goals (states) from user utterances to help the downstream modules to determine the next actions of dialogue systems. For practical usages, a major challenge to constructing a robust DST model is to process a conversation with multi-domain states. However, most existing approaches trained DST on a single domain independently, ignoring the information across domains. To tackle the multi-domain DST task, we first construct a dialogue state graph to transfer structured features among related domain-slot pairs across domains. Then, we encode the graph information of dialogue states by graph convolutional networks and utilize a hard copy mechanism to directly copy historical states from the previous conversation. Experimental results show that our model improves the performances of the multi-domain DST baseline (TRADE) with the absolute joint accuracy of 2.0% and 1.0% on the MultiWOZ 2.0 and 2.1 dialogue datasets, respectively.
pdf
bib
abs
Incorporating Stylistic Lexical Preferences in Generative Language Models
Hrituraj Singh
|
Gaurav Verma
|
Balaji Vasan Srinivasan
While recent advances in language modeling has resulted in powerful generation models, their generation style remains implicitly dependent on the training data and can not emulate a specific target style. Leveraging the generative capabilities of a transformer-based language models, we present an approach to induce certain target-author attributes by incorporating continuous multi-dimensional lexical preferences of an author into generative language models. We introduce rewarding strategies in a reinforcement learning framework that encourages the use of words across multiple categorical dimensions, to varying extents. Our experiments demonstrate that the proposed approach can generate text that distinctively aligns with a given target author’s lexical style. We conduct quantitative and qualitative comparisons with competitive and relevant baselines to illustrate the benefits of the proposed approach.
pdf
bib
abs
Why do you think that? Exploring Faithful Sentence-Level Rationales Without Supervision
Max Glockner
|
Ivan Habernal
|
Iryna Gurevych
Evaluating the trustworthiness of a model’s prediction is essential for differentiating between ‘right for the right reasons’ and ‘right for the wrong reasons’. Identifying textual spans that determine the target label, known as faithful rationales, usually relies on pipeline approaches or reinforcement learning. However, such methods either require supervision and thus costly annotation of the rationales or employ non-differentiable models. We propose a differentiable training–framework to create models which output faithful rationales on a sentence level, by solely applying supervision on the target task. To achieve this, our model solves the task based on each rationale individually and learns to assign high scores to those which solved the task best. Our evaluation on three different datasets shows competitive results compared to a standard BERT blackbox while exceeding a pipeline counterpart’s performance in two cases. We further exploit the transparent decision–making process of these models to prefer selecting the correct rationales by applying direct supervision, thereby boosting the performance on the rationale–level.
pdf
bib
abs
Semi-Supervised Learning for Video Captioning
Ke Lin
|
Zhuoxin Gan
|
Liwei Wang
Deep neural networks have made great success on video captioning in supervised learning setting. However, annotating videos with descriptions is very expensive and time-consuming. If the video captioning algorithm can benefit from a large number of unlabeled videos, the cost of annotation can be reduced. In the proposed study, we make the first attempt to train the video captioning model on labeled data and unlabeled data jointly, in a semi-supervised learning manner. For labeled data, we train them with the traditional cross-entropy loss. For unlabeled data, we leverage a self-critical policy gradient method with the difference between the scores obtained by Monte-Carlo sampling and greedy decoding as the reward function, while the scores are the negative K-L divergence between output distributions of original video data and augmented video data. The final loss is the weighted sum of losses obtained by labeled data and unlabeled data. Experiments conducted on VATEX, MSR-VTT and MSVD dataset demonstrate that the introduction of unlabeled data can improve the performance of the video captioning model. The proposed semi-supervised learning algorithm also outperforms several state-of-the-art semi-supervised learning approaches.
pdf
bib
abs
Multiˆ2OIE: Multilingual Open Information Extraction Based on Multi-Head Attention with BERT
Youngbin Ro
|
Yukyung Lee
|
Pilsung Kang
In this paper, we propose Multi2OIE, which performs open information extraction (open IE) by combining BERT with multi-head attention. Our model is a sequence-labeling system with an efficient and effective argument extraction method. We use a query, key, and value setting inspired by the Multimodal Transformer to replace the previously used bidirectional long short-term memory architecture with multi-head attention. Multi2OIE outperforms existing sequence-labeling systems with high computational efficiency on two benchmark evaluation datasets, Re-OIE2016 and CaRB. Additionally, we apply the proposed method to multilingual open IE using multilingual BERT. Experimental results on new benchmark datasets introduced for two languages (Spanish and Portuguese) demonstrate that our model outperforms other multilingual systems without training data for the target languages.
pdf
bib
abs
LGPSolver - Solving Logic Grid Puzzles Automatically
Elgun Jabrayilzade
|
Selma Tekir
Logic grid puzzle (LGP) is a type of word problem where the task is to solve a problem in logic. Constraints for the problem are given in the form of textual clues. Once these clues are transformed into formal logic, a deductive reasoning process provides the solution. Solving logic grid puzzles in a fully automatic manner has been a challenge since a precise understanding of clues is necessary to develop the corresponding formal logic representation. To meet this challenge, we propose a solution that uses a DistilBERT-based classifier to classify a clue into one of the predefined predicate types for logic grid puzzles. Another novelty of the proposed solution is the recognition of comparison structures in clues. By collecting comparative adjectives from existing dictionaries and utilizing a semantic framework to catch comparative quantifiers, the semantics of clues concerning comparison structures are better understood, ensuring conversion to correct logic representation. Our approach solves logic grid puzzles in a fully automated manner with 100% accuracy on the given puzzle datasets and outperforms state-of-the-art solutions by a large margin.
pdf
bib
abs
Using the Past Knowledge to Improve Sentiment Classification
Qi Qin
|
Wenpeng Hu
|
Bing Liu
This paper studies sentiment classification in the lifelong learning setting that incrementally learns a sequence of sentiment classification tasks. It proposes a new lifelong learning model (called L2PG) that can retain and selectively transfer the knowledge learned in the past to help learn the new task. A key innovation of this proposed model is a novel parameter-gate (p-gate) mechanism that regulates the flow or transfer of the previously learned knowledge to the new task. Specifically, it can selectively use the network parameters (which represent the retained knowledge gained from the previous tasks) to assist the learning of the new task t. Knowledge distillation is also employed in the process to preserve the past knowledge by approximating the network output at the state when task t-1 was learned. Experimental results show that L2PG outperforms strong baselines, including even multiple task learning.
pdf
bib
abs
High-order Semantic Role Labeling
Zuchao Li
|
Hai Zhao
|
Rui Wang
|
Kevin Parnow
Semantic role labeling is primarily used to identify predicates, arguments, and their semantic relationships. Due to the limitations of modeling methods and the conditions of pre-identified predicates, previous work has focused on the relationships between predicates and arguments and the correlations between arguments at most, while the correlations between predicates have been neglected for a long time. High-order features and structure learning were very common in modeling such correlations before the neural network era. In this paper, we introduce a high-order graph structure for the neural semantic role labeling model, which enables the model to explicitly consider not only the isolated predicate-argument pairs but also the interaction between the predicate-argument pairs. Experimental results on 7 languages of the CoNLL-2009 benchmark show that the high-order structural learning techniques are beneficial to the strong performing SRL models and further boost our baseline to achieve new state-of-the-art results.
pdf
bib
abs
Undersensitivity in Neural Reading Comprehension
Johannes Welbl
|
Pasquale Minervini
|
Max Bartolo
|
Pontus Stenetorp
|
Sebastian Riedel
Current reading comprehension methods generalise well to in-distribution test sets, yet perform poorly on adversarially selected data. Prior work on adversarial inputs typically studies model oversensitivity: semantically invariant text perturbations that cause a model’s prediction to change. Here we focus on the complementary problem: excessive prediction undersensitivity, where input text is meaningfully changed but the model’s prediction does not, even though it should. We formulate an adversarial attack which searches among semantic variations of the question for which a model erroneously predicts the same answer, and with even higher probability. We demonstrate that models trained on both SQuAD2.0 and NewsQA are vulnerable to this attack, and then investigate data augmentation and adversarial training as defences. Both substantially decrease adversarial vulnerability, which generalises to held-out data and held-out attack spaces. Addressing undersensitivity furthermore improves model robustness on the previously introduced ADDSENT and ADDONESENT datasets, and models generalise better when facing train / evaluation distribution mismatch: they are less prone to overly rely on shallow predictive cues present only in the training set, and outperform a conventional model by as much as 10.9% F1.
pdf
bib
abs
HyperText: Endowing FastText with Hyperbolic Geometry
Yudong Zhu
|
Di Zhou
|
Jinghui Xiao
|
Xin Jiang
|
Xiao Chen
|
Qun Liu
Natural language data exhibit tree-like hierarchical structures such as the hypernym-hyponym hierarchy in WordNet. FastText, as the state-of-the-art text classifier based on shallow neural network in Euclidean space, may not represent such hierarchies precisely with limited representation capacity. Considering that hyperbolic space is naturally suitable for modelling tree-like hierarchical data, we propose a new model named HyperText for efficient text classification by endowing FastText with hyperbolic geometry. Empirically, we show that HyperText outperforms FastText on a range of text classification tasks with much reduced parameters.
pdf
bib
abs
AutoETER: Automated Entity Type Representation for Knowledge Graph Embedding
Guanglin Niu
|
Bo Li
|
Yongfei Zhang
|
Shiliang Pu
|
Jingyang Li
Recent advances in Knowledge Graph Embedding (KGE) allow for representing entities and relations in continuous vector spaces. Some traditional KGE models leveraging additional type information can improve the representation of entities which however totally rely on the explicit types or neglect the diverse type representations specific to various relations. Besides, none of the existing methods is capable of inferring all the relation patterns of symmetry, inversion and composition as well as the complex properties of 1-N, N-1 and N-N relations, simultaneously. To explore the type information for any KG, we develop a novel KGE framework with Automated Entity TypE Representation (AutoETER), which learns the latent type embedding of each entity by regarding each relation as a translation operation between the types of two entities with a relation-aware projection mechanism. Particularly, our designed automated type representation learning mechanism is a pluggable module which can be easily incorporated with any KGE model. Besides, our approach could model and infer all the relation patterns and complex relations. Experiments on four datasets demonstrate the superior performance of our model compared to state-of-the-art baselines on link prediction tasks, and the visualization of type clustering provides clearly the explanation of type embeddings and verifies the effectiveness of our model.
pdf
bib
abs
Learning Robust and Multilingual Speech Representations
Kazuya Kawakami
|
Luyu Wang
|
Chris Dyer
|
Phil Blunsom
|
Aaron van den Oord
Unsupervised speech representation learning has shown remarkable success at finding representations that correlate with phonetic structures and improve downstream speech recognition performance. However, most research has been focused on evaluating the representations in terms of their ability to improve the performance of speech recognition systems on read English (e.g. Wall Street Journal and LibriSpeech). This evaluation methodology overlooks two important desiderata that speech representations should have: robustness to domain shifts and transferability to other languages. In this paper we learn representations from up to 8000 hours of diverse and noisy speech data and evaluate the representations by looking at their robustness to domain shifts and their ability to improve recognition performance in many languages. We find that our representations confer significant robustness advantages to the resulting recognition systems: we see significant improvements in out-of-domain transfer relative to baseline feature sets and the features likewise provide improvements in 25 phonetically diverse languages.
pdf
bib
abs
FQuAD: French Question Answering Dataset
Martin d’Hoffschmidt
|
Wacim Belblidia
|
Quentin Heinrich
|
Tom Brendlé
|
Maxime Vidal
Recent advances in the field of language modeling have improved state-of-the-art results on many Natural Language Processing tasks. Among them, Reading Comprehension has made significant progress over the past few years. However, most results are reported in English since labeled resources available in other languages, such as French, remain scarce. In the present work, we introduce the French Question Answering Dataset (FQuAD). FQuAD is a French Native Reading Comprehension dataset of questions and answers on a set of Wikipedia articles that consists of 25,000+ samples for the 1.0 version and 60,000+ samples for the 1.1 version. We train a baseline model which achieves an F1 score of 92.2 and an exact match ratio of 82.1 on the test set. In an effort to track the progress of French Question Answering models we propose a leaderboard and we have made the 1.0 version of our dataset freely available at
https://illuin-tech.github.io/FQuAD-explorer/.
pdf
bib
abs
Dynamic Semantic Matching and Aggregation Network for Few-shot Intent Detection
Hoang Nguyen
|
Chenwei Zhang
|
Congying Xia
|
Philip Yu
Few-shot Intent Detection is challenging due to the scarcity of available annotated utterances. Although recent works demonstrate that multi-level matching plays an important role in transferring learned knowledge from seen training classes to novel testing classes, they rely on a static similarity measure and overly fine-grained matching components. These limitations inhibit generalizing capability towards Generalized Few-shot Learning settings where both seen and novel classes are co-existent. In this paper, we propose a novel Semantic Matching and Aggregation Network where semantic components are distilled from utterances via multi-head self-attention with additional dynamic regularization constraints. These semantic components capture high-level information, resulting in more effective matching between instances. Our multi-perspective matching method provides a comprehensive matching measure to enhance representations of both labeled and unlabeled instances. We also propose a more challenging evaluation setting that considers classification on the joint all-class label space. Extensive experimental results demonstrate the effectiveness of our method. Our code and data are publicly available.
pdf
bib
abs
Quantifying the Contextualization of Word Representations with Semantic Class Probing
Mengjie Zhao
|
Philipp Dufter
|
Yadollah Yaghoobzadeh
|
Hinrich Schütze
Pretrained language models achieve state-of-the-art results on many NLP tasks, but there are still many open questions about how and why they work so well. We investigate the contextualization of words in BERT. We quantify the amount of contextualization, i.e., how well words are interpreted in context, by studying the extent to which semantic classes of a word can be inferred from its contextualized embedding. Quantifying contextualization helps in understanding and utilizing pretrained language models. We show that the top layer representations support highly accurate inference of semantic classes; that the strongest contextualization effects occur in the lower layers; that local context is mostly sufficient for contextualizing words; and that top layer representations are more task-specific after finetuning while lower layer representations are more transferable. Finetuning uncovers task-related features, but pretrained knowledge about contextualization is still well preserved.
pdf
bib
abs
Learning to Generate Clinically Coherent Chest X-Ray Reports
Justin Lovelace
|
Bobak Mortazavi
Automated radiology report generation has the potential to reduce the time clinicians spend manually reviewing radiographs and streamline clinical care. However, past work has shown that typical abstractive methods tend to produce fluent, but clinically incorrect radiology reports. In this work, we develop a radiology report generation model utilizing the transformer architecture that produces superior reports as measured by both standard language generation and clinical coherence metrics compared to competitive baselines. We then develop a method to differentiably extract clinical information from generated reports and utilize this differentiability to fine-tune our model to produce more clinically coherent reports.
pdf
bib
abs
FELIX: Flexible Text Editing Through Tagging and Insertion
Jonathan Mallinson
|
Aliaksei Severyn
|
Eric Malmi
|
Guillermo Garrido
We present FELIX – a flexible text-editing approach for generation, designed to derive maximum benefit from the ideas of decoding with bi-directional contexts and self-supervised pretraining. In contrast to conventional sequenceto-sequence (seq2seq) models, FELIX is efficient in low-resource settings and fast at inference time, while being capable of modeling flexible input-output transformations. We achieve this by decomposing the text-editing task into two sub-tasks: tagging to decide on the subset of input tokens and their order in the output text and insertion to in-fill the missing tokens in the output not present in the input. The tagging model employs a novel Pointer mechanism, while the insertion model is based on a Masked Language Model (MLM). Both of these models are chosen to be non-autoregressive to guarantee faster inference. FELIX performs favourably when compared to recent text-editing methods and strong seq2seq baselines when evaluated on four NLG tasks: Sentence Fusion, Machine Translation Automatic Post-Editing, Summarization, and Text Simplification
pdf
bib
abs
What Can We Do to Improve Peer Review in NLP?
Anna Rogers
|
Isabelle Augenstein
Peer review is our best tool for judging the quality of conference submissions, but it is becoming increasingly spurious. We argue that a part of the problem is that the reviewers and area chairs face a poorly defined task forcing apples-to-oranges comparisons. There are several potential ways forward, but the key difficulty is creating the incentives and mechanisms for their consistent implementation in the NLP community.
pdf
bib
abs
Unsupervised Relation Extraction from Language Models using Constrained Cloze Completion
Ankur Goswami
|
Akshata Bhat
|
Hadar Ohana
|
Theodoros Rekatsinas
We show that state-of-the-art self-supervised language models can be readily used to extract relations from a corpus without the need to train a fine-tuned extractive head. We introduce RE-Flex, a simple framework that performs constrained cloze completion over pretrained language models to perform unsupervised relation extraction. RE-Flex uses contextual matching to ensure that language model predictions matches supporting evidence from the input corpus that is relevant to a target relation. We perform an extensive experimental study over multiple relation extraction benchmarks and demonstrate that RE-Flex outperforms competing unsupervised relation extraction methods based on pretrained language models by up to 27.8 F1 points compared to the next-best method. Our results show that constrained inference queries against a language model can enable accurate unsupervised relation extraction.
pdf
bib
abs
Biomedical Event Extraction with Hierarchical Knowledge Graphs
Kung-Hsiang Huang
|
Mu Yang
|
Nanyun Peng
Biomedical event extraction is critical in understanding biomolecular interactions described in scientific corpus. One of the main challenges is to identify nested structured events that are associated with non-indicative trigger words. We propose to incorporate domain knowledge from Unified Medical Language System (UMLS) to a pre-trained language model via Graph Edge-conditioned Attention Networks (GEANet) and hierarchical graph representation. To better recognize the trigger words, each sentence is first grounded to a sentence graph based on a jointly modeled hierarchical knowledge graph from UMLS. The grounded graphs are then propagated by GEANet, a novel graph neural networks for enhanced capabilities in inferring complex events. On BioNLP 2011 GENIA Event Extraction task, our approach achieved 1.41% F1 and 3.19% F1 improvements on all events and complex events, respectively. Ablation studies confirm the importance of GEANet and hierarchical KG.
pdf
bib
abs
Language Generation via Combinatorial Constraint Satisfaction: A Tree Search Enhanced Monte-Carlo Approach
Maosen Zhang
|
Nan Jiang
|
Lei Li
|
Yexiang Xue
Generating natural language under complex constraints is a principled formulation towards controllable text generation. We present a framework to allow specification of combinatorial constraints for sentence generation. We propose TSMC, an efficient method to generate high likelihood sentences with respect to a pre-trained language model while satisfying the constraints. Our approach is highly flexible, requires no task-specific train- ing, and leverages efficient constraint satisfaction solving techniques. To better handle the combinatorial constraints, a tree search algorithm is embedded into the proposal process of the Markov Chain Monte Carlo (MCMC) to explore candidates that satisfy more constraints. Compared to existing MCMC approaches, our sampling approach has a better mixing performance. Experiments show that TSMC achieves consistent and significant improvement on multiple language generation tasks.
pdf
bib
abs
Examining the Ordering of Rhetorical Strategies in Persuasive Requests
Omar Shaikh
|
Jiaao Chen
|
Jon Saad-Falcon
|
Polo Chau
|
Diyi Yang
Interpreting how persuasive language influences audiences has implications across many domains like advertising, argumentation, and propaganda. Persuasion relies on more than a message’s content. Arranging the order of the message itself (i.e., ordering specific rhetorical strategies) also plays an important role. To examine how strategy orderings contribute to persuasiveness, we first utilize a Variational Autoencoder model to disentangle content and rhetorical strategies in textual requests from a large-scale loan request corpus. We then visualize interplay between content and strategy through an attentional LSTM that predicts the success of textual requests. We find that specific (orderings of) strategies interact uniquely with a request’s content to impact success rate, and thus the persuasiveness of a request.
pdf
bib
abs
Evaluating Models’ Local Decision Boundaries via Contrast Sets
Matt Gardner
|
Yoav Artzi
|
Victoria Basmov
|
Jonathan Berant
|
Ben Bogin
|
Sihao Chen
|
Pradeep Dasigi
|
Dheeru Dua
|
Yanai Elazar
|
Ananth Gottumukkala
|
Nitish Gupta
|
Hannaneh Hajishirzi
|
Gabriel Ilharco
|
Daniel Khashabi
|
Kevin Lin
|
Jiangming Liu
|
Nelson F. Liu
|
Phoebe Mulcaire
|
Qiang Ning
|
Sameer Singh
|
Noah A. Smith
|
Sanjay Subramanian
|
Reut Tsarfaty
|
Eric Wallace
|
Ally Zhang
|
Ben Zhou
Standard test sets for supervised learning evaluate in-distribution generalization. Unfortunately, when a dataset has systematic gaps (e.g., annotation artifacts), these evaluations are misleading: a model can learn simple decision rules that perform well on the test set but do not capture the abilities a dataset is intended to test. We propose a more rigorous annotation paradigm for NLP that helps to close systematic gaps in the test data. In particular, after a dataset is constructed, we recommend that the dataset authors manually perturb the test instances in small but meaningful ways that (typically) change the gold label, creating contrast sets. Contrast sets provide a local view of a model’s decision boundary, which can be used to more accurately evaluate a model’s true linguistic capabilities. We demonstrate the efficacy of contrast sets by creating them for 10 diverse NLP datasets (e.g., DROP reading comprehension, UD parsing, and IMDb sentiment analysis). Although our contrast sets are not explicitly adversarial, model performance is significantly lower on them than on the original test sets—up to 25% in some cases. We release our contrast sets as new evaluation benchmarks and encourage future dataset construction efforts to follow similar annotation processes.
pdf
bib
abs
Parsing with Multilingual BERT, a Small Corpus, and a Small Treebank
Ethan C. Chau
|
Lucy H. Lin
|
Noah A. Smith
Pretrained multilingual contextual representations have shown great success, but due to the limits of their pretraining data, their benefits do not apply equally to all language varieties. This presents a challenge for language varieties unfamiliar to these models, whose labeled and unlabeled data is too limited to train a monolingual model effectively. We propose the use of additional language-specific pretraining and vocabulary augmentation to adapt multilingual models to low-resource settings. Using dependency parsing of four diverse low-resource language varieties as a case study, we show that these methods significantly improve performance over baselines, especially in the lowest-resource cases, and demonstrate the importance of the relationship between such models’ pretraining data and target language varieties.
pdf
bib
abs
OptSLA: an Optimization-Based Approach for Sequential Label Aggregation
Nasim Sabetpour
|
Adithya Kulkarni
|
Qi Li
The need for the annotated training dataset on which data-hungry machine learning algorithms feed has increased dramatically with advanced acclaim of machine learning applications. To annotate the data, people with domain expertise are needed, but they are seldom available and expensive to hire. This has lead to the thriving of crowdsourcing platforms such as Amazon Mechanical Turk (AMT). However, the annotations provided by one worker cannot be used directly to train the model due to the lack of expertise. Existing literature in annotation aggregation focuses on binary and multi-choice problems. In contrast, little work has been done on complex tasks such as sequence labeling with imbalanced classes, a ubiquitous task in Natural Language Processing (NLP), and Bio-Informatics. We propose OptSLA, an Optimization-based Sequential Label Aggregation method, that jointly considers the characteristics of sequential labeling tasks, workers reliabilities, and advanced deep learning techniques to conquer the challenge. We evaluate our model on crowdsourced data for named entity recognition task. Our results show that the proposed OptSLA outperforms the state-of-the-art aggregation methods, and the results are easier to interpret.
pdf
bib
abs
Optimizing Word Segmentation for Downstream Task
Tatsuya Hiraoka
|
Sho Takase
|
Kei Uchiumi
|
Atsushi Keyaki
|
Naoaki Okazaki
In traditional NLP, we tokenize a given sentence as a preprocessing, and thus the tokenization is unrelated to a target downstream task. To address this issue, we propose a novel method to explore a tokenization which is appropriate for the downstream task. Our proposed method, optimizing tokenization (OpTok), is trained to assign a high probability to such appropriate tokenization based on the downstream task loss. OpTok can be used for any downstream task which uses a vector representation of a sentence such as text classification. Experimental results demonstrate that OpTok improves the performance of sentiment analysis and textual entailment. In addition, we introduce OpTok into BERT, the state-of-the-art contextualized embeddings and report a positive effect.
pdf
bib
abs
Dynamically Updating Event Representations for Temporal Relation Classification with Multi-category Learning
Fei Cheng
|
Masayuki Asahara
|
Ichiro Kobayashi
|
Sadao Kurohashi
Temporal relation classification is the pair-wise task for identifying the relation of a temporal link (TLINKs) between two mentions, i.e. event, time and document creation time (DCT). It leads to two crucial limits: 1) Two TLINKs involving a common mention do not share information. 2) Existing models with independent classifiers for each TLINK category (E2E, E2T and E2D) hinder from using the whole data. This paper presents an event centric model that allows to manage dynamic event representations across multiple TLINKs. Our model deals with three TLINK categories with multi-task learning to leverage the full size of data. The experimental results show that our proposal outperforms state-of-the-art models and two strong transfer learning baselines on both the English and Japanese data.
pdf
bib
abs
A Compare Aggregate Transformer for Understanding Document-grounded Dialogue
Longxuan Ma
|
Wei-Nan Zhang
|
Runxin Sun
|
Ting Liu
Unstructured documents serving as external knowledge of the dialogues help to generate more informative responses. Previous research focused on knowledge selection (KS) in the document with dialogue. However, dialogue history that is not related to the current dialogue may introduce noise in the KS processing. In this paper, we propose a Compare Aggregate Transformer (CAT) to jointly denoise the dialogue context and aggregate the document information for response generation. We designed two different comparison mechanisms to reduce noise (before and during decoding). In addition, we propose two metrics for evaluating document utilization efficiency based on word overlap. Experimental results on the CMU_DoG dataset show that the proposed CAT model outperforms the state-of-the-art approach and strong baselines.
pdf
bib
abs
TextHide: Tackling Data Privacy in Language Understanding Tasks
Yangsibo Huang
|
Zhao Song
|
Danqi Chen
|
Kai Li
|
Sanjeev Arora
An unsolved challenge in distributed or federated learning is to effectively mitigate privacy risks without slowing down training or reducing accuracy. In this paper, we propose TextHide aiming at addressing this challenge for natural language understanding tasks. It requires all participants to add a simple encryption step to prevent an eavesdropping attacker from recovering private text data. Such an encryption step is efficient and only affects the task performance slightly. In addition, TextHide fits well with the popular framework of fine-tuning pre-trained language models (e.g., BERT) for any sentence or sentence-pair task. We evaluate TextHide on the GLUE benchmark, and our experiments show that TextHide can effectively defend attacks on shared gradients or representations and the averaged accuracy reduction is only 1.9%. We also present an analysis of the security of TextHide using a conjecture about the computational intractability of a mathematical problem.
pdf
bib
abs
Modeling Intra and Inter-modality Incongruity for Multi-Modal Sarcasm Detection
Hongliang Pan
|
Zheng Lin
|
Peng Fu
|
Yatao Qi
|
Weiping Wang
Sarcasm is a pervasive phenomenon in today’s social media platforms such as Twitter and Reddit. These platforms allow users to create multi-modal messages, including texts, images, and videos. Existing multi-modal sarcasm detection methods either simply concatenate the features from multi modalities or fuse the multi modalities information in a designed manner. However, they ignore the incongruity character in sarcastic utterance, which is often manifested between modalities or within modalities. Inspired by this, we propose a BERT architecture-based model, which concentrates on both intra and inter-modality incongruity for multi-modal sarcasm detection. To be specific, we are inspired by the idea of self-attention mechanism and design inter-modality attention to capturing inter-modality incongruity. In addition, the co-attention mechanism is applied to model the contradiction within the text. The incongruity information is then used for prediction. The experimental results demonstrate that our model achieves state-of-the-art performance on a public multi-modal sarcasm detection dataset.
pdf
bib
abs
Investigating Transferability in Pretrained Language Models
Alex Tamkin
|
Trisha Singh
|
Davide Giovanardi
|
Noah Goodman
How does language model pretraining help transfer learning? We consider a simple ablation technique for determining the impact of each pretrained layer on transfer task performance. This method, partial reinitialization, involves replacing different layers of a pretrained model with random weights, then finetuning the entire model on the transfer task and observing the change in performance. This technique reveals that in BERT, layers with high probing performance on downstream GLUE tasks are neither necessary nor sufficient for high accuracy on those tasks. Furthermore, the benefit of using pretrained parameters for a layer varies dramatically with finetuning dataset size: parameters that provide tremendous performance improvement when data is plentiful may provide negligible benefits in data-scarce settings. These results reveal the complexity of the transfer learning process, highlighting the limitations of methods that operate on frozen models or single data samples.
pdf
bib
abs
Improving Knowledge-Aware Dialogue Response Generation by Using Human-Written Prototype Dialogues
Sixing Wu
|
Ying Li
|
Dawei Zhang
|
Zhonghai Wu
Incorporating commonsense knowledge can alleviate the issue of generating generic responses in open-domain generative dialogue systems. However, selecting knowledge facts for the dialogue context is still a challenge. The widely used approach Entity Name Matching always retrieves irrelevant facts from the view of local entity words. This paper proposes a novel knowledge selection approach, Prototype-KR, and a knowledge-aware generative model, Prototype-KRG. Given a query, our approach first retrieves a set of prototype dialogues that are relevant to the query. We find knowledge facts used in prototype dialogues usually are highly relevant to the current query; thus, Prototype-KR ranks such knowledge facts based on the semantic similarity and then selects the most appropriate facts. Subsequently, Prototype-KRG can generate an informative response using the selected knowledge facts. Experiments demonstrate that our approach has achieved notable improvements on the most metrics, compared to generative baselines. Meanwhile, compared to IR(Retrieval)-based baselines, responses generated by our approach are more relevant to the context and have comparable informativeness.
pdf
bib
abs
Filtering before Iteratively Referring for Knowledge-Grounded Response Selection in Retrieval-Based Chatbots
Jia-Chen Gu
|
Zhenhua Ling
|
Quan Liu
|
Zhigang Chen
|
Xiaodan Zhu
The challenges of building knowledge-grounded retrieval-based chatbots lie in how to ground a conversation on its background knowledge and how to match response candidates with both context and knowledge simultaneously. This paper proposes a method named Filtering before Iteratively REferring (FIRE) for this task. In this method, a context filter and a knowledge filter are first built, which derive knowledge-aware context representations and context-aware knowledge representations respectively by global and bidirectional attention. Besides, the entries irrelevant to the conversation are discarded by the knowledge filter. After that, iteratively referring is performed between context and response representations as well as between knowledge and response representations, in order to collect deep matching features for scoring response candidates. Experimental results show that FIRE outperforms previous methods by margins larger than 2.8% and 4.1% on the PERSONA-CHAT dataset with original and revised personas respectively, and margins larger than 3.1% on the CMU_DoG dataset in terms of top-1 accuracy. We also show that FIRE is more interpretable by visualizing the knowledge grounding process.
pdf
bib
abs
Privacy-Preserving News Recommendation Model Learning
Tao Qi
|
Fangzhao Wu
|
Chuhan Wu
|
Yongfeng Huang
|
Xing Xie
News recommendation aims to display news articles to users based on their personal interest. Existing news recommendation methods rely on centralized storage of user behavior data for model training, which may lead to privacy concerns and risks due to the privacy-sensitive nature of user behaviors. In this paper, we propose a privacy-preserving method for news recommendation model training based on federated learning, where the user behavior data is locally stored on user devices. Our method can leverage the useful information in the behaviors of massive number users to train accurate news recommendation models and meanwhile remove the need of centralized storage of them. More specifically, on each user device we keep a local copy of the news recommendation model, and compute gradients of the local model based on the user behaviors in this device. The local gradients from a group of randomly selected users are uploaded to server, which are further aggregated to update the global model in the server. Since the model gradients may contain some implicit private information, we apply local differential privacy (LDP) to them before uploading for better privacy protection. The updated global model is then distributed to each user device for local model update. We repeat this process for multiple rounds. Extensive experiments on a real-world dataset show the effectiveness of our method in news recommendation model training with privacy protection.
pdf
bib
abs
exBERT: Extending Pre-trained Models with Domain-specific Vocabulary Under Constrained Training Resources
Wen Tai
|
H. T. Kung
|
Xin Dong
|
Marcus Comiter
|
Chang-Fu Kuo
We introduce exBERT, a training method to extend BERT pre-trained models from a general domain to a new pre-trained model for a specific domain with a new additive vocabulary under constrained training resources (i.e., constrained computation and data). exBERT uses a small extension module to learn to adapt an augmenting embedding for the new domain in the context of the original BERT’s embedding of a general vocabulary. The exBERT training method is novel in learning the new vocabulary and the extension module while keeping the weights of the original BERT model fixed, resulting in a substantial reduction in required training resources. We pre-train exBERT with biomedical articles from ClinicalKey and PubMed Central, and study its performance on biomedical downstream benchmark tasks using the MTL-Bioinformatics-2016 datasets. We demonstrate that exBERT consistently outperforms prior approaches when using limited corpus and pre-training computation resources.
pdf
bib
abs
Balancing via Generation for Multi-Class Text Classification Improvement
Naama Tepper
|
Esther Goldbraich
|
Naama Zwerdling
|
George Kour
|
Ateret Anaby Tavor
|
Boaz Carmeli
Data balancing is a known technique for improving the performance of classification tasks. In this work we define a novel balancing-viageneration framework termed BalaGen. BalaGen consists of a flexible balancing policy coupled with a text generation mechanism. Combined, these two techniques can be used to augment a dataset for more balanced distribution. We evaluate BalaGen on three publicly available semantic utterance classification (SUC) datasets. One of these is a new COVID-19 Q&A dataset published here for the first time. Our work demonstrates that optimal balancing policies can significantly improve classifier performance, while augmenting just part of the classes and under-sampling others. Furthermore, capitalizing on the advantages of balancing, we show its usefulness in all relevant BalaGen framework components. We validate the superiority of BalaGen on ten semantic utterance datasets taken from real-life goaloriented dialogue systems. Based on our results we encourage using data balancing prior to training for text classification tasks.
pdf
bib
abs
Conditional Neural Generation using Sub-Aspect Functions for Extractive News Summarization
Zhengyuan Liu
|
Ke Shi
|
Nancy Chen
Much progress has been made in text summarization, fueled by neural architectures using large-scale training corpora. However, in the news domain, neural models easily overfit by leveraging position-related features due to the prevalence of the inverted pyramid writing style. In addition, there is an unmet need to generate a variety of summaries for different users. In this paper, we propose a neural framework that can flexibly control summary generation by introducing a set of sub-aspect functions (i.e. importance, diversity, position). These sub-aspect functions are regulated by a set of control codes to decide which sub-aspect to focus on during summary generation. We demonstrate that extracted summaries with minimal position bias is comparable with those generated by standard models that take advantage of position preference. We also show that news summaries generated with a focus on diversity can be more preferred by human raters. These results suggest that a more flexible neural summarization framework providing more control options could be desirable in tailoring to different user preferences, which is useful since it is often impractical to articulate such preferences for different applications a priori.
pdf
bib
abs
Research Replication Prediction Using Weakly Supervised Learning
Tianyi Luo
|
Xingyu Li
|
Hainan Wang
|
Yang Liu
Knowing whether a published research result can be replicated is important. Carrying out direct replication of published research incurs a high cost. There are efforts tried to use machine learning aided methods to predict scientific claims’ replicability. However, existing machine learning aided approaches use only hand-extracted statistics features such as p-value, sample size, etc. without utilizing research papers’ text information and train only on a very small size of annotated data without making the most use of a large number of unlabeled articles. Therefore, it is desirable to develop effective machine learning aided automatic methods which can automatically extract text information as features so that we can benefit from Natural Language Processing techniques. Besides, we aim for an approach that benefits from both labeled and the large number of unlabeled data. In this paper, we propose two weakly supervised learning approaches that use automatically extracted text information of research papers to improve the prediction accuracy of research replication using both labeled and unlabeled datasets. Our experiments over real-world datasets show that our approaches obtain much better prediction performance compared to the supervised models utilizing only statistic features and a small size of labeled dataset. Further, we are able to achieve an accuracy of 75.76% for predicting the replicability of research.
pdf
bib
abs
Open Domain Question Answering based on Text Enhanced Knowledge Graph with Hyperedge Infusion
Jiale Han
|
Bo Cheng
|
Xu Wang
The incompleteness of knowledge base (KB) is a vital factor limiting the performance of question answering (QA). This paper proposes a novel QA method by leveraging text information to enhance the incomplete KB. The model enriches the entity representation through semantic information contained in the text, and employs graph convolutional networks to update the entity status. Furthermore, to exploit the latent structural information of text, we treat the text as hyperedges connecting entities among it to complement the deficient relations in KB, and hypergraph convolutional networks are further applied to reason on the hypergraph-formed text. Extensive experiments on the WebQuestionsSP benchmark with different KB settings prove the effectiveness of our model.
pdf
bib
abs
Inexpensive Domain Adaptation of Pretrained Language Models: Case Studies on Biomedical NER and Covid-19 QA
Nina Poerner
|
Ulli Waltinger
|
Hinrich Schütze
Domain adaptation of Pretrained Language Models (PTLMs) is typically achieved by unsupervised pretraining on target-domain text. While successful, this approach is expensive in terms of hardware, runtime and CO 2 emissions. Here, we propose a cheaper alternative: We train Word2Vec on target-domain text and align the resulting word vectors with the wordpiece vectors of a general-domain PTLM. We evaluate on eight English biomedical Named Entity Recognition (NER) tasks and compare against the recently proposed BioBERT model. We cover over 60% of the BioBERT - BERT F1 delta, at 5% of BioBERT’s CO 2 footprint and 2% of its cloud compute cost. We also show how to quickly adapt an existing general-domain Question Answering (QA) model to an emerging domain: the Covid-19 pandemic.
pdf
bib
abs
Semantically Driven Sentence Fusion: Modeling and Evaluation
Eyal Ben-David
|
Orgad Keller
|
Eric Malmi
|
Idan Szpektor
|
Roi Reichart
Sentence fusion is the task of joining related sentences into coherent text. Current training and evaluation schemes for this task are based on single reference ground-truths and do not account for valid fusion variants. We show that this hinders models from robustly capturing the semantic relationship between input sentences. To alleviate this, we present an approach in which ground-truth solutions are automatically expanded into multiple references via curated equivalence classes of connective phrases. We apply this method to a large-scale dataset and use the augmented dataset for both model training and evaluation. To improve the learning of semantic representation using multiple references, we enrich the model with auxiliary discourse classification tasks under a multi-tasking framework. Our experiments highlight the improvements of our approach over state-of-the-art models.
pdf
bib
abs
Pseudo-Bidirectional Decoding for Local Sequence Transduction
Wangchunshu Zhou
|
Tao Ge
|
Ke Xu
Local sequence transduction (LST) tasks are sequence transduction tasks where there exists massive overlapping between the source and target sequences, such as grammatical error correction and spell or OCR correction. Motivated by this characteristic of LST tasks, we propose Pseudo-Bidirectional Decoding (PBD), a simple but versatile approach for LST tasks. PBD copies the representation of source tokens to the decoder as pseudo future context that enables the decoder self-attention to attends to its bi-directional context. In addition, the bidirectional decoding scheme and the characteristic of LST tasks motivate us to share the encoder and the decoder of LST models. Our approach provides right-side context information for the decoder, reduces the number of parameters by half, and provides good regularization effects. Experimental results on several benchmark datasets show that our approach consistently improves the performance of standard seq2seq models on LST tasks.
pdf
bib
abs
Predicting Responses to Psychological Questionnaires from Participants’ Social Media Posts and Question Text Embeddings
Huy Vu
|
Suhaib Abdurahman
|
Sudeep Bhatia
|
Lyle Ungar
Psychologists routinely assess people’s emotions and traits, such as their personality, by collecting their responses to survey questionnaires. Such assessments can be costly in terms of both time and money, and often lack generalizability, as existing data cannot be used to predict responses for new survey questions or participants. In this study, we propose a method for predicting a participant’s questionnaire response using their social media texts and the text of the survey question they are asked. Specifically, we use Natural Language Processing (NLP) tools such as BERT embeddings to represent both participants (via the text they write) and survey questions as embeddings vectors, allowing us to predict responses for out-of-sample participants and questions. Our novel approach can be used by researchers to integrate new participants or new questions into psychological studies without the constraint of costly data collection, facilitating novel practical applications and furthering the development of psychological theory. Finally, as a side contribution, the success of our model also suggests a new approach to study survey questions using NLP tools such as text embeddings rather than response data used in traditional methods.
pdf
bib
abs
Will it Unblend?
Yuval Pinter
|
Cassandra L. Jacobs
|
Jacob Eisenstein
Natural language processing systems often struggle with out-of-vocabulary (OOV) terms, which do not appear in training data. Blends, such as “innoventor”, are one particularly challenging class of OOV, as they are formed by fusing together two or more bases that relate to the intended meaning in unpredictable manners and degrees. In this work, we run experiments on a novel dataset of English OOV blends to quantify the difficulty of interpreting the meanings of blends by large-scale contextual language models such as BERT. We first show that BERT’s processing of these blends does not fully access the component meanings, leaving their contextual representations semantically impoverished. We find this is mostly due to the loss of characters resulting from blend formation. Then, we assess how easily different models can recognize the structure and recover the origin of blends, and find that context-aware embedding systems outperform character-level and context-free embeddings, although their results are still far from satisfactory.
pdf
bib
abs
CodeBERT: A Pre-Trained Model for Programming and Natural Languages
Zhangyin Feng
|
Daya Guo
|
Duyu Tang
|
Nan Duan
|
Xiaocheng Feng
|
Ming Gong
|
Linjun Shou
|
Bing Qin
|
Ting Liu
|
Daxin Jiang
|
Ming Zhou
We present CodeBERT, a bimodal pre-trained model for programming language (PL) and natural language (NL). CodeBERT learns general-purpose representations that support downstream NL-PL applications such as natural language code search, code documentation generation, etc. We develop CodeBERT with Transformer-based neural architecture, and train it with a hybrid objective function that incorporates the pre-training task of replaced token detection, which is to detect plausible alternatives sampled from generators. This enables us to utilize both “bimodal” data of NL-PL pairs and “unimodal data, where the former provides input tokens for model training while the latter helps to learn better generators. We evaluate CodeBERT on two NL-PL applications by fine-tuning model parameters. Results show that CodeBERT achieves state-of-the-art performance on both natural language code search and code documentation generation. Furthermore, to investigate what type of knowledge is learned in CodeBERT, we construct a dataset for NL-PL probing, and evaluate in a zero-shot setting where parameters of pre-trained models are fixed. Results show that CodeBERT performs better than previous pre-trained models on NLPL probing.
pdf
bib
abs
StyleDGPT: Stylized Response Generation with Pre-trained Language Models
Ze Yang
|
Wei Wu
|
Can Xu
|
Xinnian Liang
|
Jiaqi Bai
|
Liran Wang
|
Wei Wang
|
Zhoujun Li
Generating responses following a desired style has great potentials to extend applications of open-domain dialogue systems, yet is refrained by lacking of parallel data for training. In this work, we explore the challenging task with pre-trained language models that have brought breakthrough to various natural language tasks. To this end, we introduce a KL loss and a style classifier to the fine-tuning step in order to steer response generation towards the target style in both a word-level and a sentence-level. Comprehensive empirical studies with two public datasets indicate that our model can significantly outperform state-of-the-art methods in terms of both style consistency and contextual coherence.
pdf
bib
abs
Enhancing Automated Essay Scoring Performance via Fine-tuning Pre-trained Language Models with Combination of Regression and Ranking
Ruosong Yang
|
Jiannong Cao
|
Zhiyuan Wen
|
Youzheng Wu
|
Xiaodong He
Automated Essay Scoring (AES) is a critical text regression task that automatically assigns scores to essays based on their writing quality. Recently, the performance of sentence prediction tasks has been largely improved by using Pre-trained Language Models via fusing representations from different layers, constructing an auxiliary sentence, using multi-task learning, etc. However, to solve the AES task, previous works utilize shallow neural networks to learn essay representations and constrain calculated scores with regression loss or ranking loss, respectively. Since shallow neural networks trained on limited samples show poor performance to capture deep semantic of texts. And without an accurate scoring function, ranking loss and regression loss measures two different aspects of the calculated scores. To improve AES’s performance, we find a new way to fine-tune pre-trained language models with multiple losses of the same task. In this paper, we propose to utilize a pre-trained language model to learn text representations first. With scores calculated from the representations, mean square error loss and the batch-wise ListNet loss with dynamic weights constrain the scores simultaneously. We utilize Quadratic Weighted Kappa to evaluate our model on the Automated Student Assessment Prize dataset. Our model outperforms not only state-of-the-art neural models near 3 percent but also the latest statistic model. Especially on the two narrative prompts, our model performs much better than all other state-of-the-art models.
pdf
bib
abs
Neural Dialogue State Tracking with Temporally Expressive Networks
Junfan Chen
|
Richong Zhang
|
Yongyi Mao
|
Jie Xu
Dialogue state tracking (DST) is an important part of a spoken dialogue system. Existing DST models either ignore temporal feature dependencies across dialogue turns or fail to explicitly model temporal state dependencies in a dialogue. In this work, we propose Temporally Expressive Networks (TEN) to jointly model the two types of temporal dependencies in DST. The TEN model utilizes the power of recurrent networks and probabilistic graphical models. Evaluating on standard datasets, TEN is demonstrated to improve the accuracy of turn-level-state prediction and the state aggregation.
pdf
bib
abs
Inferring about fraudulent collusion risk on Brazilian public works contracts in official texts using a Bi-LSTM approach
Marcos Lima
|
Roberta Silva
|
Felipe Lopes de Souza Mendes
|
Leonardo R. de Carvalho
|
Aleteia Araujo
|
Flavio de Barros Vidal
Public works procurements move US$ 10 billion yearly in Brazil and are a preferred field for collusion and fraud. Federal Police and audit agencies investigate collusion (bid-rigging), over-pricing, and delivery fraud in this field and efforts have been employed to early detect fraud and collusion on public works procurements. The current automatic methods of fraud detection use structured data to classification and usually do not involve annotated data. The use of NLP for this kind of application is rare. Our work introduces a new dataset formed by public procurement calls available on Brazilian official journal (Diário Oficial da União), using by 15,132,968 textual entries of which 1,907 are annotated risky entries. Both bottleneck deep neural network and BiLSTM shown competitive compared with classical classifiers and achieved better precision (93.0% and 92.4%, respectively), which signs improvements in a criminal fraud investigation.
pdf
bib
abs
Data-to-Text Generation with Style Imitation
Shuai Lin
|
Wentao Wang
|
Zichao Yang
|
Xiaodan Liang
|
Frank F. Xu
|
Eric Xing
|
Zhiting Hu
Recent neural approaches to data-to-text generation have mostly focused on improving content fidelity while lacking explicit control over writing styles (e.g., sentence structures, word choices). More traditional systems use templates to determine the realization of text. Yet manual or automatic construction of high-quality templates is difficult, and a template acting as hard constraints could harm content fidelity when it does not match the record perfectly. We study a new way of stylistic control by using existing sentences as “soft” templates. That is, a model learns to imitate the writing style of any given exemplar sentence, with automatic adaptions to faithfully describe the record. The problem is challenging due to the lack of parallel data. We develop a neural approach that includes a hybrid attention-copy mechanism, learns with weak supervisions, and is enhanced with a new content coverage constraint. We conduct experiments in restaurants and sports domains. Results show our approach achieves stronger performance than a range of comparison methods. Our approach balances well between content fidelity and style control given exemplars that match the records to varying degrees.
pdf
bib
abs
Teaching Machine Comprehension with Compositional Explanations
Qinyuan Ye
|
Xiao Huang
|
Elizabeth Boschee
|
Xiang Ren
Advances in machine reading comprehension (MRC) rely heavily on the collection of large scale human-annotated examples in the form of (question, paragraph, answer) triples. In contrast, humans are typically able to generalize with only a few examples, relying on deeper underlying world knowledge, linguistic sophistication, and/or simply superior deductive powers. In this paper, we focus on “teaching” machines reading comprehension, using a small number of semi-structured explanations that explicitly inform machines why answer spans are correct. We extract structured variables and rules from explanations and compose neural module teachers that annotate instances for training downstream MRC models. We use learnable neural modules and soft logic to handle linguistic variation and overcome sparse coverage; the modules are jointly optimized with the MRC model to improve final performance. On the SQuAD dataset, our proposed method achieves 70.14% F1 score with supervision from 26 explanations, comparable to plain supervised learning using 1,100 labeled instances, yielding a 12x speed up.
pdf
bib
abs
A Knowledge-Driven Approach to Classifying Object and Attribute Coreferences in Opinion Mining
Jiahua Chen
|
Shuai Wang
|
Sahisnu Mazumder
|
Bing Liu
Classifying and resolving coreferences of objects (e.g., product names) and attributes (e.g., product aspects) in opinionated reviews is crucial for improving the opinion mining performance. However, the task is challenging as one often needs to consider domain-specific knowledge (e.g., iPad is a tablet and has aspect resolution) to identify coreferences in opinionated reviews. Also, compiling a handcrafted and curated domain-specific knowledge base for each domain is very time consuming and arduous. This paper proposes an approach to automatically mine and leverage domain-specific knowledge for classifying objects and attribute coreferences. The approach extracts domain-specific knowledge from unlabeled review data and trains a knowledgeaware neural coreference classification model to leverage (useful) domain knowledge together with general commonsense knowledge for the task. Experimental evaluation on realworld datasets involving five domains (product types) shows the effectiveness of the approach
pdf
bib
abs
SimAlign: High Quality Word Alignments Without Parallel Training Data Using Static and Contextualized Embeddings
Masoud Jalili Sabet
|
Philipp Dufter
|
François Yvon
|
Hinrich Schütze
Word alignments are useful for tasks like statistical and neural machine translation (NMT) and cross-lingual annotation projection. Statistical word aligners perform well, as do methods that extract alignments jointly with translations in NMT. However, most approaches require parallel training data and quality decreases as less training data is available. We propose word alignment methods that require no parallel data. The key idea is to leverage multilingual word embeddings – both static and contextualized – for word alignment. Our multilingual embeddings are created from monolingual data only without relying on any parallel data or dictionaries. We find that alignments created from embeddings are superior for four and comparable for two language pairs compared to those produced by traditional statistical aligners – even with abundant parallel data; e.g., contextualized embeddings achieve a word alignment F1 for English-German that is 5 percentage points higher than eflomal, a high-quality statistical aligner, trained on 100k parallel sentences.
pdf
bib
abs
TweetEval: Unified Benchmark and Comparative Evaluation for Tweet Classification
Francesco Barbieri
|
Jose Camacho-Collados
|
Luis Espinosa Anke
|
Leonardo Neves
The experimental landscape in natural language processing for social media is too fragmented. Each year, new shared tasks and datasets are proposed, ranging from classics like sentiment analysis to irony detection or emoji prediction. Therefore, it is unclear what the current state of the art is, as there is no standardized evaluation protocol, neither a strong set of baselines trained on such domain-specific data. In this paper, we propose a new evaluation framework (TweetEval) consisting of seven heterogeneous Twitter-specific classification tasks. We also provide a strong set of baselines as starting point, and compare different language modeling pre-training strategies. Our initial experiments show the effectiveness of starting off with existing pre-trained generic language models, and continue training them on Twitter corpora.
pdf
bib
abs
Octa: Omissions and Conflicts in Target-Aspect Sentiment Analysis
Zhe Zhang
|
Chung-Wei Hang
|
Munindar Singh
Sentiments in opinionated text are often determined by both aspects and target words (or targets). We observe that targets and aspects interrelate in subtle ways, often yielding conflicting sentiments. Thus, a naive aggregation of sentiments from aspects and targets treated separately, as in existing sentiment analysis models, impairs performance. We propose Octa, an approach that jointly considers aspects and targets when inferring sentiments. To capture and quantify relationships between targets and context words, Octa uses a selective self-attention mechanism that handles implicit or missing targets. Specifically, Octa involves two layers of attention mechanisms for, respectively, selective attention between targets and context words and attention over words based on aspects. On benchmark datasets, Octa outperforms leading models by a large margin, yielding (absolute) gains in accuracy of 1.6% to 4.3%.
pdf
bib
abs
On the Language Neutrality of Pre-trained Multilingual Representations
Jindřich Libovický
|
Rudolf Rosa
|
Alexander Fraser
Multilingual contextual embeddings, such as multilingual BERT and XLM-RoBERTa, have proved useful for many multi-lingual tasks. Previous work probed the cross-linguality of the representations indirectly using zero-shot transfer learning on morphological and syntactic tasks. We instead investigate the language-neutrality of multilingual contextual embeddings directly and with respect to lexical semantics. Our results show that contextual embeddings are more language-neutral and, in general, more informative than aligned static word-type embeddings, which are explicitly trained for language neutrality. Contextual embeddings are still only moderately language-neutral by default, so we propose two simple methods for achieving stronger language neutrality: first, by unsupervised centering of the representation for each language and second, by fitting an explicit projection on small parallel data. Besides, we show how to reach state-of-the-art accuracy on language identification and match the performance of statistical methods for word alignment of parallel sentences without using parallel data.
pdf
bib
abs
Cost-effective Selection of Pretraining Data: A Case Study of Pretraining BERT on Social Media
Xiang Dai
|
Sarvnaz Karimi
|
Ben Hachey
|
Cecile Paris
Recent studies on domain-specific BERT models show that effectiveness on downstream tasks can be improved when models are pretrained on in-domain data. Often, the pretraining data used in these models are selected based on their subject matter, e.g., biology or computer science. Given the range of applications using social media text, and its unique language variety, we pretrain two models on tweets and forum text respectively, and empirically demonstrate the effectiveness of these two resources. In addition, we investigate how similarity measures can be used to nominate in-domain pretraining data. We publicly release our pretrained models at
https://bit.ly/35RpTf0.
pdf
bib
abs
TopicBERT for Energy Efficient Document Classification
Yatin Chaudhary
|
Pankaj Gupta
|
Khushbu Saxena
|
Vivek Kulkarni
|
Thomas Runkler
|
Hinrich Schütze
Prior research notes that BERT’s computational cost grows quadratically with sequence length thus leading to longer training times, higher GPU memory constraints and carbon emissions. While recent work seeks to address these scalability issues at pre-training, these issues are also prominent in fine-tuning especially for long sequence tasks like document classification. Our work thus focuses on optimizing the computational cost of fine-tuning for document classification. We achieve this by complementary learning of both topic and language models in a unified framework, named TopicBERT. This significantly reduces the number of self-attention operations – a main performance bottleneck. Consequently, our model achieves a 1.4x ( 40%) speedup with 40% reduction in CO2 emission while retaining 99.9% performance over 5 datasets.
pdf
bib
abs
Improving Constituency Parsing with Span Attention
Yuanhe Tian
|
Yan Song
|
Fei Xia
|
Tong Zhang
Constituency parsing is a fundamental and important task for natural language understanding, where a good representation of contextual information can help this task. N-grams, which is a conventional type of feature for contextual information, have been demonstrated to be useful in many tasks, and thus could also be beneficial for constituency parsing if they are appropriately modeled. In this paper, we propose span attention for neural chart-based constituency parsing to leverage n-gram information. Considering that current chart-based parsers with Transformer-based encoder represent spans by subtraction of the hidden states at the span boundaries, which may cause information loss especially for long spans, we incorporate n-grams into span representations by weighting them according to their contributions to the parsing process. Moreover, we propose categorical span attention to further enhance the model by weighting n-grams within different length categories, and thus benefit long-sentence parsing. Experimental results on three widely used benchmark datasets demonstrate the effectiveness of our approach in parsing Arabic, Chinese, and English, where state-of-the-art performance is obtained by our approach on all of them.
pdf
bib
abs
RecoBERT: A Catalog Language Model for Text-Based Recommendations
Itzik Malkiel
|
Oren Barkan
|
Avi Caciularu
|
Noam Razin
|
Ori Katz
|
Noam Koenigstein
Language models that utilize extensive self-supervised pre-training from unlabeled text, have recently shown to significantly advance the state-of-the-art performance in a variety of language understanding tasks. However, it is yet unclear if and how these recent models can be harnessed for conducting text-based recommendations. In this work, we introduce RecoBERT, a BERT-based approach for learning catalog-specialized language models for text-based item recommendations. We suggest novel training and inference procedures for scoring similarities between pairs of items, that don’t require item similarity labels. Both the training and the inference techniques were designed to utilize the unlabeled structure of textual catalogs, and minimize the discrepancy between them. By incorporating four scores during inference, RecoBERT can infer text-based item-to-item similarities more accurately than other techniques. In addition, we introduce a new language understanding task for wine recommendations using similarities based on professional wine reviews. As an additional contribution, we publish annotated recommendations dataset crafted by human wine experts. Finally, we evaluate RecoBERT and compare it to various state-of-the-art NLP models on wine and fashion recommendations tasks.
pdf
bib
abs
Multi-Agent Mutual Learning at Sentence-Level and Token-Level for Neural Machine Translation
Baohao Liao
|
Yingbo Gao
|
Hermann Ney
Mutual learning, where multiple agents learn collaboratively and teach one another, has been shown to be an effective way to distill knowledge for image classification tasks. In this paper, we extend mutual learning to the machine translation task and operate at both the sentence-level and the token-level. Firstly, we co-train multiple agents by using the same parallel corpora. After convergence, each agent selects and learns its poorly predicted tokens from other agents. The poorly predicted tokens are determined by the acceptance-rejection sampling algorithm. Our experiments show that sequential mutual learning at the sentence-level and the token-level improves the results cumulatively. Absolute improvements compared to strong baselines are obtained on various translation tasks. On the IWSLT’14 German-English task, we get a new state-of-the-art BLEU score of 37.0. We also report a competitive result, 29.9 BLEU score, on the WMT’14 English-German task.
pdf
bib
abs
DomBERT: Domain-oriented Language Model for Aspect-based Sentiment Analysis
Hu Xu
|
Bing Liu
|
Lei Shu
|
Philip Yu
This paper focuses on learning domain-oriented language models driven by end tasks, which aims to combine the worlds of both general-purpose language models (such as ELMo and BERT) and domain-specific language understanding. We propose DomBERT, an extension of BERT to learn from both in-domain corpus and relevant domain corpora. This helps in learning domain language models with low-resources. Experiments are conducted on an assortment of tasks in aspect-based sentiment analysis (ABSA), demonstrating promising results.
pdf
bib
abs
RMM: A Recursive Mental Model for Dialogue Navigation
Homero Roman Roman
|
Yonatan Bisk
|
Jesse Thomason
|
Asli Celikyilmaz
|
Jianfeng Gao
Language-guided robots must be able to both ask humans questions and understand answers. Much existing work focuses only on the latter. In this paper, we go beyond instruction following and introduce a two-agent task where one agent navigates and asks questions that a second, guiding agent answers. Inspired by theory of mind, we propose the Recursive Mental Model (RMM). The navigating agent models the guiding agent to simulate answers given candidate generated questions. The guiding agent in turn models the navigating agent to simulate navigation steps it would take to generate answers. We use the progress agents make towards the goal as a reinforcement learning reward signal to directly inform not only navigation actions, but also both question and answer generation. We demonstrate that RMM enables better generalization to novel environments. Interlocutor modelling may be a way forward for human-agent RMM where robots need to both ask and answer questions.
pdf
bib
abs
Will This Idea Spread Beyond Academia? Understanding Knowledge Transfer of Scientific Concepts across Text Corpora
Hancheng Cao
|
Mengjie Cheng
|
Zhepeng Cen
|
Daniel McFarland
|
Xiang Ren
What kind of basic research ideas are more likely to get applied in practice? There is a long line of research investigating patterns of knowledge transfer, but it generally focuses on documents as the unit of analysis and follow their transfer into practice for a specific scientific domain. Here we study translational research at the level of scientific concepts for all scientific fields. We do this through text mining and predictive modeling using three corpora: 38.6 million paper abstracts, 4 million patent documents, and 0.28 million clinical trials. We extract scientific concepts (i.e., phrases) from corpora as instantiations of “research ideas”, create concept-level features as motivated by literature, and then follow the trajectories of over 450,000 new concepts (emerged from 1995-2014) to identify factors that lead only a small proportion of these ideas to be used in inventions and drug trials. Results from our analysis suggest several mechanisms that distinguish which scientific concept will be adopted in practice, and which will not. We also demonstrate that our derived features can be used to explain and predict knowledge transfer with high accuracy. Our work provides greater understanding of knowledge transfer for researchers, practitioners, and government agencies interested in encouraging translational research.
pdf
bib
abs
Recurrent Inference in Text Editing
Ning Shi
|
Ziheng Zeng
|
Haotian Zhang
|
Yichen Gong
In neural text editing, prevalent sequence-to-sequence based approaches directly map the unedited text either to the edited text or the editing operations, in which the performance is degraded by the limited source text encoding and long, varying decoding steps. To address this problem, we propose a new inference method, Recurrence, that iteratively performs editing actions, significantly narrowing the problem space. In each iteration, encoding the partially edited text, Recurrence decodes the latent representation, generates an action of short, fixed-length, and applies the action to complete a single edit. For a comprehensive comparison, we introduce three types of text editing tasks: Arithmetic Operators Restoration (AOR), Arithmetic Equation Simplification (AES), Arithmetic Equation Correction (AEC). Extensive experiments on these tasks with varying difficulties demonstrate that Recurrence achieves improvements over conventional inference methods.
pdf
bib
abs
An Empirical Exploration of Local Ordering Pre-training for Structured Prediction
Zhisong Zhang
|
Xiang Kong
|
Lori Levin
|
Eduard Hovy
Recently, pre-training contextualized encoders with language model (LM) objectives has been shown an effective semi-supervised method for structured prediction. In this work, we empirically explore an alternative pre-training method for contextualized encoders. Instead of predicting words in LMs, we “mask out” and predict word order information, with a local ordering strategy and word-selecting objectives. With evaluations on three typical structured prediction tasks (dependency parsing, POS tagging, and NER) over four languages (English, Finnish, Czech, and Italian), we show that our method is consistently beneficial. We further conduct detailed error analysis, including one that examines a specific type of parsing error where the head is misidentified. The results show that pre-trained contextual encoders can bring improvements in a structured way, suggesting that they may be able to capture higher-order patterns and feature combinations from unlabeled data.
pdf
bib
abs
Unsupervised Extractive Summarization by Pre-training Hierarchical Transformers
Shusheng Xu
|
Xingxing Zhang
|
Yi Wu
|
Furu Wei
|
Ming Zhou
Unsupervised extractive document summarization aims to select important sentences from a document without using labeled summaries during training. Existing methods are mostly graph-based with sentences as nodes and edge weights measured by sentence similarities. In this work, we find that transformer attentions can be used to rank sentences for unsupervised extractive summarization. Specifically, we first pre-train a hierarchical transformer model using unlabeled documents only. Then we propose a method to rank sentences using sentence-level self-attentions and pre-training objectives. Experiments on CNN/DailyMail and New York Times datasets show our model achieves state-of-the-art performance on unsupervised summarization. We also find in experiments that our model is less dependent on sentence positions. When using a linear combination of our model and a recent unsupervised model explicitly modeling sentence positions, we obtain even better results.
pdf
bib
abs
Active Learning Approaches to Enhancing Neural Machine Translation
Yuekai Zhao
|
Haoran Zhang
|
Shuchang Zhou
|
Zhihua Zhang
Active learning is an efficient approach for mitigating data dependency when training neural machine translation (NMT) models. In this paper, we explore new training frameworks by incorporating active learning into various techniques such as transfer learning and iterative back-translation (IBT) under a limited human translation budget. We design a word frequency based acquisition function and combine it with a strong uncertainty based method. The combined method steadily outperforms all other acquisition functions in various scenarios. As far as we know, we are the first to do a large-scale study on actively training Transformer for NMT. Specifically, with a human translation budget of only 20% of the original parallel corpus, we manage to surpass Transformer trained on the entire parallel corpus in three language pairs.
pdf
bib
abs
AGIF: An Adaptive Graph-Interactive Framework for Joint Multiple Intent Detection and Slot Filling
Libo Qin
|
Xiao Xu
|
Wanxiang Che
|
Ting Liu
In real-world scenarios, users usually have multiple intents in the same utterance. Unfortunately, most spoken language understanding (SLU) models either mainly focused on the single intent scenario, or simply incorporated an overall intent context vector for all tokens, ignoring the fine-grained multiple intents information integration for token-level slot prediction. In this paper, we propose an Adaptive Graph-Interactive Framework (AGIF) for joint multiple intent detection and slot filling, where we introduce an intent-slot graph interaction layer to model the strong correlation between the slot and intents. Such an interaction layer is applied to each token adaptively, which has the advantage to automatically extract the relevant intents information, making a fine-grained intent information integration for the token-level slot prediction. Experimental results on three multi-intent datasets show that our framework obtains substantial improvement and achieves the state-of-the-art performance. In addition, our framework achieves new state-of-the-art performance on two single-intent datasets.
pdf
bib
abs
Continual Learning Long Short Term Memory
Xin Guo
|
Yu Tian
|
Qinghan Xue
|
Panos Lampropoulos
|
Steven Eliuk
|
Kenneth Barner
|
Xiaolong Wang
Catastrophic forgetting in neural networks indicates the performance decreasing of deep learning models on previous tasks while learning new tasks. To address this problem, we propose a novel Continual Learning Long Short Term Memory (CL-LSTM) cell in Recurrent Neural Network (RNN) in this paper. CL-LSTM considers not only the state of each individual task’s output gates but also the correlation of the states between tasks, so that the deep learning models can incrementally learn new tasks without catastrophically forgetting previously tasks. Experimental results demonstrate significant improvements of CL-LSTM over state-of-the-art approaches on spoken language understanding (SLU) tasks.
pdf
bib
abs
CommonGen: A Constrained Text Generation Challenge for Generative Commonsense Reasoning
Bill Yuchen Lin
|
Wangchunshu Zhou
|
Ming Shen
|
Pei Zhou
|
Chandra Bhagavatula
|
Yejin Choi
|
Xiang Ren
Recently, large-scale pre-trained language models have demonstrated impressive performance on several commonsense-reasoning benchmark datasets. However, building machines with commonsense to compose realistically plausible sentences remains challenging. In this paper, we present a constrained text generation task, CommonGen associated with a benchmark dataset, to explicitly test machines for the ability of generative commonsense reasoning. Given a set of common concepts (e.g., dog, frisbee, catch, throw); the task is to generate a coherent sentence describing an everyday scenario using these concepts (e.g., “a man throws a frisbee and his dog catches it”). The CommonGen task is challenging because it inherently requires 1) relational reasoning with background commonsense knowledge and 2) compositional generalization ability to work on unseen concept combinations. Our dataset, constructed through a combination of crowdsourced and existing caption corpora, consists of 77k commonsense descriptions over 35k unique concept-sets. Experiments show that there is a large gap between state-of-the-art text generation models (e.g., T5) and human performance (31.6% v.s. 63.5% in SPICE metric). Furthermore, we demonstrate that the learned generative commonsense reasoning capability can be transferred to improve downstream tasks such as CommonsenseQA (76.9% to 78.4 in dev accuracy) by generating additional context.
pdf
bib
abs
Constrained Decoding for Computationally Efficient Named Entity Recognition Taggers
Brian Lester
|
Daniel Pressel
|
Amy Hemmeter
|
Sagnik Ray Choudhury
|
Srinivas Bangalore
Current state-of-the-art models for named entity recognition (NER) are neural models with a conditional random field (CRF) as the final layer. Entities are represented as per-token labels with a special structure in order to decode them into spans. Current work eschews prior knowledge of how the span encoding scheme works and relies on the CRF learning which transitions are illegal and which are not to facilitate global coherence. We find that by constraining the output to suppress illegal transitions we can train a tagger with a cross-entropy loss twice as fast as a CRF with differences in F1 that are statistically insignificant, effectively eliminating the need for a CRF. We analyze the dynamics of tag co-occurrence to explain when these constraints are most effective and provide open source implementations of our tagger in both PyTorch and TensorFlow.
pdf
bib
abs
On the Potential of Lexico-logical Alignments for Semantic Parsing to SQL Queries
Tianze Shi
|
Chen Zhao
|
Jordan Boyd-Graber
|
Hal Daumé III
|
Lillian Lee
Large-scale semantic parsing datasets annotated with logical forms have enabled major advances in supervised approaches. But can richer supervision help even more? To explore the utility of fine-grained, lexical-level supervision, we introduce SQUALL, a dataset that enriches 11,276 WIKITABLEQUESTIONS English-language questions with manually created SQL equivalents plus alignments between SQL and question fragments. Our annotation enables new training possibilities for encoderdecoder models, including approaches from machine translation previously precluded by the absence of alignments. We propose and test two methods: (1) supervised attention; (2) adopting an auxiliary objective of disambiguating references in the input queries to table columns. In 5-fold cross validation, these strategies improve over strong baselines by 4.4% execution accuracy. Oracle experiments suggest that annotated alignments can support further accuracy gains of up to 23.9%.
pdf
bib
abs
TED: A Pretrained Unsupervised Summarization Model with Theme Modeling and Denoising
Ziyi Yang
|
Chenguang Zhu
|
Robert Gmyr
|
Michael Zeng
|
Xuedong Huang
|
Eric Darve
Text summarization aims to extract essential information from a piece of text and transform the text into a concise version. Existing unsupervised abstractive summarization models leverage recurrent neural networks framework while the recently proposed transformer exhibits much more capability. Moreover, most of previous summarization models ignore abundant unlabeled corpora resources available for pretraining. In order to address these issues, we propose TED, a transformer-based unsupervised abstractive summarization system with pretraining on large-scale data. We first leverage the lead bias in news articles to pretrain the model on millions of unlabeled corpora. Next, we finetune TED on target domains through theme modeling and a denoising autoencoder to enhance the quality of generated summaries. Notably, TED outperforms all unsupervised abstractive baselines on NYT, CNN/DM and English Gigaword datasets with various document styles. Further analysis shows that the summaries generated by TED are highly abstractive, and each component in the objective function of TED is highly effective.
pdf
bib
abs
Improving End-to-End Bangla Speech Recognition with Semi-supervised Training
Nafis Sadeq
|
Nafis Tahmid Chowdhury
|
Farhan Tanvir Utshaw
|
Shafayat Ahmed
|
Muhammad Abdullah Adnan
Automatic speech recognition systems usually require large annotated speech corpus for training. The manual annotation of a large corpus is very difficult. It can be very helpful to use unsupervised and semi-supervised learning methods in addition to supervised learning. In this work, we focus on using a semi-supervised training approach for Bangla Speech Recognition that can exploit large unpaired audio and text data. We encode speech and text data in an intermediate domain and propose a novel loss function based on the global encoding distance between encoded data to guide the semi-supervised training. Our proposed method reduces the Word Error Rate (WER) of the system from 37% to 31.9%.
pdf
bib
abs
No Gestures Left Behind: Learning Relationships between Spoken Language and Freeform Gestures
Chaitanya Ahuja
|
Dong Won Lee
|
Ryo Ishii
|
Louis-Philippe Morency
We study relationships between spoken language and co-speech gestures in context of two key challenges. First, distributions of text and gestures are inherently skewed making it important to model the long tail. Second, gesture predictions are made at a subword level, making it important to learn relationships between language and acoustic cues. We introduce AISLe, which combines adversarial learning with importance sampling to strike a balance between precision and coverage. We propose the use of a multimodal multiscale attention block to perform subword alignment without the need of explicit alignment between language and acoustic cues. Finally, to empirically study the importance of language in this task, we extend the dataset proposed in Ahuja et al. (2020) with automatically extracted transcripts for audio signals. We substantiate the effectiveness of our approach through large-scale quantitative and user studies, which show that our proposed methodology significantly outperforms previous state-of-the-art approaches for gesture generation. Link to code, data and videos:
https://github.com/chahuja/aislepdf
bib
abs
UNIFIEDQA: Crossing Format Boundaries with a Single QA System
Daniel Khashabi
|
Sewon Min
|
Tushar Khot
|
Ashish Sabharwal
|
Oyvind Tafjord
|
Peter Clark
|
Hannaneh Hajishirzi
Question answering (QA) tasks have been posed using a variety of formats, such as extractive span selection, multiple choice, etc. This has led to format-specialized models, and even to an implicit division in the QA community. We argue that such boundaries are artificial and perhaps unnecessary, given the reasoning abilities we seek to teach are not governed by the format. As evidence, we use the latest advances in language modeling to build a single pre-trained QA model, UNIFIEDQA, that performs well across 19 QA datasets spanning 4 diverse formats. UNIFIEDQA performs on par with 8 different models that were trained on individual datasets themselves. Even when faced with 12 unseen datasets of observed formats, UNIFIEDQA performs surprisingly well, showing strong generalization from its outof-format training data. Finally, simply finetuning this pre trained QA model into specialized models results in a new state of the art on 10 factoid and commonsense question answering datasets, establishing UNIFIEDQA as a strong starting point for building QA systems.
pdf
bib
abs
Robust and Interpretable Grounding of Spatial References with Relation Networks
Tsung-Yen Yang
|
Andrew Lan
|
Karthik Narasimhan
Learning representations of spatial references in natural language is a key challenge in tasks like autonomous navigation and robotic manipulation. Recent work has investigated various neural architectures for learning multi-modal representations for spatial concepts. However, the lack of explicit reasoning over entities makes such approaches vulnerable to noise in input text or state observations. In this paper, we develop effective models for understanding spatial references in text that are robust and interpretable, without sacrificing performance. We design a text-conditioned relation network whose parameters are dynamically computed with a cross-modal attention module to capture fine-grained spatial relations between entities. This design choice provides interpretability of learned intermediate outputs. Experiments across three tasks demonstrate that our model achieves superior performance, with a 17% improvement in predicting goal locations and a 15% improvement in robustness compared to state-of-the-art systems.
pdf
bib
abs
Pragmatic Issue-Sensitive Image Captioning
Allen Nie
|
Reuben Cohn-Gordon
|
Christopher Potts
Image captioning systems need to produce texts that are not only true but also relevant in that they are properly aligned with the current issues. For instance, in a newspaper article about a sports event, a caption that not only identifies the player in a picture but also comments on their ethnicity could create unwanted reader reactions. To address this, we propose Issue-Sensitive Image Captioning (ISIC). In ISIC, the captioner is given a target image and an issue, which is a set of images partitioned in a way that specifies what information is relevant. For the sports article, we could construct a partition that places images into equivalence classes based on player position. To model this task, we use an extension of the Rational Speech Acts model. Our extension is built on top of state-of-the-art pretrained neural image captioners and explicitly uses image partitions to control caption generation. In both automatic and human evaluations, we show that these models generate captions that are descriptive and issue-sensitive. Finally, we show how ISIC can complement and enrich the related task of Visual Question Answering.
pdf
bib
abs
PTUM: Pre-training User Model from Unlabeled User Behaviors via Self-supervision
Chuhan Wu
|
Fangzhao Wu
|
Tao Qi
|
Jianxun Lian
|
Yongfeng Huang
|
Xing Xie
User modeling is critical for many personalized web services. Many existing methods model users based on their behaviors and the labeled data of target tasks. However, these methods cannot exploit useful information in unlabeled user behavior data, and their performance may be not optimal when labeled data is scarce. Motivated by pre-trained language models which are pre-trained on large-scale unlabeled corpus to empower many downstream tasks, in this paper we propose to pre-train user models from large-scale unlabeled user behaviors data. We propose two self-supervision tasks for user model pre-training. The first one is masked behavior prediction, which can model the relatedness between historical behaviors. The second one is next K behavior prediction, which can model the relatedness between past and future behaviors. The pre-trained user models are finetuned in downstream tasks to learn task-specific user representations. Experimental results on two real-world datasets validate the effectiveness of our proposed user model pre-training method.
pdf
bib
abs
Adversarial Subword Regularization for Robust Neural Machine Translation
Jungsoo Park
|
Mujeen Sung
|
Jinhyuk Lee
|
Jaewoo Kang
Exposing diverse subword segmentations to neural machine translation (NMT) models often improves the robustness of machine translation as NMT models can experience various subword candidates. However, the diversification of subword segmentations mostly relies on the pre-trained subword language models from which erroneous segmentations of unseen words are less likely to be sampled. In this paper, we present adversarial subword regularization (ADVSR) to study whether gradient signals during training can be a substitute criterion for exposing diverse subword segmentations. We experimentally show that our model-based adversarial samples effectively encourage NMT models to be less sensitive to segmentation errors and improve the performance of NMT models in low-resource and out-domain datasets.
pdf
bib
abs
Learning Visual-Semantic Embeddings for Reporting Abnormal Findings on Chest X-rays
Jianmo Ni
|
Chun-Nan Hsu
|
Amilcare Gentili
|
Julian McAuley
Automatic medical image report generation has drawn growing attention due to its potential to alleviate radiologists’ workload. Existing work on report generation often trains encoder-decoder networks to generate complete reports. However, such models are affected by data bias (e.g. label imbalance) and face common issues inherent in text generation models (e.g. repetition). In this work, we focus on reporting abnormal findings on radiology images; instead of training on complete radiology reports, we propose a method to identify abnormal findings from the reports in addition to grouping them with unsupervised clustering and minimal rules. We formulate the task as cross-modal retrieval and propose Conditional Visual-Semantic Embeddings to align images and fine-grained abnormal findings in a joint embedding space. We demonstrate that our method is able to retrieve abnormal findings and outperforms existing generation models on both clinical correctness and text generation metrics.
pdf
bib
abs
SynET: Synonym Expansion using Transitivity
Jiale Yu
|
Yongliang Shen
|
Xinyin Ma
|
Chenghao Jia
|
Chen Chen
|
Weiming Lu
In this paper, we study a new task of synonym expansion using transitivity, and propose a novel approach named SynET, which considers both the contexts of two given synonym pairs. It introduces an auxiliary task to reduce the impact of noisy sentences, and proposes a Multi-Perspective Entity Matching Network to match entities from multiple perspectives. Extensive experiments on a real-world dataset show the effectiveness of our approach.
pdf
bib
abs
Scheduled DropHead: A Regularization Method for Transformer Models
Wangchunshu Zhou
|
Tao Ge
|
Furu Wei
|
Ming Zhou
|
Ke Xu
We introduce DropHead, a structured dropout method specifically designed for regularizing the multi-head attention mechanism which is a key component of transformer. In contrast to the conventional dropout mechanism which randomly drops units or connections, DropHead drops entire attention heads during training to prevent the multi-head attention model from being dominated by a small portion of attention heads. It can help reduce the risk of overfitting and allow the models to better benefit from the multi-head attention. Given the interaction between multi-headedness and training dynamics, we further propose a novel dropout rate scheduler to adjust the dropout rate of DropHead throughout training, which results in a better regularization effect. Experimental results demonstrate that our proposed approach can improve transformer models by 0.9 BLEU score on WMT14 En-De translation task and around 1.0 accuracy for various text classification tasks.
pdf
bib
abs
Multi-Turn Dialogue Generation in E-Commerce Platform with the Context of Historical Dialogue
WeiSheng Zhang
|
Kaisong Song
|
Yangyang Kang
|
Zhongqing Wang
|
Changlong Sun
|
Xiaozhong Liu
|
Shoushan Li
|
Min Zhang
|
Luo Si
As an important research topic, customer service dialogue generation tends to generate generic seller responses by leveraging current dialogue information. In this study, we propose a novel and extensible dialogue generation method by leveraging sellers’ historical dialogue information, which can be both accessible and informative. By utilizing innovative historical dialogue representation learning and historical dialogue selection mechanism, the proposed model is capable of detecting most related responses from sellers’ historical dialogues, which can further enhance the current dialogue generation quality. Unlike prior dialogue generation efforts, we treat each seller’s historical dialogues as a list of Customer-Seller utterance pairs and allow the model to measure their different importance, and copy words directly from most relevant pairs. Extensive experimental results show that the proposed approach can generate high-quality responses that cater to specific sellers’ characteristics and exhibit consistent superiority over baselines on a real-world multi-turn customer service dialogue dataset.
pdf
bib
abs
Automatically Identifying Gender Issues in Machine Translation using Perturbations
Hila Gonen
|
Kellie Webster
The successful application of neural methods to machine translation has realized huge quality advances for the community. With these improvements, many have noted outstanding challenges, including the modeling and treatment of gendered language. While previous studies have identified issues using synthetic examples, we develop a novel technique to mine examples from real world data to explore challenges for deployed systems. We use our method to compile an evaluation benchmark spanning examples for four languages from three language families, which we publicly release to facilitate research. The examples in our benchmark expose where model representations are gendered, and the unintended consequences these gendered representations can have in downstream application.
pdf
bib
abs
Ruler: Data Programming by Demonstration for Document Labeling
Sara Evensen
|
Chang Ge
|
Cagatay Demiralp
Data programming aims to reduce the cost of curating training data by encoding domain knowledge as labeling functions over source data. As such it not only requires domain expertise but also programming experience, a skill that many subject matter experts lack. Additionally, generating functions by enumerating rules is not only time consuming but also inherently difficult, even for people with programming experience. In this paper we introduce Ruler, an interactive system that synthesizes labeling rules using span-level interactive demonstrations over document examples. Ruler is a first-of-a-kind implementation of data programming by demonstration (DPBD). This new framework aims to relieve users from the burden of writing labeling functions, enabling them to focus on higher-level semantic analysis, such as identifying relevant signals for the labeling task. We compare Ruler with conventional data programming through a user study conducted with 10 data scientists who were asked to create labeling functions for sentiment and spam classification tasks. Results show Ruler is easier to learn and to use, and that it offers higher overall user-satisfaction while providing model performances comparable to those achieved by conventional data programming.
pdf
bib
abs
Dual Reconstruction: a Unifying Objective for Semi-Supervised Neural Machine Translation
Weijia Xu
|
Xing Niu
|
Marine Carpuat
While Iterative Back-Translation and Dual Learning effectively incorporate monolingual training data in neural machine translation, they use different objectives and heuristic gradient approximation strategies, and have not been extensively compared. We introduce a novel dual reconstruction objective that provides a unified view of Iterative Back-Translation and Dual Learning. It motivates a theoretical analysis and controlled empirical study on German-English and Turkish-English tasks, which both suggest that Iterative Back-Translation is more effective than Dual Learning despite its relative simplicity.
pdf
bib
abs
Focus-Constrained Attention Mechanism for CVAE-based Response Generation
Zhi Cui
|
Yanran Li
|
Jiayi Zhang
|
Jianwei Cui
|
Chen Wei
|
Bin Wang
To model diverse responses for a given post, one promising way is to introduce a latent variable into Seq2Seq models. The latent variable is supposed to capture the discourse-level information and encourage the informativeness of target responses. However, such discourse-level information is often too coarse for the decoder to be utilized. To tackle it, our idea is to transform the coarse-grained discourse-level information into fine-grained word-level information. Specifically, we firstly measure the semantic concentration of corresponding target response on the post words by introducing a fine-grained focus signal. Then, we propose a focus-constrained attention mechanism to take full advantage of focus in well aligning the input to the target response. The experimental results demonstrate that by exploiting the fine-grained signal, our model can generate more diverse and informative responses compared with several state-of-the-art models.
pdf
bib
abs
Chunk-based Chinese Spelling Check with Global Optimization
Zuyi Bao
|
Chen Li
|
Rui Wang
Chinese spelling check is a challenging task due to the characteristics of the Chinese language, such as the large character set, no word boundary, and short word length. On the one hand, most of the previous works only consider corrections with similar character pronunciation or shape, failing to correct visually and phonologically irrelevant typos. On the other hand, pipeline-style architectures are widely adopted to deal with different types of spelling errors in individual modules, which is difficult to optimize. In order to handle these issues, in this work, 1) we extend the traditional confusion sets with semantical candidates to cover different types of errors; 2) we propose a chunk-based framework to correct single-character and multi-character word errors uniformly; and 3) we adopt a global optimization strategy to enable a sentence-level correction selection. The experimental results show that the proposed approach achieves a new state-of-the-art performance on three benchmark datasets, as well as an optical character recognition dataset.
pdf
bib
abs
Multi-pretraining for Large-scale Text Classification
Kang-Min Kim
|
Bumsu Hyeon
|
Yeachan Kim
|
Jun-Hyung Park
|
SangKeun Lee
Deep neural network-based pretraining methods have achieved impressive results in many natural language processing tasks including text classification. However, their applicability to large-scale text classification with numerous categories (e.g., several thousands) is yet to be well-studied, where the training data is insufficient and skewed in terms of categories. In addition, existing pretraining methods usually involve excessive computation and memory overheads. In this paper, we develop a novel multi-pretraining framework for large-scale text classification. This multi-pretraining framework includes both a self-supervised pretraining and a weakly supervised pretraining. We newly introduce an out-of-context words detection task on the unlabeled data as the self-supervised pretraining. It captures the topic-consistency of words used in sentences, which is proven to be useful for text classification. In addition, we propose a weakly supervised pretraining, where labels for text classification are obtained automatically from an existing approach. Experimental results clearly show that both pretraining approaches are effective for large-scale text classification task. The proposed scheme exhibits significant improvements as much as 3.8% in terms of macro-averaging F1-score over strong pretraining methods, while being computationally efficient.
pdf
bib
abs
End-to-End Speech Recognition and Disfluency Removal
Paria Jamshid Lou
|
Mark Johnson
Disfluency detection is usually an intermediate step between an automatic speech recognition (ASR) system and a downstream task. By contrast, this paper aims to investigate the task of end-to-end speech recognition and disfluency removal. We specifically explore whether it is possible to train an ASR model to directly map disfluent speech into fluent transcripts, without relying on a separate disfluency detection model. We show that end-to-end models do learn to directly generate fluent transcripts; however, their performance is slightly worse than a baseline pipeline approach consisting of an ASR system and a specialized disfluency detection model. We also propose two new metrics for evaluating integrated ASR and disfluency removal models. The findings of this paper can serve as a benchmark for further research on the task of end-to-end speech recognition and disfluency removal in the future.
pdf
bib
abs
Characterizing the Value of Information in Medical Notes
Chao-Chun Hsu
|
Shantanu Karnwal
|
Sendhil Mullainathan
|
Ziad Obermeyer
|
Chenhao Tan
Machine learning models depend on the quality of input data. As electronic health records are widely adopted, the amount of data in health care is growing, along with complaints about the quality of medical notes. We use two prediction tasks, readmission prediction and in-hospital mortality prediction, to characterize the value of information in medical notes. We show that as a whole, medical notes only provide additional predictive power over structured information in readmission prediction. We further propose a probing framework to select parts of notes that enable more accurate predictions than using all notes, despite that the selected information leads to a distribution shift from the training data (“all notes”). Finally, we demonstrate that models trained on the selected valuable information achieve even better predictive performance, with only 6.8%of all the tokens for readmission prediction.
pdf
bib
abs
KLearn: Background Knowledge Inference from Summarization Data
Maxime Peyrard
|
Robert West
The goal of text summarization is to compress documents to the relevant information while excluding background information already known to the receiver. So far, summarization researchers have given considerably more attention to relevance than to background knowledge. In contrast, this work puts background knowledge in the foreground. Building on the realization that the choices made by human summarizers and annotators contain implicit information about their background knowledge, we develop and compare techniques for inferring background knowledge from summarization data. Based on this framework, we define summary scoring functions that explicitly model background knowledge, and show that these scoring functions fit human judgments significantly better than baselines. We illustrate some of the many potential applications of our framework. First, we provide insights into human information importance priors. Second, we demonstrate that averaging the background knowledge of multiple, potentially biased annotators or corpora greatly improves summaryscoring performance. Finally, we discuss potential applications of our framework beyond summarization.
pdf
bib
abs
Extracting Chemical-Protein Interactions via Calibrated Deep Neural Network and Self-training
Dongha Choi
|
Hyunju Lee
The extraction of interactions between chemicals and proteins from several biomedical articles is important in many fields of biomedical research such as drug development and prediction of drug side effects. Several natural language processing methods, including deep neural network (DNN) models, have been applied to address this problem. However, these methods were trained with hard-labeled data, which tend to become over-confident, leading to degradation of the model reliability. To estimate the data uncertainty and improve the reliability, “calibration” techniques have been applied to deep learning models. In this study, to extract chemical–protein interactions, we propose a DNN-based approach incorporating uncertainty information and calibration techniques. Our model first encodes the input sequence using a pre-trained language-understanding model, following which it is trained using two calibration methods: mixup training and addition of a confidence penalty loss. Finally, the model is re-trained with augmented data that are extracted using the estimated uncertainties. Our approach has achieved state-of-the-art performance with regard to the Biocreative VI ChemProt task, while preserving higher calibration abilities than those of previous approaches. Furthermore, our approach also presents the possibilities of using uncertainty estimation for performance improvement.
pdf
bib
abs
Logic2Text: High-Fidelity Natural Language Generation from Logical Forms
Zhiyu Chen
|
Wenhu Chen
|
Hanwen Zha
|
Xiyou Zhou
|
Yunkai Zhang
|
Sairam Sundaresan
|
William Yang Wang
Previous studies on Natural Language Generation (NLG) from structured data have primarily focused on surface-level descriptions of record sequences. However, for complex structured data, e.g., multi-row tables, it is often desirable for an NLG system to describe interesting facts from logical inferences across records. If only provided with the table, it is hard for existing models to produce controllable and high-fidelity logical generations. In this work, we formulate high-fidelity NLG as generation from logical forms in order to obtain controllable and faithful generations. We present a new large-scale dataset, Logic2Text, with 10,753 descriptions involving common logic types paired with the underlying logical forms. The logical forms show diversified graph structure of free schema, which pose great challenges on the model’s ability to understand the semantics. We experiment on (1) Fully-supervised training with the full datasets, and (2) Few-shot setting, provided with hundreds of paired examples; We compare several popular generation models and analyze their performances. We hope our dataset can encourage research towards building an advanced NLG system capable of natural, faithful, and human-like generation. The dataset and code is available at
https://github.com/czyssrs/Logic2Text.
pdf
bib
abs
MedICaT: A Dataset of Medical Images, Captions, and Textual References
Sanjay Subramanian
|
Lucy Lu Wang
|
Ben Bogin
|
Sachin Mehta
|
Madeleine van Zuylen
|
Sravanthi Parasa
|
Sameer Singh
|
Matt Gardner
|
Hannaneh Hajishirzi
Understanding the relationship between figures and text is key to scientific document understanding. Medical figures in particular are quite complex, often consisting of several subfigures (75% of figures in our dataset), with detailed text describing their content. Previous work studying figures in scientific papers focused on classifying figure content rather than understanding how images relate to the text. To address challenges in figure retrieval and figure-to-text alignment, we introduce MedICaT, a dataset of medical images in context. MedICaT consists of 217K images from 131K open access biomedical papers, and includes captions, inline references for 74% of figures, and manually annotated subfigures and subcaptions for a subset of figures. Using MedICaT, we introduce the task of subfigure to subcaption alignment in compound figures and demonstrate the utility of inline references in image-text matching. Our data and code can be accessed at
https://github.com/allenai/medicat.
pdf
bib
abs
TSDG: Content-aware Neural Response Generation with Two-stage Decoding Process
Junsheng Kong
|
Zhicheng Zhong
|
Yi Cai
|
Xin Wu
|
Da Ren
Neural response generative models have achieved remarkable progress in recent years but tend to yield irrelevant and uninformative responses. One of the reasons is that encoder-decoder based models always use a single decoder to generate a complete response at a stroke. This tends to generate high-frequency function words with less semantic information rather than low-frequency content words with more semantic information. To address this issue, we propose a content-aware model with two-stage decoding process named Two-stage Dialogue Generation (TSDG). We separate the decoding process of content words and function words so that content words can be generated independently without the interference of function words. Experimental results on two datasets indicate that our model significantly outperforms several competitive generative models in terms of automatic and human evaluation.
pdf
bib
abs
Unsupervised Cross-Lingual Adaptation of Dependency Parsers Using CRF Autoencoders
Zhao Li
|
Kewei Tu
We consider the task of cross-lingual adaptation of dependency parsers without annotated target corpora and parallel corpora. Previous work either directly applies a discriminative source parser to the target language, ignoring unannotated target corpora, or employs an unsupervised generative parser that can leverage unannotated target data but has weaker representational power than discriminative parsers. In this paper, we propose to utilize unsupervised discriminative parsers based on the CRF autoencoder framework for this task. We train a source parser and use it to initialize and regularize a target parser that is trained on unannotated target data. We conduct experiments that transfer an English parser to 20 target languages. The results show that our method significantly outperforms previous methods.
pdf
bib
abs
Diversify Question Generation with Continuous Content Selectors and Question Type Modeling
Zhen Wang
|
Siwei Rao
|
Jie Zhang
|
Zhen Qin
|
Guangjian Tian
|
Jun Wang
Generating questions based on answers and relevant contexts is a challenging task. Recent work mainly pays attention to the quality of a single generated question. However, question generation is actually a one-to-many problem, as it is possible to raise questions with different focuses on contexts and various means of expression. In this paper, we explore the diversity of question generation and come up with methods from these two aspects. Specifically, we relate contextual focuses with content selectors, which are modeled by a continuous latent variable with the technique of conditional variational auto-encoder (CVAE). In the realization of CVAE, a multimodal prior distribution is adopted to allow for more diverse content selectors. To take into account various means of expression, question types are explicitly modeled and a diversity-promoting algorithm is proposed further. Experimental results on public datasets show that our proposed method can significantly improve the diversity of generated questions, especially from the perspective of using different question types. Overall, our proposed method achieves a better trade-off between generation quality and diversity compared with existing approaches.
pdf
bib
abs
Participatory Research for Low-resourced Machine Translation: A Case Study in African Languages
Wilhelmina Nekoto
|
Vukosi Marivate
|
Tshinondiwa Matsila
|
Timi Fasubaa
|
Taiwo Fagbohungbe
|
Solomon Oluwole Akinola
|
Shamsuddeen Muhammad
|
Salomon Kabongo Kabenamualu
|
Salomey Osei
|
Freshia Sackey
|
Rubungo Andre Niyongabo
|
Ricky Macharm
|
Perez Ogayo
|
Orevaoghene Ahia
|
Musie Meressa Berhe
|
Mofetoluwa Adeyemi
|
Masabata Mokgesi-Selinga
|
Lawrence Okegbemi
|
Laura Martinus
|
Kolawole Tajudeen
|
Kevin Degila
|
Kelechi Ogueji
|
Kathleen Siminyu
|
Julia Kreutzer
|
Jason Webster
|
Jamiil Toure Ali
|
Jade Abbott
|
Iroro Orife
|
Ignatius Ezeani
|
Idris Abdulkadir Dangana
|
Herman Kamper
|
Hady Elsahar
|
Goodness Duru
|
Ghollah Kioko
|
Murhabazi Espoir
|
Elan van Biljon
|
Daniel Whitenack
|
Christopher Onyefuluchi
|
Chris Chinenye Emezue
|
Bonaventure F. P. Dossou
|
Blessing Sibanda
|
Blessing Bassey
|
Ayodele Olabiyi
|
Arshath Ramkilowan
|
Alp Öktem
|
Adewale Akinfaderin
|
Abdallah Bashir
Research in NLP lacks geographic diversity, and the question of how NLP can be scaled to low-resourced languages has not yet been adequately solved. ‘Low-resourced’-ness is a complex problem going beyond data availability and reflects systemic problems in society. In this paper, we focus on the task of Machine Translation (MT), that plays a crucial role for information accessibility and communication worldwide. Despite immense improvements in MT over the past decade, MT is centered around a few high-resourced languages. As MT researchers cannot solve the problem of low-resourcedness alone, we propose participatory research as a means to involve all necessary agents required in the MT development process. We demonstrate the feasibility and scalability of participatory research with a case study on MT for African languages. Its implementation leads to a collection of novel translation datasets, MT benchmarks for over 30 languages, with human evaluations for a third of them, and enables participants without formal training to make a unique scientific contribution. Benchmarks, models, data, code, and evaluation results are released at
https://github.com/masakhane-io/masakhane-mt.
pdf
bib
abs
ConveRT: Efficient and Accurate Conversational Representations from Transformers
Matthew Henderson
|
Iñigo Casanueva
|
Nikola Mrkšić
|
Pei-Hao Su
|
Tsung-Hsien Wen
|
Ivan Vulić
General-purpose pretrained sentence encoders such as BERT are not ideal for real-world conversational AI applications; they are computationally heavy, slow, and expensive to train. We propose ConveRT (Conversational Representations from Transformers), a pretraining framework for conversational tasks satisfying all the following requirements: it is effective, affordable, and quick to train. We pretrain using a retrieval-based response selection task, effectively leveraging quantization and subword-level parameterization in the dual encoder to build a lightweight memory- and energy-efficient model. We show that ConveRT achieves state-of-the-art performance across widely established response selection tasks. We also demonstrate that the use of extended dialog history as context yields further performance gains. Finally, we show that pretrained representations from the proposed encoder can be transferred to the intent classification task, yielding strong results across three diverse data sets. ConveRT trains substantially faster than standard sentence encoders or previous state-of-the-art dual encoders. With its reduced size and superior performance, we believe this model promises wider portability and scalability for Conversational AI applications.
pdf
bib
abs
Computer Assisted Translation with Neural Quality Estimation and Automatic Post-Editing
Ke Wang
|
Jiayi Wang
|
Niyu Ge
|
Yangbin Shi
|
Yu Zhao
|
Kai Fan
With the advent of neural machine translation, there has been a marked shift towards leveraging and consuming the machine translation results. However, the gap between machine translation systems and human translators needs to be manually closed by post-editing. In this paper, we propose an end-to-end deep learning framework of the quality estimation and automatic post-editing of the machine translation output. Our goal is to provide error correction suggestions and to further relieve the burden of human translators through an interpretable model. To imitate the behavior of human translators, we design three efficient delegation modules – quality estimation, generative post-editing, and atomic operation post-editing and construct a hierarchical model based on them. We examine this approach with the English–German dataset from WMT 2017 APE shared task and our experimental results can achieve the state-of-the-art performance. We also verify that the certified translators can significantly expedite their post-editing processing with our model in human evaluation.
pdf
bib
abs
Zero-Shot Rationalization by Multi-Task Transfer Learning from Question Answering
Po-Nien Kung
|
Tse-Hsuan Yang
|
Yi-Cheng Chen
|
Sheng-Siang Yin
|
Yun-Nung Chen
Extracting rationales can help human understand which information the model utilizes and how it makes the prediction towards better interpretability. However, annotating rationales requires much effort and only few datasets contain such labeled rationales, making supervised learning for rationalization difficult. In this paper, we propose a novel approach that leverages the benefits of both multi-task learning and transfer learning for generating rationales through question answering in a zero-shot fashion. For two benchmark rationalization datasets, the proposed method achieves comparable or even better performance of rationalization without any supervised signal, demonstrating the great potential of zero-shot rationalization for better interpretability.
pdf
bib
abs
The Role of Reentrancies in Abstract Meaning Representation Parsing
Ida Szubert
|
Marco Damonte
|
Shay B. Cohen
|
Mark Steedman
Abstract Meaning Representation (AMR) parsing aims at converting sentences into AMR representations. These are graphs and not trees because AMR supports reentrancies (nodes with more than one parent). Following previous findings on the importance of reen- trancies for AMR, we empirically find and discuss several linguistic phenomena respon- sible for reentrancies in AMR, some of which have not received attention before. We cate- gorize the types of errors AMR parsers make with respect to reentrancies. Furthermore, we find that correcting these errors provides an in- crease of up to 5% Smatch in parsing perfor- mance and 20% in reentrancy prediction
pdf
bib
abs
Cross-Lingual Suicidal-Oriented Word Embedding toward Suicide Prevention
Daeun Lee
|
Soyoung Park
|
Jiwon Kang
|
Daejin Choi
|
Jinyoung Han
Early intervention for suicide risks with social media data has increasingly received great attention. Using a suicide dictionary created by mental health experts is one of the effective ways to detect suicidal ideation. However, little attention has been paid to validate whether and how the existing dictionaries for other languages (i.e., English and Chinese) can be used for predicting suicidal ideation for a low-resource language (i.e., Korean) where a knowledge-based suicide dictionary has not yet been developed. To this end, we propose a cross-lingual suicidal ideation detection model that can identify whether a given social media post includes suicidal ideation or not. To utilize the existing suicide dictionaries developed for other languages (i.e., English and Chinese) in word embedding, our model translates a post written in the target language (i.e., Korean) into English and Chinese, and then uses the separate suicidal-oriented word embeddings developed for English and Chinese, respectively. By applying an ensemble approach for different languages, the model achieves high accuracy, over 87%. We believe our model is useful in accessing suicidal ideation using social media data for preventing potential suicide risk in an early stage.
pdf
bib
abs
Service-oriented Text-to-SQL Parsing
Wangsu Hu
|
Jilei Tian
The information retrieval from relational database requires professionals who has an understanding of structural query language such as SQL. TEXT2SQL models apply natural language inference to enable user interacting the database via natural language utterance. Current TEXT2SQL models normally focus on generating complex SQL query in a precise and complete fashion while certain features of real-world application in the production environment is not fully addressed. This paper is aimed to develop a service-oriented Text-to-SQL parser that translates natural language utterance to structural and executable SQL query. We introduce a algorithmic framework named Semantic-Enriched SQL generator (SE-SQL) that enables flexibly access database than rigid API in the application while keeping the performance quality for the most commonly used cases. The qualitative result shows that the proposed model achieves 88.3% execution accuracy on WikiSQL task, outperforming baseline by 13% error reduction. Moreover, the framework considers several service-oriented needs including low-complexity inference, out-of-table rejection, and text normalization.
pdf
bib
abs
Reinforcement Learning with Imbalanced Dataset for Data-to-Text Medical Report Generation
Toru Nishino
|
Ryota Ozaki
|
Yohei Momoki
|
Tomoki Taniguchi
|
Ryuji Kano
|
Norihisa Nakano
|
Yuki Tagawa
|
Motoki Taniguchi
|
Tomoko Ohkuma
|
Keigo Nakamura
Automated generation of medical reports that describe the findings in the medical images helps radiologists by alleviating their workload. Medical report generation system should generate correct and concise reports. However, data imbalance makes it difficult to train models accurately. Medical datasets are commonly imbalanced in their finding labels because incidence rates differ among diseases; moreover, the ratios of abnormalities to normalities are significantly imbalanced. We propose a novel reinforcement learning method with a reconstructor to improve the clinical correctness of generated reports to train the data-to-text module with a highly imbalanced dataset. Moreover, we introduce a novel data augmentation strategy for reinforcement learning to additionally train the model on infrequent findings. From the perspective of a practical use, we employ a Two-Stage Medical Report Generator (TS-MRGen) for controllable report generation from input images. TS-MRGen consists of two separated stages: an image diagnosis module and a data-to-text module. Radiologists can modify the image diagnosis module results to control the reports that the data-to-text module generates. We conduct an experiment with two medical datasets to assess the data-to-text module and the entire two-stage model. Results demonstrate that the reports generated by our model describe the findings in the input image more correctly.
pdf
bib
abs
Reducing Quantity Hallucinations in Abstractive Summarization
Zheng Zhao
|
Shay B. Cohen
|
Bonnie Webber
It is well-known that abstractive summaries are subject to hallucination—including material that is not supported by the original text. While summaries can be made hallucination-free by limiting them to general phrases, such summaries would fail to be very informative. Alternatively, one can try to avoid hallucinations by verifying that any specific entities in the summary appear in the original text in a similar context. This is the approach taken by our system, Herman. The system learns to recognize and verify quantity entities (dates, numbers, sums of money, etc.) in a beam-worth of abstractive summaries produced by state-of-the-art models, in order to up-rank those summaries whose quantity terms are supported by the original text. Experimental results demonstrate that the ROUGE scores of such up-ranked summaries have a higher Precision than summaries that have not been up-ranked, without a comparable loss in Recall, resulting in higher F1. Preliminary human evaluation of up-ranked vs. original summaries shows people’s preference for the former.
pdf
bib
abs
Rethinking Topic Modelling: From Document-Space to Term-Space
Magnus Sahlgren
This paper problematizes the reliance on documents as the basic notion for defining term interactions in standard topic models. As an alternative to this practice, we reformulate topic distributions as latent factors in term similarity space. We exemplify the idea using a number of standard word embeddings built with very wide context windows. The embedding spaces are transformed to sparse similarity spaces, and topics are extracted in standard fashion by factorizing to a lower-dimensional space. We use a number of different factorization techniques, and evaluate the various models using a large set of evaluation metrics, including previously published coherence measures, as well as a number of novel measures that we suggest better correspond to real-world applications of topic models. Our results clearly demonstrate that term-based models outperform standard document-based models by a large margin.
pdf
bib
abs
Sparse and Decorrelated Representations for Stable Zero-shot NMT
Bokyung Son
|
Sungwon Lyu
Using a single encoder and decoder for all directions and training with English-centric data is a popular scheme for multilingual NMT. However, zero-shot translation under this scheme is vulnerable to changes in training conditions, as the model degenerates by decoding non-English texts into English regardless of the target specifier token. We present that enforcing both sparsity and decorrelation on encoder intermediate representations with the SLNI regularizer (Aljundi et al., 2019) efficiently mitigates this problem, without performance loss in supervised directions. Notably, effects of SLNI turns out to be irrelevant to promoting language-invariance in encoder representations.
pdf
bib
abs
A Semi-supervised Approach to Generate the Code-Mixed Text using Pre-trained Encoder and Transfer Learning
Deepak Gupta
|
Asif Ekbal
|
Pushpak Bhattacharyya
Code-mixing, the interleaving of two or more languages within a sentence or discourse is ubiquitous in multilingual societies. The lack of code-mixed training data is one of the major concerns for the development of end-to-end neural network-based models to be deployed for a variety of natural language processing (NLP) applications. A potential solution is to either manually create or crowd-source the code-mixed labelled data for the task at hand, but that requires much human efforts and often not feasible because of the language specific diversity in the code-mixed text. To circumvent the data scarcity issue, we propose an effective deep learning approach for automatically generating the code-mixed text from English to multiple languages without any parallel data. In order to train the neural network, we create synthetic code-mixed texts from the available parallel corpus by modelling various linguistic properties of code-mixing. Our codemixed text generator is built upon the encoder-decoder framework, where the encoder is augmented with the linguistic and task-agnostic features obtained from the transformer based language model. We also transfer the knowledge from a neural machine translation (NMT) to warm-start the training of code-mixed generator. Experimental results and in-depth analysis show the effectiveness of our proposed code-mixed text generation on eight diverse language pairs.
pdf
bib
abs
BERT-MK: Integrating Graph Contextualized Knowledge into Pre-trained Language Models
Bin He
|
Di Zhou
|
Jinghui Xiao
|
Xin Jiang
|
Qun Liu
|
Nicholas Jing Yuan
|
Tong Xu
Complex node interactions are common in knowledge graphs (KGs), and these interactions can be considered as contextualized knowledge exists in the topological structure of KGs. Traditional knowledge representation learning (KRL) methods usually treat a single triple as a training unit, neglecting the usage of graph contextualized knowledge. To utilize these unexploited graph-level knowledge, we propose an approach to model subgraphs in a medical KG. Then, the learned knowledge is integrated with a pre-trained language model to do the knowledge generalization. Experimental results demonstrate that our model achieves the state-of-the-art performance on several medical NLP tasks, and the improvement above MedERNIE indicates that graph contextualized knowledge is beneficial.
pdf
bib
abs
Recursive Top-Down Production for Sentence Generation with Latent Trees
Shawn Tan
|
Yikang Shen
|
Alessandro Sordoni
|
Aaron Courville
|
Timothy J. O’Donnell
We model the recursive production property of context-free grammars for natural and synthetic languages. To this end, we present a dynamic programming algorithm that marginalises over latent binary tree structures with N leaves, allowing us to compute the likelihood of a sequence of N tokens under a latent tree model, which we maximise to train a recursive neural function. We demonstrate performance on two synthetic tasks: SCAN, where it outperforms previous models on the LENGTH split, and English question formation, where it performs comparably to decoders with the ground-truth tree structure. We also present experimental results on German-English translation on the Multi30k dataset, and qualitatively analyse the induced tree structures our model learns for the SCAN tasks and the German-English translation task.
pdf
bib
abs
Guided Dialogue Policy Learning without Adversarial Learning in the Loop
Ziming Li
|
Sungjin Lee
|
Baolin Peng
|
Jinchao Li
|
Julia Kiseleva
|
Maarten de Rijke
|
Shahin Shayandeh
|
Jianfeng Gao
Reinforcement learning methods have emerged as a popular choice for training an efficient and effective dialogue policy. However, these methods suffer from sparse and unstable reward signals returned by a user simulator only when a dialogue finishes. Besides, the reward signal is manually designed by human experts, which requires domain knowledge. Recently, a number of adversarial learning methods have been proposed to learn the reward function together with the dialogue policy. However, to alternatively update the dialogue policy and the reward model on the fly, we are limited to policy-gradient-based algorithms, such as REINFORCE and PPO. Moreover, the alternating training of a dialogue agent and the reward model can easily get stuck in local optima or result in mode collapse. To overcome the listed issues, we propose to decompose the adversarial training into two steps. First, we train the discriminator with an auxiliary dialogue generator and then incorporate a derived reward model into a common reinforcement learning method to guide the dialogue policy learning. This approach is applicable to both on-policy and off-policy reinforcement learning methods. Based on our extensive experimentation, we can conclude the proposed method: (1) achieves a remarkable task success rate using both on-policy and off-policy reinforcement learning methods; and (2) has potential to transfer knowledge from existing domains to a new domain.
pdf
bib
abs
MultiDM-GCN: Aspect-guided Response Generation in Multi-domain Multi-modal Dialogue System using Graph Convolutional Network
Mauajama Firdaus
|
Nidhi Thakur
|
Asif Ekbal
In the recent past, dialogue systems have gained immense popularity and have become ubiquitous. During conversations, humans not only rely on languages but seek contextual information through visual contents as well. In every task-oriented dialogue system, the user is guided by the different aspects of a product or service that regulates the conversation towards selecting the product or service. In this work, we present a multi-modal conversational framework for a task-oriented dialogue setup that generates the responses following the different aspects of a product or service to cater to the user’s needs. We show that the responses guided by the aspect information provide more interactive and informative responses for better communication between the agent and the user. We first create a Multi-domain Multi-modal Dialogue (MDMMD) dataset having conversations involving both text and images belonging to the three different domains, such as restaurants, electronics, and furniture. We implement a Graph Convolutional Network (GCN) based framework that generates appropriate textual responses from the multi-modal inputs. The multi-modal information having both textual and image representation is fed to the decoder and the aspect information for generating aspect guided responses. Quantitative and qualitative analyses show that the proposed methodology outperforms several baselines for the proposed task of aspect-guided response generation.
pdf
bib
abs
Edge-Enhanced Graph Convolution Networks for Event Detection with Syntactic Relation
Shiyao Cui
|
Bowen Yu
|
Tingwen Liu
|
Zhenyu Zhang
|
Xuebin Wang
|
Jinqiao Shi
Event detection (ED), a key subtask of information extraction, aims to recognize instances of specific event types in text. Previous studies on the task have verified the effectiveness of integrating syntactic dependency into graph convolutional networks. However, these methods usually ignore dependency label information, which conveys rich and useful linguistic knowledge for ED. In this paper, we propose a novel architecture named Edge-Enhanced Graph Convolution Networks (EE-GCN), which simultaneously exploits syntactic structure and typed dependency label information to perform ED. Specifically, an edge-aware node update module is designed to generate expressive word representations by aggregating syntactically-connected words through specific dependency types. Furthermore, to fully explore clues hidden from dependency edges, a node-aware edge update module is introduced, which refines the relation representations with contextual information. These two modules are complementary to each other and work in a mutual promotion way. We conduct experiments on the widely used ACE2005 dataset and the results show significant improvement over competitive baseline methods.
pdf
bib
abs
Semi-supervised Formality Style Transfer using Language Model Discriminator and Mutual Information Maximization
Kunal Chawla
|
Diyi Yang
Formality style transfer is the task of converting informal sentences to grammatically-correct formal sentences, which can be used to improve performance of many downstream NLP tasks. In this work, we propose a semi-supervised formality style transfer model that utilizes a language model-based discriminator to maximize the likelihood of the output sentence being formal, which allows us to use maximization of token-level conditional probabilities for training. We further propose to maximize mutual information between source and target styles as our training objective instead of maximizing the regular likelihood that often leads to repetitive and trivial generated responses. Experiments showed that our model outperformed previous state-of-the-art baselines significantly in terms of both automated metrics and human judgement. We further generalized our model to unsupervised text style transfer task, and achieved significant improvements on two benchmark sentiment style transfer datasets.
pdf
bib
abs
Differentially Private Representation for NLP: Formal Guarantee and An Empirical Study on Privacy and Fairness
Lingjuan Lyu
|
Xuanli He
|
Yitong Li
It has been demonstrated that hidden representation learned by deep model can encode private information of the input, hence can be exploited to recover such information with reasonable accuracy. To address this issue, we propose a novel approach called Differentially Private Neural Representation (DPNR) to preserve privacy of the extracted representation from text. DPNR utilises Differential Privacy (DP) to provide formal privacy guarantee. Further, we show that masking words via dropout can further enhance privacy. To maintain utility of the learned representation, we integrate DP-noisy representation into a robust training process to derive a robust target model, which also helps for model fairness over various demographic variables. Experimental results on benchmark datasets under various parameter settings demonstrate that DPNR largely reduces privacy leakage without significantly sacrificing the main task performance.
pdf
bib
abs
Helpful or Hierarchical? Predicting the Communicative Strategies of Chat Participants, and their Impact on Success
Farzana Rashid
|
Tommaso Fornaciari
|
Dirk Hovy
|
Eduardo Blanco
|
Fernando Vega-Redondo
When interacting with each other, we motivate, advise, inform, show love or power towards our peers. However, the way we interact may also hold some indication on how successful we are, as people often try to help each other to achieve their goals. We study the chat interactions of thousands of aspiring entrepreneurs who discuss and develop business models. We manually annotate a set of about 5,500 chat interactions with four dimensions of interaction styles (motivation, cooperation, equality, advice). We find that these styles can be reliably predicted, and that the communication styles can be used to predict a number of indices of business success. Our findings indicate that successful communicators are also successful in other domains.
pdf
bib
abs
Learning Knowledge Bases with Parameters for Task-Oriented Dialogue Systems
Andrea Madotto
|
Samuel Cahyawijaya
|
Genta Indra Winata
|
Yan Xu
|
Zihan Liu
|
Zhaojiang Lin
|
Pascale Fung
Task-oriented dialogue systems are either modularized with separate dialogue state tracking (DST) and management steps or end-to-end trainable. In either case, the knowledge base (KB) plays an essential role in fulfilling user requests. Modularized systems rely on DST to interact with the KB, which is expensive in terms of annotation and inference time. End-to-end systems, instead, use the KB directly as input, but they cannot scale when the KB is larger than a few hundred entries. In this paper, we propose a method to embed the KB, of any size, directly into the model parameters. The resulting model does not require any DST or template responses, nor the KB as input, and it can dynamically update its KB via fine-tuning. We evaluate our solution in five task-oriented dialogue datasets with small, medium, and large KB size. Our experiments show that end-to-end models can effectively embed knowledge bases in their parameters and achieve competitive performance in all evaluated datasets.
pdf
bib
abs
Adapting Open Domain Fact Extraction and Verification to COVID-FACT through In-Domain Language Modeling
Zhenghao Liu
|
Chenyan Xiong
|
Zhuyun Dai
|
Si Sun
|
Maosong Sun
|
Zhiyuan Liu
With the epidemic of COVID-19, verifying the scientifically false online information, such as fake news and maliciously fabricated statements, has become crucial. However, the lack of training data in the scientific domain limits the performance of fact verification models. This paper proposes an in-domain language modeling method for fact extraction and verification systems. We come up with SciKGAT to combine the advantages of open-domain literature search, state-of-the-art fact verification systems and in-domain medical knowledge through language modeling. Our experiments on SCIFACT, a dataset of expert-written scientific fact verification, show that SciKGAT achieves 30% absolute improvement on precision. Our analyses show that such improvement thrives from our in-domain language model by picking up more related evidence pieces and accurate fact verification. Our codes and data are released via Github.
pdf
bib
abs
ProphetNet: Predicting Future N-gram for Sequence-to-SequencePre-training
Weizhen Qi
|
Yu Yan
|
Yeyun Gong
|
Dayiheng Liu
|
Nan Duan
|
Jiusheng Chen
|
Ruofei Zhang
|
Ming Zhou
This paper presents a new sequence-to-sequence pre-training model called ProphetNet, which introduces a novel self-supervised objective named future n-gram prediction and the proposed n-stream self-attention mechanism. Instead of optimizing one-step-ahead prediction in the traditional sequence-to-sequence model, the ProphetNet is optimized by n-step ahead prediction that predicts the next n tokens simultaneously based on previous context tokens at each time step. The future n-gram prediction explicitly encourages the model to plan for the future tokens and prevent overfitting on strong local correlations. We pre-train ProphetNet using a base scale dataset (16GB) and a large-scale dataset (160GB), respectively. Then we conduct experiments on CNN/DailyMail, Gigaword, and SQuAD 1.1 benchmarks for abstractive summarization and question generation tasks. Experimental results show that ProphetNet achieves new state-of-the-art results on all these datasets compared to the models using the same scale pre-training corpus.
pdf
bib
abs
DivGAN: Towards Diverse Paraphrase Generation via Diversified Generative Adversarial Network
Yue Cao
|
Xiaojun Wan
Paraphrases refer to texts that convey the same meaning with different expression forms. Traditional seq2seq-based models on paraphrase generation mainly focus on the fidelity while ignoring the diversity of outputs. In this paper, we propose a deep generative model to generate diverse paraphrases. We build our model based on the conditional generative adversarial network, and propose to incorporate a simple yet effective diversity loss term into the model in order to improve the diversity of outputs. The proposed diversity loss maximizes the ratio of pairwise distance between the generated texts and their corresponding latent codes, forcing the generator to focus more on the latent codes and produce diverse samples. Experimental results on benchmarks of paraphrase generation show that our proposed model can generate more diverse paraphrases compared with baselines.
pdf
bib
abs
Plug-and-Play Conversational Models
Andrea Madotto
|
Etsuko Ishii
|
Zhaojiang Lin
|
Sumanth Dathathri
|
Pascale Fung
There has been considerable progress made towards conversational models that generate coherent and fluent responses; however, this often involves training large language models on large dialogue datasets, such as Reddit. These large conversational models provide little control over the generated responses, and this control is further limited in the absence of annotated conversational datasets for attribute specific generation that can be used for fine-tuning the model. In this paper, we first propose and evaluate plug-and-play methods for controllable response generation, which does not require dialogue specific datasets and does not rely on fine-tuning a large model. While effective, the decoding procedure induces considerable computational overhead, rendering the conversational model unsuitable for interactive usage. To overcome this, we introduce an approach that does not require further computation at decoding time, while also does not require any fine-tuning of a large language model. We demonstrate, through extensive automatic and human evaluation, a high degree of control over the generated conversational responses with regard to multiple desired attributes, while being fluent.
pdf
bib
abs
Event-Driven Learning of Systematic Behaviours in Stock Markets
Xianchao Wu
It is reported that financial news, especially financial events expressed in news, provide information to investors’ long/short decisions and influence the movements of stock markets. Motivated by this, we leverage financial event streams to train a classification neural network that detects latent event-stock linkages and stock markets’ systematic behaviours in the U.S. stock market. Our proposed pipeline includes (1) a combined event extraction method that utilizes Open Information Extraction and neural co-reference resolution, (2) a BERT/ALBERT enhanced representation of events, and (3) an extended hierarchical attention network that includes attentions on event, news and temporal levels. Our pipeline achieves significantly better accuracies and higher simulated annualized returns than state-of-the-art models when being applied to predicting Standard&Poor 500, Dow Jones, Nasdaq indices and 10 individual stocks.
pdf
bib
abs
Learning Improvised Chatbots from Adversarial Modifications of Natural Language Feedback
Makesh Narsimhan Sreedhar
|
Kun Ni
|
Siva Reddy
The ubiquitous nature of dialogue systems and their interaction with users generate an enormous amount of data. Can we improve chatbots using this data? A self-feeding chatbot improves itself by asking natural language feedback when a user is dissatisfied with its response and uses this feedback as an additional training sample. However, user feedback in most cases contains extraneous sequences hindering their usefulness as a training sample. In this work, we propose a generative adversarial model that converts noisy feedback into a plausible natural response in a conversation. The generator’s goal is to convert the feedback into a response that answers the user’s previous utterance and to fool the discriminator which distinguishes feedback from natural responses. We show that augmenting original training data with these modified feedback responses improves the original chatbot performance from 69.94%to 75.96% in ranking correct responses on the PERSONACHATdataset, a large improvement given that the original model is already trained on 131k samples.
pdf
bib
abs
Adapting Coreference Resolution to Twitter Conversations
Berfin Aktaş
|
Veronika Solopova
|
Annalena Kohnert
|
Manfred Stede
The performance of standard coreference resolution is known to drop significantly on Twitter texts. We improve the performance of the (Lee et al., 2018) system, which is originally trained on OntoNotes, by retraining on manually-annotated Twitter conversation data. Further experiments by combining different portions of OntoNotes with Twitter data show that selecting text genres for the training data can beat the mere maximization of training data amount. In addition, we inspect several phenomena such as the role of deictic pronouns in conversational data, and present additional results for variant settings. Our best configuration improves the performance of the”out of the box” system by 21.6%.
pdf
bib
abs
On Romanization for Model Transfer Between Scripts in Neural Machine Translation
Chantal Amrhein
|
Rico Sennrich
Transfer learning is a popular strategy to improve the quality of low-resource machine translation. For an optimal transfer of the embedding layer, the child and parent model should share a substantial part of the vocabulary. This is not the case when transferring to languages with a different script. We explore the benefit of romanization in this scenario. Our results show that romanization entails information loss and is thus not always superior to simpler vocabulary transfer methods, but can improve the transfer between related languages with different scripts. We compare two romanization tools and find that they exhibit different degrees of information loss, which affects translation quality. Finally, we extend romanization to the target side, showing that this can be a successful strategy when coupled with a simple deromanization model.
pdf
bib
abs
COSMIC: COmmonSense knowledge for eMotion Identification in Conversations
Deepanway Ghosal
|
Navonil Majumder
|
Alexander Gelbukh
|
Rada Mihalcea
|
Soujanya Poria
In this paper, we address the task of utterance level emotion recognition in conversations using commonsense knowledge. We propose COSMIC, a new framework that incorporates different elements of commonsense such as mental states, events, and causal relations, and build upon them to learn interactions between interlocutors participating in a conversation. Current state-of-theart methods often encounter difficulties in context propagation, emotion shift detection, and differentiating between related emotion classes. By learning distinct commonsense representations, COSMIC addresses these challenges and achieves new state-of-the-art results for emotion recognition on four different benchmark conversational datasets. Our code is available at
https://github.com/declare-lab/conv-emotion.
pdf
bib
abs
Improving Compositional Generalization in Semantic Parsing
Inbar Oren
|
Jonathan Herzig
|
Nitish Gupta
|
Matt Gardner
|
Jonathan Berant
Generalization of models to out-of-distribution (OOD) data has captured tremendous attention recently. Specifically, compositional generalization, i.e., whether a model generalizes to new structures built of components observed during training, has sparked substantial interest. In this work, we investigate compositional generalization in semantic parsing, a natural test-bed for compositional generalization, as output programs are constructed from sub-components. We analyze a wide variety of models and propose multiple extensions to the attention module of the semantic parser, aiming to improve compositional generalization. We find that the following factors improve compositional generalization: (a) using contextual representations, such as ELMo and BERT, (b) informing the decoder what input tokens have previously been attended to, (c) training the decoder attention to agree with pre-computed token alignments, and (d) downsampling examples corresponding to frequent program templates. While we substantially reduce the gap between in-distribution and OOD generalization, performance on OOD compositions is still substantially lower.
pdf
bib
abs
Answer Span Correction in Machine Reading Comprehension
Revanth Gangi Reddy
|
Md Arafat Sultan
|
Efsun Sarioglu Kayi
|
Rong Zhang
|
Vittorio Castelli
|
Avi Sil
Answer validation in machine reading comprehension (MRC) consists of verifying an extracted answer against an input context and question pair. Previous work has looked at re-assessing the “answerability” of the question given the extracted answer. Here we address a different problem: the tendency of existing MRC systems to produce partially correct answers when presented with answerable questions. We explore the nature of such errors and propose a post-processing correction method that yields statistically significant performance improvements over state-of-the-art MRC systems in both monolingual and multilingual evaluation.
pdf
bib
abs
On the Interplay Between Fine-tuning and Sentence-level Probing for Linguistic Knowledge in Pre-trained Transformers
Marius Mosbach
|
Anna Khokhlova
|
Michael A. Hedderich
|
Dietrich Klakow
Fine-tuning pre-trained contextualized embedding models has become an integral part of the NLP pipeline. At the same time, probing has emerged as a way to investigate the linguistic knowledge captured by pre-trained models. Very little is, however, understood about how fine-tuning affects the representations of pre-trained models and thereby the linguistic knowledge they encode. This paper contributes towards closing this gap. We study three different pre-trained models: BERT, RoBERTa, and ALBERT, and investigate through sentence-level probing how fine-tuning affects their representations. We find that for some probing tasks fine-tuning leads to substantial changes in accuracy, possibly suggesting that fine-tuning introduces or even removes linguistic knowledge from a pre-trained model. These changes, however, vary greatly across different models, fine-tuning and probing tasks. Our analysis reveals that while fine-tuning indeed changes the representations of a pre-trained model and these changes are typically larger for higher layers, only in very few cases, fine-tuning has a positive effect on probing accuracy that is larger than just using the pre-trained model with a strong pooling method. Based on our findings, we argue that both positive and negative effects of fine-tuning on probing require a careful interpretation.
pdf
bib
abs
Zero-shot Entity Linking with Efficient Long Range Sequence Modeling
Zonghai Yao
|
Liangliang Cao
|
Huapu Pan
This paper considers the problem of zero-shot entity linking, in which a link in the test time may not present in training. Following the prevailing BERT-based research efforts, we find a simple yet effective way is to expand the long-range sequence modeling. Unlike many previous methods, our method does not require expensive pre-training of BERT with long position embeddings. Instead, we propose an efficient position embeddings initialization method called Embedding-repeat, which initializes larger position embeddings based on BERT-Base. On the zero-shot entity linking dataset, our method improves the STOA from 76.06% to 79.08%, and for its long data, the corresponding improvement is from 74.57% to 82.14%. Our experiments suggest the effectiveness of long-range sequence modeling without retraining the BERT model.
pdf
bib
abs
How Does Context Matter? On the Robustness of Event Detection with Context-Selective Mask Generalization
Jian Liu
|
Yubo Chen
|
Kang Liu
|
Yantao Jia
|
Zhicheng Sheng
Event detection (ED) aims to identify and classify event triggers in texts, which is a crucial subtask of event extraction (EE). Despite many advances in ED, the existing studies are typically centered on improving the overall performance of an ED model, which rarely consider the robustness of an ED model. This paper aims to fill this research gap by stressing the importance of robustness modeling in ED models. We first pinpoint three stark cases demonstrating the brittleness of the existing ED models. After analyzing the underlying reason, we propose a new training mechanism, called context-selective mask generalization for ED, which can effectively mine context-specific patterns for learning and robustify an ED model. The experimental results have confirmed the effectiveness of our model regarding defending against adversarial attacks, exploring unseen predicates, and tackling ambiguity cases. Moreover, a deeper analysis suggests that our approach can learn a complementary predictive bias with most ED models that use full context for feature learning.
pdf
bib
abs
Adaptive Feature Selection for End-to-End Speech Translation
Biao Zhang
|
Ivan Titov
|
Barry Haddow
|
Rico Sennrich
Information in speech signals is not evenly distributed, making it an additional challenge for end-to-end (E2E) speech translation (ST) to learn to focus on informative features. In this paper, we propose adaptive feature selection (AFS) for encoder-decoder based E2E ST. We first pre-train an ASR encoder and apply AFS to dynamically estimate the importance of each encoded speech feature to ASR. A ST encoder, stacked on top of the ASR encoder, then receives the filtered features from the (frozen) ASR encoder. We take L0DROP (Zhang et al., 2020) as the backbone for AFS, and adapt it to sparsify speech features with respect to both temporal and feature dimensions. Results on LibriSpeech EnFr and MuST-C benchmarks show that AFS facilitates learning of ST by pruning out ~84% temporal features, yielding an average translation gain of ~1.3-1.6 BLEU and a decoding speedup of ~1.4x. In particular, AFS reduces the performance gap compared to the cascade baseline, and outperforms it on LibriSpeech En-Fr with a BLEU score of 18.56 (without data augmentation).
pdf
bib
abs
Abstractive Multi-Document Summarization via Joint Learning with Single-Document Summarization
Hanqi Jin
|
Xiaojun Wan
Single-document and multi-document summarizations are very closely related in both task definition and solution method. In this work, we propose to improve neural abstractive multi-document summarization by jointly learning an abstractive single-document summarizer. We build a unified model for single-document and multi-document summarizations by fully sharing the encoder and decoder and utilizing a decoding controller to aggregate the decoder’s outputs for multiple input documents. We evaluate our model on two multi-document summarization datasets: Multi-News and DUC-04. Experimental results show the efficacy of our approach, and it can substantially outperform several strong baselines. We also verify the helpfulness of single-document summarization to abstractive multi-document summarization task.
pdf
bib
abs
Blockwise Self-Attention for Long Document Understanding
Jiezhong Qiu
|
Hao Ma
|
Omer Levy
|
Wen-tau Yih
|
Sinong Wang
|
Jie Tang
We present BlockBERT, a lightweight and efficient BERT model for better modeling long-distance dependencies. Our model extends BERT by introducing sparse block structures into the attention matrix to reduce both memory consumption and training/inference time, which also enables attention heads to capture either short- or long-range contextual information. We conduct experiments on language model pre-training and several benchmark question answering datasets with various paragraph lengths. BlockBERT uses 18.7-36.1% less memory and 12.0-25.1% less time to learn the model. During testing, BlockBERT saves 27.8% inference time, while having comparable and sometimes better prediction accuracy, compared to an advanced BERT-based model, RoBERTa.
pdf
bib
abs
Unsupervised Few-Bits Semantic Hashing with Implicit Topics Modeling
Fanghua Ye
|
Jarana Manotumruksa
|
Emine Yilmaz
Semantic hashing is a powerful paradigm for representing texts as compact binary hash codes. The explosion of short text data has spurred the demand of few-bits hashing. However, the performance of existing semantic hashing methods cannot be guaranteed when applied to few-bits hashing because of severe information loss. In this paper, we present a simple but effective unsupervised neural generative semantic hashing method with a focus on few-bits hashing. Our model is built upon variational autoencoder and represents each hash bit as a Bernoulli variable, which allows the model to be end-to-end trainable. To address the issue of information loss, we introduce a set of auxiliary implicit topic vectors. With the aid of these topic vectors, the generated hash codes are not only low-dimensional representations of the original texts but also capture their implicit topics. We conduct comprehensive experiments on four datasets. The results demonstrate that our approach achieves significant improvements over state-of-the-art semantic hashing methods in few-bits hashing.
pdf
bib
abs
Grid Tagging Scheme for Aspect-oriented Fine-grained Opinion Extraction
Zhen Wu
|
Chengcan Ying
|
Fei Zhao
|
Zhifang Fan
|
Xinyu Dai
|
Rui Xia
Aspect-oriented Fine-grained Opinion Extraction (AFOE) aims at extracting aspect terms and opinion terms from review in the form of opinion pairs or additionally extracting sentiment polarity of aspect term to form opinion triplet. Because of containing several opinion factors, the complete AFOE task is usually divided into multiple subtasks and achieved in the pipeline. However, pipeline approaches easily suffer from error propagation and inconvenience in real-world scenarios. To this end, we propose a novel tagging scheme, Grid Tagging Scheme (GTS), to address the AFOE task in an end-to-end fashion only with one unified grid tagging task. Additionally, we design an effective inference strategy on GTS to exploit mutual indication between different opinion factors for more accurate extractions. To validate the feasibility and compatibility of GTS, we implement three different GTS models respectively based on CNN, BiLSTM, and BERT, and conduct experiments on the aspect-oriented opinion pair extraction and opinion triplet extraction datasets. Extensive experimental results indicate that GTS models outperform strong baselines significantly and achieve state-of-the-art performance.
pdf
bib
abs
Learning Numeral Embedding
Chengyue Jiang
|
Zhonglin Nian
|
Kaihao Guo
|
Shanbo Chu
|
Yinggong Zhao
|
Libin Shen
|
Kewei Tu
Word embedding is an essential building block for deep learning methods for natural language processing. Although word embedding has been extensively studied over the years, the problem of how to effectively embed numerals, a special subset of words, is still underexplored. Existing word embedding methods do not learn numeral embeddings well because there are an infinite number of numerals and their individual appearances in training corpora are highly scarce. In this paper, we propose two novel numeral embedding methods that can handle the out-of-vocabulary (OOV) problem for numerals. We first induce a finite set of prototype numerals using either a self-organizing map or a Gaussian mixture model. We then represent the embedding of a numeral as a weighted average of the prototype number embeddings. Numeral embeddings represented in this manner can be plugged into existing word embedding learning approaches such as skip-gram for training. We evaluated our methods and showed its effectiveness on four intrinsic and extrinsic tasks: word similarity, embedding numeracy, numeral prediction, and sequence labeling.
pdf
bib
abs
An Investigation of Potential Function Designs for Neural CRF
Zechuan Hu
|
Yong Jiang
|
Nguyen Bach
|
Tao Wang
|
Zhongqiang Huang
|
Fei Huang
|
Kewei Tu
The neural linear-chain CRF model is one of the most widely-used approach to sequence labeling. In this paper, we investigate a series of increasingly expressive potential functions for neural CRF models, which not only integrate the emission and transition functions, but also explicitly take the representations of the contextual words as input. Our extensive experiments show that the decomposed quadrilinear potential function based on the vector representations of two neighboring labels and two neighboring words consistently achieves the best performance.
pdf
bib
abs
Fast End-to-end Coreference Resolution for Korean
Cheoneum Park
|
Jamin Shin
|
Sungjoon Park
|
Joonho Lim
|
Changki Lee
Recently, end-to-end neural network-based approaches have shown significant improvements over traditional pipeline-based models in English coreference resolution. However, such advancements came at a cost of computational complexity and recent works have not focused on tackling this problem. Hence, in this paper, to cope with this issue, we propose BERT-SRU-based Pointer Networks that leverages the linguistic property of head-final languages. Applying this model to the Korean coreference resolution, we significantly reduce the coreference linking search space. Combining this with Ensemble Knowledge Distillation, we maintain state-of-the-art performance 66.9% of CoNLL F1 on ETRI test set while achieving 2x speedup (30 doc/sec) in document processing time.
pdf
bib
abs
Toward Stance-based Personas for Opinionated Dialogues
Thomas Scialom
|
Serra Sinem Tekiroğlu
|
Jacopo Staiano
|
Marco Guerini
In the context of chit-chat dialogues it has been shown that endowing systems with a persona profile is important to produce more coherent and meaningful conversations. Still, the representation of such personas has thus far been limited to a fact-based representation (e.g. “I have two cats.”). We argue that these representations remain superficial w.r.t. the complexity of human personality. In this work, we propose to make a step forward and investigate stance-based persona, trying to grasp more profound characteristics, such as opinions, values, and beliefs to drive language generation. To this end, we introduce a novel dataset allowing to explore different stance-based persona representations and their impact on claim generation, showing that they are able to grasp abstract and profound aspects of the author persona.
pdf
bib
abs
Hierarchical Pre-training for Sequence Labelling in Spoken Dialog
Emile Chapuis
|
Pierre Colombo
|
Matteo Manica
|
Matthieu Labeau
|
Chloé Clavel
Sequence labelling tasks like Dialog Act and Emotion/Sentiment identification are a key component of spoken dialog systems. In this work, we propose a new approach to learn generic representations adapted to spoken dialog, which we evaluate on a new benchmark we call Sequence labellIng evaLuatIon benChmark fOr spoken laNguagE benchmark (SILICONE). SILICONE is model-agnostic and contains 10 different datasets of various sizes. We obtain our representations with a hierarchical encoder based on transformer architectures, for which we extend two well-known pre-training objectives. Pre-training is performed on OpenSubtitles: a large corpus of spoken dialog containing over 2.3 billion of tokens. We demonstrate how hierarchical encoders achieve competitive results with consistently fewer parameters compared to state-of-the-art models and we show their importance for both pre-training and fine-tuning.
pdf
bib
abs
Extending Multilingual BERT to Low-Resource Languages
Zihan Wang
|
Karthikeyan K
|
Stephen Mayhew
|
Dan Roth
Multilingual BERT (M-BERT) has been a huge success in both supervised and zero-shot cross-lingual transfer learning. However, this success is focused only on the top 104 languages in Wikipedia it was trained on. In this paper, we propose a simple but effective approach to extend M-BERT E-MBERT so it can benefit any new language, and show that our approach aids languages that are already in M-BERT as well. We perform an extensive set of experiments with Named Entity Recognition (NER) on 27 languages, only 16 of which are in M-BERT, and show an average increase of about 6% F1 on M-BERT languages and 23% F1 increase on new languages. We release models and code at
http://cogcomp.org/page/publication_view/912.
pdf
bib
abs
Out-of-Sample Representation Learning for Knowledge Graphs
Marjan Albooyeh
|
Rishab Goel
|
Seyed Mehran Kazemi
Many important problems can be formulated as reasoning in knowledge graphs. Representation learning has proved extremely effective for transductive reasoning, in which one needs to make new predictions for already observed entities. This is true for both attributed graphs(where each entity has an initial feature vector) and non-attributed graphs (where the only initial information derives from known relations with other entities). For out-of-sample reasoning, where one needs to make predictions for entities that were unseen at training time, much prior work considers attributed graph. However, this problem is surprisingly under-explored for non-attributed graphs. In this paper, we study the out-of-sample representation learning problem for non-attributed knowledge graphs, create benchmark datasets for this task, develop several models and baselines, and provide empirical analyses and comparisons of the proposed models and baselines.
pdf
bib
abs
Fine-Grained Grounding for Multimodal Speech Recognition
Tejas Srinivasan
|
Ramon Sanabria
|
Florian Metze
|
Desmond Elliott
Multimodal automatic speech recognition systems integrate information from images to improve speech recognition quality, by grounding the speech in the visual context. While visual signals have been shown to be useful for recovering entities that have been masked in the audio, these models should be capable of recovering a broader range of word types. Existing systems rely on global visual features that represent the entire image, but localizing the relevant regions of the image will make it possible to recover a larger set of words, such as adjectives and verbs. In this paper, we propose a model that uses finer-grained visual information from different parts of the image, using automatic object proposals. In experiments on the Flickr8K Audio Captions Corpus, we find that our model improves over approaches that use global visual features, that the proposals enable the model to recover entities and other related words, such as adjectives, and that improvements are due to the model’s ability to localize the correct proposals.
pdf
bib
abs
Unsupervised Expressive Rules Provide Explainability and Assist Human Experts Grasping New Domains
Eyal Shnarch
|
Leshem Choshen
|
Guy Moshkowich
|
Ranit Aharonov
|
Noam Slonim
Approaching new data can be quite deterrent; you do not know how your categories of interest are realized in it, commonly, there is no labeled data at hand, and the performance of domain adaptation methods is unsatisfactory. Aiming to assist domain experts in their first steps into a new task over a new corpus, we present an unsupervised approach to reveal complex rules which cluster the unexplored corpus by its prominent categories (or facets). These rules are human-readable, thus providing an important ingredient which has become in short supply lately - explainability. Each rule provides an explanation for the commonality of all the texts it clusters together. The experts can then identify which rules best capture texts of their categories of interest, and utilize them to deepen their understanding of these categories. These rules can also bootstrap the process of data labeling by pointing at a subset of the corpus which is enriched with texts demonstrating the target categories. We present an extensive evaluation of the usefulness of these rules in identifying target categories, as well as a user study which assesses their interpretability.
pdf
bib
abs
Textual Supervision for Visually Grounded Spoken Language Understanding
Bertrand Higy
|
Desmond Elliott
|
Grzegorz Chrupała
Visually-grounded models of spoken language understanding extract semantic information directly from speech, without relying on transcriptions. This is useful for low-resource languages, where transcriptions can be expensive or impossible to obtain. Recent work showed that these models can be improved if transcriptions are available at training time. However, it is not clear how an end-to-end approach compares to a traditional pipeline-based approach when one has access to transcriptions. Comparing different strategies, we find that the pipeline approach works better when enough text is available. With low-resource languages in mind, we also show that translations can be effectively used in place of transcriptions but more data is needed to obtain similar results.
pdf
bib
abs
Universal Dependencies According to BERT: Both More Specific and More General
Tomasz Limisiewicz
|
David Mareček
|
Rudolf Rosa
This work focuses on analyzing the form and extent of syntactic abstraction captured by BERT by extracting labeled dependency trees from self-attentions. Previous work showed that individual BERT heads tend to encode particular dependency relation types. We extend these findings by explicitly comparing BERT relations to Universal Dependencies (UD) annotations, showing that they often do not match one-to-one. We suggest a method for relation identification and syntactic tree construction. Our approach produces significantly more consistent dependency trees than previous work, showing that it better explains the syntactic abstractions in BERT. At the same time, it can be successfully applied with only a minimal amount of supervision and generalizes well across languages.
pdf
bib
abs
Visual Objects As Context: Exploiting Visual Objects for Lexical Entailment
Masayasu Muraoka
|
Tetsuya Nasukawa
|
Bishwaranjan Bhattacharjee
We propose a new word representation method derived from visual objects in associated images to tackle the lexical entailment task. Although it has been shown that the Distributional Informativeness Hypothesis (DIH) holds on text, in which the DIH assumes that a context surrounding a hyponym is more informative than that of a hypernym, it has never been tested on visual objects. Since our perception is tightly associated with language, it is meaningful to explore whether the DIH holds on visual objects. To this end, we consider visual objects as the context of a word and represent a word as a bag of visual objects found in images associated with the word. This allows us to test the feasibility of the visual DIH. To better distinguish word pairs in a hypernym relation from other relations such as co-hypernyms, we also propose a new measurable function that takes into account both the difference in the generality of meaning and similarity of meaning between words. Our experimental results show that the DIH holds on visual objects and that the proposed method combined with the proposed function outperforms existing unsupervised representation methods.
pdf
bib
abs
Learning to Plan and Realize Separately for Open-Ended Dialogue Systems
Sashank Santhanam
|
Zhuo Cheng
|
Brodie Mather
|
Bonnie Dorr
|
Archna Bhatia
|
Bryanna Hebenstreit
|
Alan Zemel
|
Adam Dalton
|
Tomek Strzalkowski
|
Samira Shaikh
Achieving true human-like ability to conduct a conversation remains an elusive goal for open-ended dialogue systems. We posit this is because extant approaches towards natural language generation (NLG) are typically construed as end-to-end architectures that do not adequately model human generation processes. To investigate, we decouple generation into two separate phases: planning and realization. In the planning phase, we train two planners to generate plans for response utterances. The realization phase uses response plans to produce an appropriate response. Through rigorous evaluations, both automated and human, we demonstrate that decoupling the process into planning and realization performs better than an end-to-end approach.
pdf
bib
abs
Be Different to Be Better! A Benchmark to Leverage the Complementarity of Language and Vision
Sandro Pezzelle
|
Claudio Greco
|
Greta Gandolfi
|
Eleonora Gualdoni
|
Raffaella Bernardi
This paper introduces BD2BB, a novel language and vision benchmark that requires multimodal models combine complementary information from the two modalities. Recently, impressive progress has been made to develop universal multimodal encoders suitable for virtually any language and vision tasks. However, current approaches often require them to combine redundant information provided by language and vision. Inspired by real-life communicative contexts, we propose a novel task where either modality is necessary but not sufficient to make a correct prediction. To do so, we first build a dataset of images and corresponding sentences provided by human participants. Second, we evaluate state-of-the-art models and compare their performance against human speakers. We show that, while the task is relatively easy for humans, best-performing models struggle to achieve similar results.
pdf
bib
abs
Cross-Lingual Training of Neural Models for Document Ranking
Peng Shi
|
He Bai
|
Jimmy Lin
We tackle the challenge of cross-lingual training of neural document ranking models for mono-lingual retrieval, specifically leveraging relevance judgments in English to improve search in non-English languages. Our work successfully applies multi-lingual BERT (mBERT) to document ranking and additionally compares against a number of alternatives: translating the training data, translating documents, multi-stage hybrids, and ensembles. Experiments on test collections in six different languages from diverse language families reveal many interesting findings: model-based relevance transfer using mBERT can significantly improve search quality in (non-English) mono-lingual retrieval, but other “low resource” approaches are competitive as well.
pdf
bib
abs
Improving Word Embedding Factorization for Compression Using Distilled Nonlinear Neural Decomposition
Vasileios Lioutas
|
Ahmad Rashid
|
Krtin Kumar
|
Md. Akmal Haidar
|
Mehdi Rezagholizadeh
Word-embeddings are vital components of Natural Language Processing (NLP) models and have been extensively explored. However, they consume a lot of memory which poses a challenge for edge deployment. Embedding matrices, typically, contain most of the parameters for language models and about a third for machine translation systems. In this paper, we propose Distilled Embedding, an (input/output) embedding compression method based on low-rank matrix decomposition and knowledge distillation. First, we initialize the weights of our decomposed matrices by learning to reconstruct the full pre-trained word-embedding and then fine-tune end-to-end, employing knowledge distillation on the factorized embedding. We conduct extensive experiments with various compression rates on machine translation and language modeling, using different data-sets with a shared word-embedding matrix for both embedding and vocabulary projection matrices. We show that the proposed technique is simple to replicate, with one fixed parameter controlling compression size, has higher BLEU score on translation and lower perplexity on language modeling compared to complex, difficult to tune state-of-the-art methods.
pdf
bib
abs
PharmMT: A Neural Machine Translation Approach to Simplify Prescription Directions
Jiazhao Li
|
Corey Lester
|
Xinyan Zhao
|
Yuting Ding
|
Yun Jiang
|
V.G.Vinod Vydiswaran
The language used by physicians and health professionals in prescription directions includes medical jargon and implicit directives and causes much confusion among patients. Human intervention to simplify the language at the pharmacies may introduce additional errors that can lead to potentially severe health outcomes. We propose a novel machine translation-based approach, PharmMT, to automatically and reliably simplify prescription directions into patient-friendly language, thereby significantly reducing pharmacist workload. We evaluate the proposed approach over a dataset consisting of over 530K prescriptions obtained from a large mail-order pharmacy. The end-to-end system achieves a BLEU score of 60.27 against the reference directions generated by pharmacists, a 39.6% relative improvement over the rule-based normalization. Pharmacists judged 94.3% of the simplified directions as usable as-is or with minimal changes. This work demonstrates the feasibility of a machine translation-based tool for simplifying prescription directions in real-life.
pdf
bib
abs
LSTMs Compose—and Learn—Bottom-Up
Naomi Saphra
|
Adam Lopez
Recent work in NLP shows that LSTM language models capture compositional structure in language data. In contrast to existing work, we consider the learning process that leads to compositional behavior. For a closer look at how an LSTM’s sequential representations are composed hierarchically, we present a related measure of Decompositional Interdependence (DI) between word meanings in an LSTM, based on their gate interactions. We support this measure with experiments on English language data, where DI is higher on pairs of words with lower syntactic distance. To explore the inductive biases that cause these compositional representations to arise during training, we conduct simple experiments on synthetic data. These synthetic experiments support a specific hypothesis about how hierarchical structures are discovered over the course of training: that LSTM constituent representations are learned bottom-up, relying on effective representations of their shorter children, rather than on learning the longer-range relations independently.
pdf
bib
abs
Natural Language Rationales with Full-Stack Visual Reasoning: From Pixels to Semantic Frames to Commonsense Graphs
Ana Marasović
|
Chandra Bhagavatula
|
Jae sung Park
|
Ronan Le Bras
|
Noah A. Smith
|
Yejin Choi
Natural language rationales could provide intuitive, higher-level explanations that are easily understandable by humans, complementing the more broadly studied lower-level explanations based on gradients or attention weights. We present the first study focused on generating natural language rationales across several complex visual reasoning tasks: visual commonsense reasoning, visual-textual entailment, and visual question answering. The key challenge of accurate rationalization is comprehensive image understanding at all levels: not just their explicit content at the pixel level, but their contextual contents at the semantic and pragmatic levels. We present RationaleˆVT Transformer, an integrated model that learns to generate free-text rationales by combining pretrained language models with object recognition, grounded visual semantic frames, and visual commonsense graphs. Our experiments show that free-text rationalization is a promising research direction to complement model interpretability for complex visual-textual reasoning tasks. In addition, we find that integration of richer semantic and pragmatic visual features improves visual fidelity of rationales.
pdf
bib
abs
Corpora Evaluation and System Bias Detection in Multi-document Summarization
Alvin Dey
|
Tanya Chowdhury
|
Yash Kumar Atri
|
Tanmoy Chakraborty
Multi-document summarization (MDS) is the task of reflecting key points from any set of documents into a concise text paragraph. In the past, it has been used to aggregate news, tweets, product reviews, etc. from various sources. Owing to no standard definition of the task, we encounter a plethora of datasets with varying levels of overlap and conflict between participating documents. There is also no standard regarding what constitutes summary information in MDS. Adding to the challenge is the fact that new systems report results on a set of chosen datasets, which might not correlate with their performance on the other datasets. In this paper, we study this heterogeneous task with the help of a few widely used MDS corpora and a suite of state-of-theart models. We make an attempt to quantify the quality of summarization corpus and prescribe a list of points to consider while proposing a new MDS corpus. Next, we analyze the reason behind the absence of an MDS system which achieves superior performance across all corpora. We then observe the extent to which system metrics are influenced, and bias is propagated due to corpus properties. The scripts to reproduce the experiments in this work are available at
https://github.com/LCS2-IIITD/summarization_bias.gitpdf
bib
abs
Graph-to-Tree Neural Networks for Learning Structured Input-Output Translation with Applications to Semantic Parsing and Math Word Problem
Shucheng Li
|
Lingfei Wu
|
Shiwei Feng
|
Fangli Xu
|
Fengyuan Xu
|
Sheng Zhong
The celebrated Seq2Seq technique and its numerous variants achieve excellent performance on many tasks such as neural machine translation, semantic parsing, and math word problem solving. However, these models either only consider input objects as sequences while ignoring the important structural information for encoding, or they simply treat output objects as sequence outputs instead of structural objects for decoding. In this paper, we present a novel Graph-to-Tree Neural Networks, namely Graph2Tree consisting of a graph encoder and a hierarchical tree decoder, that encodes an augmented graph-structured input and decodes a tree-structured output. In particular, we investigated our model for solving two problems, neural semantic parsing and math word problem. Our extensive experiments demonstrate that our Graph2Tree model outperforms or matches the performance of other state-of-the-art models on these tasks.
pdf
bib
abs
Target Conditioning for One-to-Many Generation
Marie-Anne Lachaux
|
Armand Joulin
|
Guillaume Lample
Neural Machine Translation (NMT) models often lack diversity in their generated translations, even when paired with search algorithm, like beam search. A challenge is that the diversity in translations are caused by the variability in the target language, and cannot be inferred from the source sentence alone. In this paper, we propose to explicitly model this one-to-many mapping by conditioning the decoder of a NMT model on a latent variable that represents the domain of target sentences. The domain is a discrete variable generated by a target encoder that is jointly trained with the NMT model. The predicted domain of target sentences are given as input to the decoder during training. At inference, we can generate diverse translations by decoding with different domains. Unlike our strongest baseline (Shen et al., 2019), our method can scale to any number of domains without affecting the performance or the training time. We assess the quality and diversity of translations generated by our model with several metrics, on three different datasets.
pdf
bib
abs
Can Pre-training help VQA with Lexical Variations?
Shailza Jolly
|
Shubham Kapoor
Rephrasings or paraphrases are sentences with similar meanings expressed in different ways. Visual Question Answering (VQA) models are closing the gap with the oracle performance for datasets like VQA2.0. However, these models fail to perform well on rephrasings of a question, which raises some important questions like Are these models robust towards linguistic variations? Is it the architecture or the dataset that we need to optimize? In this paper, we analyzed VQA models in the space of paraphrasing. We explored the role of language & cross-modal pre-training to investigate the robustness of VQA models towards lexical variations. Our experiments find that pre-trained language encoders generate efficient representations of question rephrasings, which help VQA models correctly infer these samples. We empirically determine why pre-training language encoders improve lexical robustness. Finally, we observe that although pre-training all VQA components obtain state-of-the-art results on the VQA-Rephrasings dataset, it still fails to completely close the performance gap between original and rephrasing validation splits.
pdf
bib
abs
FENAS: Flexible and Expressive Neural Architecture Search
Ramakanth Pasunuru
|
Mohit Bansal
Architecture search is the automatic process of designing the model or cell structure that is optimal for the given dataset or task. Recently, this approach has shown good improvements in terms of performance (tested on language modeling and image classification) with reasonable training speed using a weight sharing-based approach called Efficient Neural Architecture Search (ENAS). In this work, we propose a novel architecture search algorithm called Flexible and Expressible Neural Architecture Search (FENAS), with more flexible and expressible search space than ENAS, in terms of more activation functions, input edges, and atomic operations. Also, our FENAS approach is able to reproduce the well-known LSTM and GRU architectures (unlike ENAS), and is also able to initialize with them for finding architectures more efficiently. We explore this extended search space via evolutionary search and show that FENAS performs significantly better on several popular text classification tasks and performs similar to ENAS on standard language model benchmark. Further, we present ablations and analyses on our FENAS approach.
pdf
bib
abs
Inferring symmetry in natural language
Chelsea Tanchip
|
Lei Yu
|
Aotao Xu
|
Yang Xu
We present a methodological framework for inferring symmetry of verb predicates in natural language. Empirical work on predicate symmetry has taken two main approaches. The feature-based approach focuses on linguistic features pertaining to symmetry. The context-based approach denies the existence of absolute symmetry but instead argues that such inference is context dependent. We develop methods that formalize these approaches and evaluate them against a novel symmetry inference sentence (SIS) dataset comprised of 400 naturalistic usages of literature-informed verbs spanning the spectrum of symmetry-asymmetry. Our results show that a hybrid transfer learning model that integrates linguistic features with contextualized language models most faithfully predicts the empirical data. Our work integrates existing approaches to symmetry in natural language and suggests how symmetry inference can improve systematicity in state-of-the-art language models.
pdf
bib
abs
A Concise Model for Multi-Criteria Chinese Word Segmentation with Transformer Encoder
Xipeng Qiu
|
Hengzhi Pei
|
Hang Yan
|
Xuanjing Huang
Multi-criteria Chinese word segmentation (MCCWS) aims to exploit the relations among the multiple heterogeneous segmentation criteria and further improve the performance of each single criterion. Previous work usually regards MCCWS as different tasks, which are learned together under the multi-task learning framework. In this paper, we propose a concise but effective unified model for MCCWS, which is fully-shared for all the criteria. By leveraging the powerful ability of the Transformer encoder, the proposed unified model can segment Chinese text according to a unique criterion-token indicating the output criterion. Besides, the proposed unified model can segment both simplified and traditional Chinese and has an excellent transfer capability. Experiments on eight datasets with different criteria show that our model outperforms our single-criterion baseline model and other multi-criteria models. Source codes of this paper are available on Github.
pdf
bib
abs
LEGAL-BERT: The Muppets straight out of Law School
Ilias Chalkidis
|
Manos Fergadiotis
|
Prodromos Malakasiotis
|
Nikolaos Aletras
|
Ion Androutsopoulos
BERT has achieved impressive performance in several NLP tasks. However, there has been limited investigation on its adaptation guidelines in specialised domains. Here we focus on the legal domain, where we explore several approaches for applying BERT models to downstream legal tasks, evaluating on multiple datasets. Our findings indicate that the previous guidelines for pre-training and fine-tuning, often blindly followed, do not always generalize well in the legal domain. Thus we propose a systematic investigation of the available strategies when applying BERT in specialised domains. These are: (a) use the original BERT out of the box, (b) adapt BERT by additional pre-training on domain-specific corpora, and (c) pre-train BERT from scratch on domain-specific corpora. We also propose a broader hyper-parameter search space when fine-tuning for downstream tasks and we release LEGAL-BERT, a family of BERT models intended to assist legal NLP research, computational law, and legal technology applications.
pdf
bib
abs
Enhancing Content Planning for Table-to-Text Generation with Data Understanding and Verification
Heng Gong
|
Wei Bi
|
Xiaocheng Feng
|
Bing Qin
|
Xiaojiang Liu
|
Ting Liu
Neural table-to-text models, which select and order salient data, as well as verbalizing them fluently via surface realization, have achieved promising progress. Based on results from previous work, the performance bottleneck of current models lies in the stage of content planing (selecting and ordering salient content from the input). That is, performance drops drastically when an oracle content plan is replaced by a model-inferred one during surface realization. In this paper, we propose to enhance neural content planning by (1) understanding data values with contextual numerical value representations that bring the sense of value comparison into content planning; (2) verifying the importance and ordering of the selected sequence of records with policy gradient. We evaluated our model on ROTOWIRE and MLB, two datasets on this task, and results show that our model outperforms existing systems with respect to content planning metrics.
pdf
bib
abs
Contextual Text Style Transfer
Yu Cheng
|
Zhe Gan
|
Yizhe Zhang
|
Oussama Elachqar
|
Dianqi Li
|
Jingjing Liu
We introduce a new task, Contextual Text Style Transfer - translating a sentence into a desired style with its surrounding context taken into account. This brings two key challenges to existing style transfer approaches: (I) how to preserve the semantic meaning of target sentence and its consistency with surrounding context during transfer; (ii) how to train a robust model with limited labeled data accompanied by context. To realize high-quality style transfer with natural context preservation, we propose a Context-Aware Style Transfer (CAST) model, which uses two separate encoders for each input sentence and its surrounding context. A classifier is further trained to ensure contextual consistency of the generated sentence. To compensate for the lack of parallel data, additional self-reconstruction and back-translation losses are introduced to leverage non-parallel data in a semi-supervised fashion. Two new benchmarks, Enron-Context and Reddit-Context, are introduced for formality and offensiveness style transfer. Experimental results on these datasets demonstrate the effectiveness of the proposed CAST model over state-of-the-art methods across style accuracy, content preservation and contextual consistency metrics.
pdf
bib
abs
DiPair: Fast and Accurate Distillation for Trillion-Scale Text Matching and Pair Modeling
Jiecao Chen
|
Liu Yang
|
Karthik Raman
|
Michael Bendersky
|
Jung-Jung Yeh
|
Yun Zhou
|
Marc Najork
|
Danyang Cai
|
Ehsan Emadzadeh
Pre-trained models like BERT ((Devlin et al., 2018) have dominated NLP / IR applications such as single sentence classification, text pair classification, and question answering. However, deploying these models in real systems is highly non-trivial due to their exorbitant computational costs. A common remedy to this is knowledge distillation (Hinton et al., 2015), leading to faster inference. However – as we show here – existing works are not optimized for dealing with pairs (or tuples) of texts. Consequently, they are either not scalable or demonstrate subpar performance. In this work, we propose DiPair — a novel framework for distilling fast and accurate models on text pair tasks. Coupled with an end-to-end training strategy, DiPair is both highly scalable and offers improved quality-speed tradeoffs. Empirical studies conducted on both academic and real-world e-commerce benchmarks demonstrate the efficacy of the proposed approach with speedups of over 350x and minimal quality drop relative to the cross-attention teacher BERT model.
pdf
bib
abs
Cross-Lingual Dependency Parsing by POS-Guided Word Reordering
Lu Liu
|
Yi Zhou
|
Jianhan Xu
|
Xiaoqing Zheng
|
Kai-Wei Chang
|
Xuanjing Huang
We propose a novel approach to cross-lingual dependency parsing based on word reordering. The words in each sentence of a source language corpus are rearranged to meet the word order in a target language under the guidance of a part-of-speech based language model (LM). To obtain the highest reordering score under the LM, a population-based optimization algorithm and its genetic operators are designed to deal with the combinatorial nature of such word reordering. A parser trained on the reordered corpus then can be used to parse sentences in the target language. We demonstrate through extensive experimentation that our approach achieves better or comparable results across 25 target languages (1.73% increase in average), and outperforms a baseline by a significant margin on the languages that are greatly different from the source one. For example, when transferring the English parser to Hindi and Latin, our approach outperforms the baseline by 15.3% and 6.7% respectively.
pdf
bib
abs
Assessing Robustness of Text Classification through Maximal Safe Radius Computation
Emanuele La Malfa
|
Min Wu
|
Luca Laurenti
|
Benjie Wang
|
Anthony Hartshorn
|
Marta Kwiatkowska
Neural network NLP models are vulnerable to small modifications of the input that maintain the original meaning but result in a different prediction. In this paper, we focus on robustness of text classification against word substitutions, aiming to provide guarantees that the model prediction does not change if a word is replaced with a plausible alternative, such as a synonym. As a measure of robustness, we adopt the notion of the maximal safe radius for a given input text, which is the minimum distance in the embedding space to the decision boundary. Since computing the exact maximal safe radius is not feasible in practice, we instead approximate it by computing a lower and upper bound. For the upper bound computation, we employ Monte Carlo Tree Search in conjunction with syntactic filtering to analyse the effect of single and multiple word substitutions. The lower bound computation is achieved through an adaptation of the linear bounding techniques implemented in tools CNN-Cert and POPQORN, respectively for convolutional and recurrent network models. We evaluate the methods on sentiment analysis and news classification models for four datasets (IMDB, SST, AG News and NEWS) and a range of embeddings, and provide an analysis of robustness trends. We also apply our framework to interpretability analysis and compare it with LIME.
pdf
bib
abs
Social Commonsense Reasoning with Multi-Head Knowledge Attention
Debjit Paul
|
Anette Frank
Social Commonsense Reasoning requires understanding of text, knowledge about social events and their pragmatic implications, as well as commonsense reasoning skills. In this work we propose a novel multi-head knowledge attention model that encodes semi-structured commonsense inference rules and learns to incorporate them in a transformer-based reasoning cell. We assess the model’s performance on two tasks that require different reasoning skills: Abductive Natural Language Inference and Counterfactual Invariance Prediction as a new task. We show that our proposed model improves performance over strong state-of-the-art models (i.e., RoBERTa) across both reasoning tasks. Notably we are, to the best of our knowledge, the first to demonstrate that a model that learns to perform counterfactual reasoning helps predicting the best explanation in an abductive reasoning task. We validate the robustness of the model’s reasoning capabilities by perturbing the knowledge and provide qualitative analysis on the model’s knowledge incorporation capabilities.
pdf
bib
abs
TurnGPT: a Transformer-based Language Model for Predicting Turn-taking in Spoken Dialog
Erik Ekstedt
|
Gabriel Skantze
Syntactic and pragmatic completeness is known to be important for turn-taking prediction, but so far machine learning models of turn-taking have used such linguistic information in a limited way. In this paper, we introduce TurnGPT, a transformer-based language model for predicting turn-shifts in spoken dialog. The model has been trained and evaluated on a variety of written and spoken dialog datasets. We show that the model outperforms two baselines used in prior work. We also report on an ablation study, as well as attention and gradient analyses, which show that the model is able to utilize the dialog context and pragmatic completeness for turn-taking prediction. Finally, we explore the model’s potential in not only detecting, but also projecting, turn-completions.
pdf
bib
abs
A little goes a long way: Improving toxic language classification despite data scarcity
Mika Juuti
|
Tommi Gröndahl
|
Adrian Flanagan
|
N. Asokan
Detection of some types of toxic language is hampered by extreme scarcity of labeled training data. Data augmentation – generating new synthetic data from a labeled seed dataset – can help. The efficacy of data augmentation on toxic language classification has not been fully explored. We present the first systematic study on how data augmentation techniques impact performance across toxic language classifiers, ranging from shallow logistic regression architectures to BERT – a state-of-the-art pretrained Transformer network. We compare the performance of eight techniques on very scarce seed datasets. We show that while BERT performed the best, shallow classifiers performed comparably when trained on data augmented with a combination of three techniques, including GPT-2-generated sentences. We discuss the interplay of performance and computational overhead, which can inform the choice of techniques under different constraints.
pdf
bib
abs
An Instance Level Approach for Shallow Semantic Parsing in Scientific Procedural Text
Daivik Swarup
|
Ahsaas Bajaj
|
Sheshera Mysore
|
Tim O’Gorman
|
Rajarshi Das
|
Andrew McCallum
In specific domains, such as procedural scientific text, human labeled data for shallow semantic parsing is especially limited and expensive to create. Fortunately, such specific domains often use rather formulaic writing, such that the different ways of expressing relations in a small number of grammatically similar labeled sentences may provide high coverage of semantic structures in the corpus, through an appropriately rich similarity metric. In light of this opportunity, this paper explores an instance-based approach to the relation prediction sub-task within shallow semantic parsing, in which semantic labels from structurally similar sentences in the training set are copied to test sentences. Candidate similar sentences are retrieved using SciBERT embeddings. For labels where it is possible to copy from a similar sentence we employ an instance level copy network, when this is not possible, a globally shared parametric model is employed. Experiments show our approach outperforms both baseline and prior methods by 0.75 to 3 F1 absolute in the Wet Lab Protocol Corpus and 1 F1 absolute in the Materials Science Procedural Text Corpus.
pdf
bib
abs
General Purpose Text Embeddings from Pre-trained Language Models for Scalable Inference
Jingfei Du
|
Myle Ott
|
Haoran Li
|
Xing Zhou
|
Veselin Stoyanov
The state of the art on many NLP tasks is currently achieved by large pre-trained language models, which require a considerable amount of computation. We aim to reduce the inference cost in a setting where many different predictions are made on a single piece of text. In that case, computational cost during inference can be amortized over the different predictions (tasks) using a shared text encoder. We compare approaches for training such an encoder and show that encoders pre-trained over multiple tasks generalize well to unseen tasks. We also compare ways of extracting fixed- and limited-size representations from this encoder, including pooling features extracted from multiple layers or positions. Our best approach compares favorably to knowledge distillation, achieving higher accuracy and lower computational cost once the system is handling around 7 tasks. Further, we show that through binary quantization, we can reduce the size of the extracted representations by a factor of 16 to store them for later use. The resulting method offers a compelling solution for using large-scale pre-trained models at a fraction of the computational cost when multiple tasks are performed on the same text.
pdf
bib
abs
Learning to Model and Ignore Dataset Bias with Mixed Capacity Ensembles
Christopher Clark
|
Mark Yatskar
|
Luke Zettlemoyer
Many datasets have been shown to contain incidental correlations created by idiosyncrasies in the data collection process. For example, sentence entailment datasets can have spurious word-class correlations if nearly all contradiction sentences contain the word “not”, and image recognition datasets can have tell-tale object-background correlations if dogs are always indoors. In this paper, we propose a method that can automatically detect and ignore these kinds of dataset-specific patterns, which we call dataset biases. Our method trains a lower capacity model in an ensemble with a higher capacity model. During training, the lower capacity model learns to capture relatively shallow correlations, which we hypothesize are likely to reflect dataset bias. This frees the higher capacity model to focus on patterns that should generalize better. We ensure the models learn non-overlapping approaches by introducing a novel method to make them conditionally independent. Importantly, our approach does not require the bias to be known in advance. We evaluate performance on synthetic datasets, and four datasets built to penalize models that exploit known biases on textual entailment, visual question answering, and image recognition tasks. We show improvement in all settings, including a 10 point gain on the visual question answering dataset.
pdf
bib
abs
Learning to Generalize for Sequential Decision Making
Xusen Yin
|
Ralph Weischedel
|
Jonathan May
We consider problems of making sequences of decisions to accomplish tasks, interacting via the medium of language. These problems are often tackled with reinforcement learning approaches. We find that these models do not generalize well when applied to novel task domains. However, the large amount of computation necessary to adequately train and explore the search space of sequential decision making, under a reinforcement learning paradigm, precludes the inclusion of large contextualized language models, which might otherwise enable the desired generalization ability. We introduce a teacher-student imitation learning methodology and a means of converting a reinforcement learning model into a natural language understanding model. Together, these methodologies enable the introduction of contextualized language models into the sequential decision making problem space. We show that models can learn faster and generalize more, leveraging both the imitation learning and the reformulation. Our models exceed teacher performance on various held-out decision problems, by up to 7% on in-domain problems and 24% on out-of-domain problems.
pdf
bib
abs
Effective Crowd-Annotation of Participants, Interventions, and Outcomes in the Text of Clinical Trial Reports
Markus Zlabinger
|
Marta Sabou
|
Sebastian Hofstätter
|
Allan Hanbury
The search for Participants, Interventions, and Outcomes (PIO) in clinical trial reports is a critical task in Evidence Based Medicine. For an automatic PIO extraction, high-quality corpora are needed. Obtaining such a corpus from crowdworkers, however, has been shown to be ineffective since (i) workers usually lack domain-specific expertise to conduct the task with sufficient quality, and (ii) the standard approach of annotating entire abstracts of trial reports as one task-instance (i.e. HIT) leads to an uneven distribution in task effort. In this paper, we switch from entire abstract to sentence annotation, referred to as the SenBase approach. We build upon SenBase in SenSupport, where we compensate the lack of domain-specific expertise of crowdworkers by showing for each task-instance similar sentences that are already annotated by experts. Such tailored task-instance examples are retrieved via unsupervised semantic short-text similarity (SSTS) method – and we evaluate nine methods to find an effective solution for SenSupport. We compute the Cohen’s Kappa agreement between crowd-annotations and gold standard annotations and show that (i) both sentence-based approaches outperform a Baseline approach where entire abstracts are annotated; (ii) supporting annotators with tailored task-instance examples is the best performing approach with Kappa agreements of 0.78/0.75/0.69 for P, I, and O respectively.
pdf
bib
abs
Adversarial Grammatical Error Correction
Vipul Raheja
|
Dimitris Alikaniotis
Recent works in Grammatical Error Correction (GEC) have leveraged the progress in Neural Machine Translation (NMT), to learn rewrites from parallel corpora of grammatically incorrect and corrected sentences, achieving state-of-the-art results. At the same time, Generative Adversarial Networks (GANs) have been successful in generating realistic texts across many different tasks by learning to directly minimize the difference between human-generated and synthetic text. In this work, we present an adversarial learning approach to GEC, using the generator-discriminator framework. The generator is a Transformer model, trained to produce grammatically correct sentences given grammatically incorrect ones. The discriminator is a sentence-pair classification model, trained to judge a given pair of grammatically incorrect-correct sentences on the quality of grammatical correction. We pre-train both the discriminator and the generator on parallel texts and then fine-tune them further using a policy gradient method that assigns high rewards to sentences which could be true corrections of the grammatically incorrect text. Experimental results on FCE, CoNLL-14, and BEA-19 datasets show that Adversarial-GEC can achieve competitive GEC quality compared to NMT-based baselines.
pdf
bib
abs
On Long-Tailed Phenomena in Neural Machine Translation
Vikas Raunak
|
Siddharth Dalmia
|
Vivek Gupta
|
Florian Metze
State-of-the-art Neural Machine Translation (NMT) models struggle with generating low-frequency tokens, tackling which remains a major challenge. The analysis of long-tailed phenomena in the context of structured prediction tasks is further hindered by the added complexities of search during inference. In this work, we quantitatively characterize such long-tailed phenomena at two levels of abstraction, namely, token classification and sequence generation. We propose a new loss function, the Anti-Focal loss, to better adapt model training to the structural dependencies of conditional text generation by incorporating the inductive biases of beam search in the training process. We show the efficacy of the proposed technique on a number of Machine Translation (MT) datasets, demonstrating that it leads to significant gains over cross-entropy across different language pairs, especially on the generation of low-frequency words. We have released the code to reproduce our results.
pdf
bib
abs
Knowing What You Know: Calibrating Dialogue Belief State Distributions via Ensembles
Carel van Niekerk
|
Michael Heck
|
Christian Geishauser
|
Hsien-chin Lin
|
Nurul Lubis
|
Marco Moresi
|
Milica Gasic
The ability to accurately track what happens during a conversation is essential for the performance of a dialogue system. Current state-of-the-art multi-domain dialogue state trackers achieve just over 55% accuracy on the current go-to benchmark, which means that in almost every second dialogue turn they place full confidence in an incorrect dialogue state. Belief trackers, on the other hand, maintain a distribution over possible dialogue states. However, they lack in performance compared to dialogue state trackers, and do not produce well calibrated distributions. In this work we present state-of-the-art performance in calibration for multi-domain dialogue belief trackers using a calibrated ensemble of models. Our resulting dialogue belief tracker also outperforms previous dialogue belief tracking models in terms of accuracy.
pdf
bib
abs
Domain Adversarial Fine-Tuning as an Effective Regularizer
Giorgos Vernikos
|
Katerina Margatina
|
Alexandra Chronopoulou
|
Ion Androutsopoulos
In Natural Language Processing (NLP), pretrained language models (LMs) that are transferred to downstream tasks have been recently shown to achieve state-of-the-art results. However, standard fine-tuning can degrade the general-domain representations captured during pretraining. To address this issue, we introduce a new regularization technique, AFTER; domain Adversarial Fine-Tuning as an Effective Regularizer. Specifically, we complement the task-specific loss used during fine-tuning with an adversarial objective. This additional loss term is related to an adversarial classifier, that aims to discriminate between in-domain and out-of-domain text representations. Indomain refers to the labeled dataset of the task at hand while out-of-domain refers to unlabeled data from a different domain. Intuitively, the adversarial classifier acts as a regularize which prevents the model from overfitting to the task-specific domain. Empirical results on various natural language understanding tasks show that AFTER leads to improved performance compared to standard fine-tuning.
pdf
bib
abs
CLAR: A Cross-Lingual Argument Regularizer for Semantic Role Labeling
Ishan Jindal
|
Yunyao Li
|
Siddhartha Brahma
|
Huaiyu Zhu
Semantic role labeling (SRL) identifies predicate-argument structure(s) in a given sentence. Although different languages have different argument annotations, polyglot training, the idea of training one model on multiple languages, has previously been shown to outperform monolingual baselines, especially for low resource languages. In fact, even a simple combination of data has been shown to be effective with polyglot training by representing the distant vocabularies in a shared representation space. Meanwhile, despite the dissimilarity in argument annotations between languages, certain argument labels do share common semantic meaning across languages (e.g. adjuncts have more or less similar semantic meaning across languages). To leverage such similarity in annotation space across languages, we propose a method called Cross-Lingual Argument Regularizer (CLAR). CLAR identifies such linguistic annotation similarity across languages and exploits this information to map the target language arguments using a transformation of the space on which source language arguments lie. By doing so, our experimental results show that CLAR consistently improves SRL performance on multiple languages over monolingual and polyglot baselines for low resource languages.
pdf
bib
abs
Neutralizing Gender Bias in Word Embeddings with Latent Disentanglement and Counterfactual Generation
Seungjae Shin
|
Kyungwoo Song
|
JoonHo Jang
|
Hyemi Kim
|
Weonyoung Joo
|
Il-Chul Moon
Recent research demonstrates that word embeddings, trained on the human-generated corpus, have strong gender biases in embedding spaces, and these biases can result in the discriminative results from the various downstream tasks. Whereas the previous methods project word embeddings into a linear subspace for debiasing, we introduce a Latent Disentanglement method with a siamese auto-encoder structure with an adapted gradient reversal layer. Our structure enables the separation of the semantic latent information and gender latent information of given word into the disjoint latent dimensions. Afterwards, we introduce a Counterfactual Generation to convert the gender information of words, so the original and the modified embeddings can produce a gender-neutralized word embedding after geometric alignment regularization, without loss of semantic information. From the various quantitative and qualitative debiasing experiments, our method shows to be better than existing debiasing methods in debiasing word embeddings. In addition, Our method shows the ability to preserve semantic information during debiasing by minimizing the semantic information losses for extrinsic NLP downstream tasks.
pdf
bib
abs
Towards Domain-Independent Text Structuring Trainable on Large Discourse Treebanks
Grigorii Guz
|
Giuseppe Carenini
Text structuring is a fundamental step in NLG, especially when generating multi-sentential text. With the goal of fostering more general and data-driven approaches to text structuring, we propose the new and domain-independent NLG task of structuring and ordering a (possibly large) set of EDUs. We then present a solution for this task that combines neural dependency tree induction with pointer networks, and can be trained on large discourse treebanks that have only recently become available. Further, we propose a new evaluation metric that is arguably more suitable for our new task compared to existing content ordering metrics. Finally, we empirically show that our approach outperforms competitive alternatives on the proposed measure and is equivalent in performance with respect to previously established measures.
pdf
bib
abs
Data Annealing for Informal Language Understanding Tasks
Jing Gu
|
Zhou Yu
There is a huge performance gap between formal and informal language understanding tasks. The recent pre-trained models that improved formal language understanding tasks did not achieve a comparable result on informal language. We propose data annealing transfer learning procedure to bridge the performance gap on informal natural language understanding tasks. It successfully utilizes a pre-trained model such as BERT in informal language. In the data annealing procedure, the training set contains mainly formal text data at first; then, the proportion of the informal text data is gradually increased during the training process. Our data annealing procedure is model-independent and can be applied to various tasks. We validate its effectiveness in exhaustive experiments. When BERT is implemented with our learning procedure, it outperforms all the state-of-the-art models on the three common informal language tasks.
pdf
bib
abs
A Multilingual View of Unsupervised Machine Translation
Xavier Garcia
|
Pierre Foret
|
Thibault Sellam
|
Ankur Parikh
We present a probabilistic framework for multilingual neural machine translation that encompasses supervised and unsupervised setups, focusing on unsupervised translation. In addition to studying the vanilla case where there is only monolingual data available, we propose a novel setup where one language in the (source, target) pair is not associated with any parallel data, but there may exist auxiliary parallel data that contains the other. This auxiliary data can naturally be utilized in our probabilistic framework via a novel cross-translation loss term. Empirically, we show that our approach results in higher BLEU scores over state-of-the-art unsupervised models on the WMT’14 English-French, WMT’16 English-German, and WMT’16 English-Romanian datasets in most directions.
pdf
bib
abs
An Evaluation Method for Diachronic Word Sense Induction
Ashjan Alsulaimani
|
Erwan Moreau
|
Carl Vogel
The task of Diachronic Word Sense Induction (DWSI) aims to identify the meaning of words from their context, taking the temporal dimension into account. In this paper we propose an evaluation method based on large-scale time-stamped annotated biomedical data, and a range of evaluation measures suited to the task. The approach is applied to two recent DWSI systems, thus demonstrating its relevance and providing an in-depth analysis of the models.
pdf
bib
abs
Integrating Task Specific Information into Pretrained Language Models for Low Resource Fine Tuning
Rui Wang
|
Shijing Si
|
Guoyin Wang
|
Lei Zhang
|
Lawrence Carin
|
Ricardo Henao
Pretrained Language Models (PLMs) have improved the performance of natural language understanding in recent years. Such models are pretrained on large corpora, which encode the general prior knowledge of natural languages but are agnostic to information characteristic of downstream tasks. This often results in overfitting when fine-tuned with low resource datasets where task-specific information is limited. In this paper, we integrate label information as a task-specific prior into the self-attention component of pretrained BERT models. Experiments on several benchmarks and real-word datasets suggest that the proposed approach can largely improve the performance of pretrained models when fine-tuning with small datasets.
pdf
bib
abs
Efficient Transformer-based Large Scale Language Representations using Hardware-friendly Block Structured Pruning
Bingbing Li
|
Zhenglun Kong
|
Tianyun Zhang
|
Ji Li
|
Zhengang Li
|
Hang Liu
|
Caiwen Ding
Pretrained large-scale language models have increasingly demonstrated high accuracy on many natural language processing (NLP) tasks. However, the limited weight storage and computational speed on hardware platforms have impeded the popularity of pretrained models, especially in the era of edge computing. In this work, we propose an efficient transformer-based large-scale language representation using hardware-friendly block structure pruning. We incorporate the reweighted group Lasso into block-structured pruning for optimization. Besides the significantly reduced weight storage and computation, the proposed approach achieves high compression rates. Experimental results on different models (BERT, RoBERTa, and DistilBERT) on the General Language Understanding Evaluation (GLUE) benchmark tasks show that we achieve up to 5.0x with zero or minor accuracy degradation on certain task(s). Our proposed method is also orthogonal to existing compact pretrained language models such as DistilBERT using knowledge distillation, since a further 1.79x average compression rate can be achieved on top of DistilBERT with zero or minor accuracy degradation. It is suitable to deploy the final compressed model on resource-constrained edge devices.
pdf
bib
abs
KoBE: Knowledge-Based Machine Translation Evaluation
Zorik Gekhman
|
Roee Aharoni
|
Genady Beryozkin
|
Markus Freitag
|
Wolfgang Macherey
We propose a simple and effective method for machine translation evaluation which does not require reference translations. Our approach is based on (1) grounding the entity mentions found in each source sentence and candidate translation against a large-scale multilingual knowledge base, and (2) measuring the recall of the grounded entities found in the candidate vs. those found in the source. Our approach achieves the highest correlation with human judgements on 9 out of the 18 language pairs from the WMT19 benchmark for evaluation without references, which is the largest number of wins for a single evaluation method on this task. On 4 language pairs, we also achieve higher correlation with human judgements than BLEU. To foster further research, we release a dataset containing 1.8 million grounded entity mentions across 18 language pairs from the WMT19 metrics track data.
pdf
bib
abs
Pushing the Limits of AMR Parsing with Self-Learning
Young-Suk Lee
|
Ramón Fernandez Astudillo
|
Tahira Naseem
|
Revanth Gangi Reddy
|
Radu Florian
|
Salim Roukos
Abstract Meaning Representation (AMR) parsing has experienced a notable growth in performance in the last two years, due both to the impact of transfer learning and the development of novel architectures specific to AMR. At the same time, self-learning techniques have helped push the performance boundaries of other natural language processing applications, such as machine translation or question answering. In this paper, we explore different ways in which trained models can be applied to improve AMR parsing performance, including generation of synthetic text and AMR annotations as well as refinement of actions oracle. We show that, without any additional human annotations, these techniques improve an already performant parser and achieve state-of-the-art results on AMR 1.0 and AMR 2.0.
pdf
bib
abs
Towards Zero-Shot Conditional Summarization with Adaptive Multi-Task Fine-Tuning
Travis Goodwin
|
Max Savery
|
Dina Demner-Fushman
Automatic summarization research has traditionally focused on providing high quality general-purpose summaries of documents. However, there are many applications which require more specific summaries, such as supporting question answering or topic-based literature discovery. In this paper we study the problem of conditional summarization in which content selection and surface realization are explicitly conditioned on an ad-hoc natural language question or topic description. Because of the difficulty in obtaining sufficient reference summaries to support arbitrary conditional summarization, we explore the use of multi-task fine-tuning (MTFT) on twenty-one natural language tasks to enable zero-shot conditional summarization on five tasks. We present four new summarization datasets, two novel “online” or adaptive task-mixing strategies, and report zero-shot performance using T5 and BART, demonstrating that MTFT can improve zero-shot summarization quality.
pdf
bib
abs
Multilingual Knowledge Graph Completion via Ensemble Knowledge Transfer
Xuelu Chen
|
Muhao Chen
|
Changjun Fan
|
Ankith Uppunda
|
Yizhou Sun
|
Carlo Zaniolo
Predicting missing facts in a knowledge graph(KG) is a crucial task in knowledge base construction and reasoning, and it has been the subject of much research in recent works us-ing KG embeddings. While existing KG embedding approaches mainly learn and predict facts within a single KG, a more plausible solution would benefit from the knowledge in multiple language-specific KGs, considering that different KGs have their own strengths and limitations on data quality and coverage. This is quite challenging since the transfer of knowledge among multiple independently maintained KGs is often hindered by the insufficiency of alignment information and inconsistency of described facts. In this paper, we propose kens, a novel framework for embedding learning and ensemble knowledge transfer across a number of language-specific KGs.KEnS embeds all KGs in a shared embedding space, where the association of entities is captured based on self-learning. Then, KEnS performs ensemble inference to com-bine prediction results from multiple language-specific embeddings, for which multiple en-semble techniques are investigated. Experiments on the basis of five real-world language-specific KGs show that, by effectively identifying and leveraging complementary knowledge, KEnS consistently improves state-of-the-art methods on KG completion.
pdf
bib
abs
Towards Controllable Biases in Language Generation
Emily Sheng
|
Kai-Wei Chang
|
Prem Natarajan
|
Nanyun Peng
We present a general approach towards controllable societal biases in natural language generation (NLG). Building upon the idea of adversarial triggers, we develop a method to induce societal biases in generated text when input prompts contain mentions of specific demographic groups. We then analyze two scenarios: 1) inducing negative biases for one demographic and positive biases for another demographic, and 2) equalizing biases between demographics. The former scenario enables us to detect the types of biases present in the model. Specifically, we show the effectiveness of our approach at facilitating bias analysis by finding topics that correspond to demographic inequalities in generated text and comparing the relative effectiveness of inducing biases for different demographics. The second scenario is useful for mitigating biases in downstream applications such as dialogue generation. In our experiments, the mitigation technique proves to be effective at equalizing the amount of biases across demographics while simultaneously generating less negatively biased text overall.
pdf
bib
abs
RobBERT: a Dutch RoBERTa-based Language Model
Pieter Delobelle
|
Thomas Winters
|
Bettina Berendt
Pre-trained language models have been dominating the field of natural language processing in recent years, and have led to significant performance gains for various complex natural language tasks. One of the most prominent pre-trained language models is BERT, which was released as an English as well as a multilingual version. Although multilingual BERT performs well on many tasks, recent studies show that BERT models trained on a single language significantly outperform the multilingual version. Training a Dutch BERT model thus has a lot of potential for a wide range of Dutch NLP tasks. While previous approaches have used earlier implementations of BERT to train a Dutch version of BERT, we used RoBERTa, a robustly optimized BERT approach, to train a Dutch language model called RobBERT. We measured its performance on various tasks as well as the importance of the fine-tuning dataset size. We also evaluated the importance of language-specific tokenizers and the model’s fairness. We found that RobBERT improves state-of-the-art results for various tasks, and especially significantly outperforms other models when dealing with smaller datasets. These results indicate that it is a powerful pre-trained model for a large variety of Dutch language tasks. The pre-trained and fine-tuned models are publicly available to support further downstream Dutch NLP applications.
pdf
bib
abs
Regularization of Distinct Strategies for Unsupervised Question Generation
Junmo Kang
|
Giwon Hong
|
Haritz Puerto San Roman
|
Sung-Hyon Myaeng
Unsupervised question answering (UQA) has been proposed to avoid the high cost of creating high-quality datasets for QA. One approach to UQA is to train a QA model with questions generated automatically. However, the generated questions are either too similar to a word sequence in the context or too drifted from the semantics of the context, thereby making it difficult to train a robust QA model. We propose a novel regularization method based on teacher-student architecture to avoid bias toward a particular question generation strategy and modulate the process of generating individual words when a question is generated. Our experiments demonstrate that we have achieved the goal of generating higher-quality questions for UQA across diverse QA datasets and tasks. We also show that this method can be useful for creating a QA model with few-shot learning.
pdf
bib
abs
Graph-to-Graph Transformer for Transition-based Dependency Parsing
Alireza Mohammadshahi
|
James Henderson
We propose the Graph2Graph Transformer architecture for conditioning on and predicting arbitrary graphs, and apply it to the challenging task of transition-based dependency parsing. After proposing two novel Transformer models of transition-based dependency parsing as strong baselines, we show that adding the proposed mechanisms for conditioning on and predicting graphs of Graph2Graph Transformer results in significant improvements, both with and without BERT pre-training. The novel baselines and their integration with Graph2Graph Transformer significantly outperform the state-of-the-art in traditional transition-based dependency parsing on both English Penn Treebank, and 13 languages of Universal Dependencies Treebanks. Graph2Graph Transformer can be integrated with many previous structured prediction methods, making it easy to apply to a wide range of NLP tasks.
pdf
bib
abs
WER we are and WER we think we are
Piotr Szymański
|
Piotr Żelasko
|
Mikolaj Morzy
|
Adrian Szymczak
|
Marzena Żyła-Hoppe
|
Joanna Banaszczak
|
Lukasz Augustyniak
|
Jan Mizgajski
|
Yishay Carmiel
Natural language processing of conversational speech requires the availability of high-quality transcripts. In this paper, we express our skepticism towards the recent reports of very low Word Error Rates (WERs) achieved by modern Automatic Speech Recognition (ASR) systems on benchmark datasets. We outline several problems with popular benchmarks and compare three state-of-the-art commercial ASR systems on an internal dataset of real-life spontaneous human conversations and HUB’05 public benchmark. We show that WERs are significantly higher than the best reported results. We formulate a set of guidelines which may aid in the creation of real-life, multi-domain datasets with high quality annotations for training and testing of robust ASR systems.
pdf
bib
abs
Detecting Stance in Media On Global Warming
Yiwei Luo
|
Dallas Card
|
Dan Jurafsky
Citing opinions is a powerful yet understudied strategy in argumentation. For example, an environmental activist might say, “Leading scientists agree that global warming is a serious concern,” framing a clause which affirms their own stance (“that global warming is serious”) as an opinion endorsed ("[scientists] agree”) by a reputable source (“leading”). In contrast, a global warming denier might frame the same clause as the opinion of an untrustworthy source with a predicate connoting doubt: “Mistaken scientists claim [...]." Our work studies opinion-framing in the global warming (GW) debate, an increasingly partisan issue that has received little attention in NLP. We introduce DeSMOG, a dataset of stance-labeled GW sentences, and train a BERT classifier to study novel aspects of argumentation in how different sides of a debate represent their own and each other’s opinions. From 56K news articles, we find that similar linguistic devices for self-affirming and opponent-doubting discourse are used across GW-accepting and skeptic media, though GW-skeptical media shows more opponent-doubt. We also find that authors often characterize sources as hypocritical, by ascribing opinions expressing the author’s own view to source entities known to publicly endorse the opposing view. We release our stance dataset, model, and lexicons of framing devices for future work on opinion-framing and the automatic detection of GW stance.
pdf
bib
abs
A Novel Challenge Set for Hebrew Morphological Disambiguation and Diacritics Restoration
Avi Shmidman
|
Joshua Guedalia
|
Shaltiel Shmidman
|
Moshe Koppel
|
Reut Tsarfaty
One of the primary tasks of morphological parsers is the disambiguation of homographs. Particularly difficult are cases of unbalanced ambiguity, where one of the possible analyses is far more frequent than the others. In such cases, there may not exist sufficient examples of the minority analyses in order to properly evaluate performance, nor to train effective classifiers. In this paper we address the issue of unbalanced morphological ambiguities in Hebrew. We offer a challenge set for Hebrew homographs — the first of its kind — containing substantial attestation of each analysis of 21 Hebrew homographs. We show that the current SOTA of Hebrew disambiguation performs poorly on cases of unbalanced ambiguity. Leveraging our new dataset, we achieve a new state-of-the-art for all 21 words, improving the overall average F1 score from 0.67 to 0.95. Our resulting annotated datasets are made publicly available for further research.
pdf
bib
abs
Improve Transformer Models with Better Relative Position Embeddings
Zhiheng Huang
|
Davis Liang
|
Peng Xu
|
Bing Xiang
The transformer model has demonstrated superior results on NLP tasks including machine translation and question answering. In this paper, we argue that the position information is not fully utilized in existing work. For example, the initial proposal of a sinusoid embedding is fixed and not learnable. In this paper, we first review the absolute position embeddings and existing relative position embedding methods. We then propose new methods to encourage increased interaction between query, key and relative position embeddings in the self-attention mechanism. Our most promising approach is a generalization of the absolute position embedding. Our method results in increased accuracy compared to previous approaches in absolute and relative position embeddings on the SQuAD1.1 dataset. In addition, we address the inductive property of whether a position embedding can be robust enough to handle long sequences. We demonstrate empirically that our relative embedding method can be reasonably generalized to and is robust in the inductive perspective. Finally, we show that our proposed method can be effectively and efficiently adopted as a near drop-in replacement for improving the accuracy of large models with little computational overhead.
pdf
bib
abs
A Sentiment-Controllable Topic-to-Essay Generator with Topic Knowledge Graph
Lin Qiao
|
Jianhao Yan
|
Fandong Meng
|
Zhendong Yang
|
Jie Zhou
Generating a vivid, novel, and diverse essay with only several given topic words is a promising task of natural language generation. Previous work in this task exists two challenging problems: neglect of sentiment beneath the text and insufficient utilization of topic-related knowledge. Therefore, we propose a novel Sentiment Controllable topic-to- essay generator with a Topic Knowledge Graph enhanced decoder, named SCTKG, which is based on the conditional variational auto-encoder (CVAE) framework. We firstly inject the sentiment information into the generator for controlling sentiment for each sentence, which leads to various generated essays. Then we design a Topic Knowledge Graph enhanced decoder. Unlike existing models that use knowledge entities separately, our model treats knowledge graph as a whole and encodes more structured, connected semantic information in the graph to generate a more relevant essay. Experimental results show that our SCTKG can generate sentiment controllable essays and outperform the state-of-the-art approach in terms of topic relevance, fluency, and diversity on both automatic and human evaluation.
pdf
bib
abs
What-if I ask you to explain: Explaining the effects of perturbations in procedural text
Dheeraj Rajagopal
|
Niket Tandon
|
Peter Clark
|
Bhavana Dalvi
|
Eduard Hovy
Our goal is to explain the effects of perturbations in procedural text, e.g., given a passage describing a rabbit’s life cycle, explain why illness (the perturbation) may reduce the rabbit population (the effect). Although modern systems are able to solve the original prediction task well (e.g., illness results in less rabbits), the explanation task - identifying the causal chain of events from perturbation to effect - remains largely unaddressed, and is the goal of this research. We present QUARTET, a system that constructs such explanations from paragraphs, by modeling the explanation task as a multitask learning problem. QUARTET constructs explanations from the sentences in the procedural text, achieving ~18 points better on explanation accuracy compared to several strong baselines on a recent process comprehension benchmark. On an end task on this benchmark, we show a surprising finding that good explanations do not have to come at the expense of end task performance, in fact leading to a 7% F1 improvement over SOTA.
pdf
bib
abs
RealToxicityPrompts: Evaluating Neural Toxic Degeneration in Language Models
Samuel Gehman
|
Suchin Gururangan
|
Maarten Sap
|
Yejin Choi
|
Noah A. Smith
Pretrained neural language models (LMs) are prone to generating racist, sexist, or otherwise toxic language which hinders their safe deployment. We investigate the extent to which pretrained LMs can be prompted to generate toxic language, and the effectiveness of controllable text generation algorithms at preventing such toxic degeneration. We create and release RealToxicityPrompts, a dataset of 100K naturally occurring, sentence-level prompts derived from a large corpus of English web text, paired with toxicity scores from a widely-used toxicity classifier. Using RealToxicityPrompts, we find that pretrained LMs can degenerate into toxic text even from seemingly innocuous prompts. We empirically assess several controllable generation methods, and find that while data- or compute-intensive methods (e.g., adaptive pretraining on non-toxic data) are more effective at steering away from toxicity than simpler solutions (e.g., banning “bad” words), no current method is failsafe against neural toxic degeneration. To pinpoint the potential cause of such persistent toxic degeneration, we analyze two web text corpora used to pretrain several LMs (including GPT-2; Radford et. al, 2019), and find a significant amount of offensive, factually unreliable, and otherwise toxic content. Our work provides a test bed for evaluating toxic generations by LMs and stresses the need for better data selection processes for pretraining.
pdf
bib
abs
Improving Event Duration Prediction via Time-aware Pre-training
Zonglin Yang
|
Xinya Du
|
Alexander Rush
|
Claire Cardie
End-to-end models in NLP rarely encode external world knowledge about length of time. We introduce two effective models for duration prediction, which incorporate external knowledge by reading temporal-related news sentences (time-aware pre-training). Specifically, one model predicts the range/unit where the duration value falls in (R-PRED); and the other predicts the exact duration value (E-PRED). Our best model – E-PRED, substantially outperforms previous work, and captures duration information more accurately than R-PRED. We also demonstrate our models are capable of duration prediction in the unsupervised setting, outperforming the baselines.
pdf
bib
abs
Composed Variational Natural Language Generation for Few-shot Intents
Congying Xia
|
Caiming Xiong
|
Philip Yu
|
Richard Socher
In this paper, we focus on generating training examples for few-shot intents in the realistic imbalanced scenario. To build connections between existing many-shot intents and few-shot intents, we consider an intent as a combination of a domain and an action, and propose a composed variational natural language generator (CLANG), a transformer-based conditional variational autoencoder. CLANG utilizes two latent variables to represent the utterances corresponding to two different independent parts (domain and action) in the intent, and the latent variables are composed together to generate natural examples. Additionally, to improve the generator learning, we adopt the contrastive regularization loss that contrasts the in-class with the out-of-class utterance generation given the intent. To evaluate the quality of the generated utterances, experiments are conducted on the generalized few-shot intent detection task. Empirical results show that our proposed model achieves state-of-the-art performances on two real-world intent detection datasets.
pdf
bib
abs
Literature Retrieval for Precision Medicine with Neural Matching and Faceted Summarization
Jiho Noh
|
Ramakanth Kavuluru
Information retrieval (IR) for precision medicine (PM) often involves looking for multiple pieces of evidence that characterize a patient case. This typically includes at least the name of a condition and a genetic variation that applies to the patient. Other factors such as demographic attributes, comorbidities, and social determinants may also be pertinent. As such, the retrieval problem is often formulated as ad hoc search but with multiple facets (e.g., disease, mutation) that may need to be incorporated. In this paper, we present a document reranking approach that combines neural query-document matching and text summarization toward such retrieval scenarios. Our architecture builds on the basic BERT model with three specific components for reranking: (a). document-query matching (b). keyword extraction and (c). facet-conditioned abstractive summarization. The outcomes of (b) and (c) are used to essentially transform a candidate document into a concise summary that can be compared with the query at hand to compute a relevance score. Component (a) directly generates a matching score of a candidate document for a query. The full architecture benefits from the complementary potential of document-query matching and the novel document transformation approach based on summarization along PM facets. Evaluations using NIST’s TREC-PM track datasets (2017–2019) show that our model achieves state-of-the-art performance. To foster reproducibility, our code is made available here:
https://github.com/bionlproc/text-summ-for-doc-retrieval.
pdf
bib
abs
On the Importance of Adaptive Data Collection for Extremely Imbalanced Pairwise Tasks
Stephen Mussmann
|
Robin Jia
|
Percy Liang
Many pairwise classification tasks, such as paraphrase detection and open-domain question answering, naturally have extreme label imbalance (e.g., 99.99% of examples are negatives). In contrast, many recent datasets heuristically choose examples to ensure label balance. We show that these heuristics lead to trained models that generalize poorly: State-of-the art models trained on QQP and WikiQA each have only 2.4% average precision when evaluated on realistically imbalanced test data. We instead collect training data with active learning, using a BERT-based embedding model to efficiently retrieve uncertain points from a very large pool of unlabeled utterance pairs. By creating balanced training data with more informative negative examples, active learning greatly improves average precision to 32.5% on QQP and 20.1% on WikiQA.
pdf
bib
abs
A Dual-Attention Network for Joint Named Entity Recognition and Sentence Classification of Adverse Drug Events
Susmitha Wunnava
|
Xiao Qin
|
Tabassum Kakar
|
Xiangnan Kong
|
Elke Rundensteiner
An adverse drug event (ADE) is an injury resulting from medical intervention related to a drug. Automatic ADE detection from text is either fine-grained (ADE entity recognition) or coarse-grained (ADE assertive sentence classification), with limited efforts leveraging inter-dependencies among the two granularities. We instead propose a multi-grained joint deep network to concurrently learn the ADE entity recognition and ADE sentence classification tasks. Our joint approach takes advantage of their symbiotic relationship, with a transfer of knowledge between the two levels of granularity. Our dual-attention mechanism constructs multiple distinct representations of a sentence that capture both task-specific and semantic information in the sentence, providing stronger emphasis on the key elements essential for sentence classification. Our model improves state-of- art F1-score for both tasks: (i) entity recognition of ADE words (12.5% increase) and (ii) ADE sentence classification (13.6% increase) on MADE 1.0 benchmark of EHR notes.
pdf
bib
abs
BERT-kNN: Adding a kNN Search Component to Pretrained Language Models for Better QA
Nora Kassner
|
Hinrich Schütze
Khandelwal et al. (2020) use a k-nearest-neighbor (kNN) component to improve language model performance. We show that this idea is beneficial for open-domain question answering (QA). To improve the recall of facts encountered during training, we combine BERT (Devlin et al., 2019) with a traditional information retrieval step (IR) and a kNN search over a large datastore of an embedded text collection. Our contributions are as follows: i) BERT-kNN outperforms BERT on cloze-style QA by large margins without any further training. ii) We show that BERT often identifies the correct response category (e.g., US city), but only kNN recovers the factually correct answer (e.g.,“Miami”). iii) Compared to BERT, BERT-kNN excels for rare facts. iv) BERT-kNN can easily handle facts not covered by BERT’s training set, e.g., recent events.
pdf
bib
abs
Identifying Spurious Correlations for Robust Text Classification
Zhao Wang
|
Aron Culotta
The predictions of text classifiers are often driven by spurious correlations – e.g., the term “Spielberg” correlates with positively reviewed movies, even though the term itself does not semantically convey a positive sentiment. In this paper, we propose a method to distinguish spurious and genuine correlations in text classification. We treat this as a supervised classification problem, using features derived from treatment effect estimators to distinguish spurious correlations from “genuine” ones. Due to the generic nature of these features and their small dimensionality, we find that the approach works well even with limited training examples, and that it is possible to transport the word classifier to new domains. Experiments on four datasets (sentiment classification and toxicity detection) suggest that using this approach to inform feature selection also leads to more robust classification, as measured by improved worst-case accuracy on the samples affected by spurious correlations.
pdf
bib
abs
HoVer: A Dataset for Many-Hop Fact Extraction And Claim Verification
Yichen Jiang
|
Shikha Bordia
|
Zheng Zhong
|
Charles Dognin
|
Maneesh Singh
|
Mohit Bansal
We introduce HoVer (HOppy VERification), a dataset for many-hop evidence extraction and fact verification. It challenges models to extract facts from several Wikipedia articles that are relevant to a claim and classify whether the claim is supported or not-supported by the facts. In HoVer, the claims require evidence to be extracted from as many as four English Wikipedia articles and embody reasoning graphs of diverse shapes. Moreover, most of the 3/4-hop claims are written in multiple sentences, which adds to the complexity of understanding long-range dependency relations such as coreference. We show that the performance of an existing state-of-the-art semantic-matching model degrades significantly on our dataset as the number of reasoning hops increases, hence demonstrating the necessity of many-hop reasoning to achieve strong results. We hope that the introduction of this challenging dataset and the accompanying evaluation task will encourage research in many-hop fact retrieval and information verification.
pdf
bib
abs
Continual Learning for Natural Language Generation in Task-oriented Dialog Systems
Fei Mi
|
Liangwei Chen
|
Mengjie Zhao
|
Minlie Huang
|
Boi Faltings
Natural language generation (NLG) is an essential component of task-oriented dialog systems. Despite the recent success of neural approaches for NLG, they are typically developed in an offline manner for particular domains. To better fit real-life applications where new data come in a stream, we study NLG in a “continual learning” setting to expand its knowledge to new domains or functionalities incrementally. The major challenge towards this goal is catastrophic forgetting, meaning that a continually trained model tends to forget the knowledge it has learned before. To this end, we propose a method called ARPER (Adaptively Regularized Prioritized Exemplar Replay) by replaying prioritized historical exemplars, together with an adaptive regularization technique based on Elastic Weight Consolidation. Extensive experiments to continually learn new domains and intents are conducted on MultiWoZ-2.0 to benchmark ARPER with a wide range of techniques. Empirical results demonstrate that ARPER significantly outperforms other methods by effectively mitigating the detrimental catastrophic forgetting issue.
pdf
bib
abs
UNQOVERing Stereotyping Biases via Underspecified Questions
Tao Li
|
Daniel Khashabi
|
Tushar Khot
|
Ashish Sabharwal
|
Vivek Srikumar
While language embeddings have been shown to have stereotyping biases, how these biases affect downstream question answering (QA) models remains unexplored. We present UNQOVER, a general framework to probe and quantify biases through underspecified questions. We show that a naive use of model scores can lead to incorrect bias estimates due to two forms of reasoning errors: positional dependence and question independence. We design a formalism that isolates the aforementioned errors. As case studies, we use this metric to analyze four important classes of stereotypes: gender, nationality, ethnicity, and religion. We probe five transformer-based QA models trained on two QA datasets, along with their underlying language models. Our broad study reveals that (1) all these models, with and without fine-tuning, have notable stereotyping biases in these classes; (2) larger models often have higher bias; and (3) the effect of fine-tuning on bias varies strongly with the dataset and the model size.
pdf
bib
abs
A Semantics-based Approach to Disclosure Classification in User-Generated Online Content
Chandan Akiti
|
Anna Squicciarini
|
Sarah Rajtmajer
As users engage in public discourse, the rate of voluntarily disclosed personal information has seen a steep increase. So-called self-disclosure can result in a number of privacy concerns. Users are often unaware of the sheer amount of personal information they share across online forums, commentaries, and social networks, as well as the power of modern AI to synthesize and gain insights from this data. This paper presents an approach to detect emotional and informational self-disclosure in natural language. We hypothesize that identifying frame semantics can meaningfully support this task. Specifically, we use Semantic Role Labeling to identify the lexical units and their semantic roles that signal self-disclosure. Experimental results on Reddit data show the performance gain of our method when compared to standard text classification methods based on BiLSTM, and BERT. In addition to improved performance, our approach provides insights into the drivers of disclosure behaviors.
pdf
bib
abs
Mining Knowledge for Natural Language Inference from Wikipedia Categories
Mingda Chen
|
Zewei Chu
|
Karl Stratos
|
Kevin Gimpel
Accurate lexical entailment (LE) and natural language inference (NLI) often require large quantities of costly annotations. To alleviate the need for labeled data, we introduce WikiNLI: a resource for improving model performance on NLI and LE tasks. It contains 428,899 pairs of phrases constructed from naturally annotated category hierarchies in Wikipedia. We show that we can improve strong baselines such as BERT and RoBERTa by pretraining them on WikiNLI and transferring the models on downstream tasks. We conduct systematic comparisons with phrases extracted from other knowledge bases such as WordNet and Wikidata to find that pretraining on WikiNLI gives the best performance. In addition, we construct WikiNLI in other languages, and show that pretraining on them improves performance on NLI tasks of corresponding languages.
pdf
bib
abs
OCNLI: Original Chinese Natural Language Inference
Hai Hu
|
Kyle Richardson
|
Liang Xu
|
Lu Li
|
Sandra Kübler
|
Lawrence Moss
Despite the tremendous recent progress on natural language inference (NLI), driven largely by large-scale investment in new datasets (e.g.,SNLI, MNLI) and advances in modeling, most progress has been limited to English due to a lack of reliable datasets for most of the world’s languages. In this paper, we present the first large-scale NLI dataset (consisting of ~56,000 annotated sentence pairs) for Chinese called the Original Chinese Natural Language Inference dataset (OCNLI). Unlike recent attempts at extending NLI to other languages, our dataset does not rely on any automatic translation or non-expert annotation. Instead, we elicit annotations from native speakers specializing in linguistics. We follow closely the annotation protocol used for MNLI, but create new strategies for eliciting diverse hypotheses. We establish several baseline results on our dataset using state-of-the-art pre-trained models for Chinese, and find even the best performing models to be far outpaced by human performance (~12% absolute performance gap), making it a challenging new resource that we hope will help to accelerate progress in Chinese NLU. To the best of our knowledge, this is the first human-elicited MNLI-style corpus for a non-English language.
pdf
bib
abs
Margin-aware Unsupervised Domain Adaptation for Cross-lingual Text Labeling
Dejiao Zhang
|
Ramesh Nallapati
|
Henghui Zhu
|
Feng Nan
|
Cicero Nogueira dos Santos
|
Kathleen McKeown
|
Bing Xiang
Unsupervised domain adaptation addresses the problem of leveraging labeled data in a source domain to learn a well-performing model in a target domain where labels are unavailable. In this paper, we improve upon a recent theoretical work (Zhang et al., 2019b) and adopt the Margin Disparity Discrepancy (MDD) unsupervised domain adaptation algorithm to solve the cross-lingual text labeling problems. Experiments on cross-lingual document classification and NER demonstrate the proposed domain adaptation approach advances the state-of-the-art results by a large margin. Specifically, we improve MDD by efficiently optimizing the margin loss on the source domain via Virtual Adversarial Training (VAT). This bridges the gap between theory and the loss function used in the original work Zhang et al.(2019b), and thereby significantly boosts the performance. Our numerical results also indicate that VAT can remarkably improve the generalization performance of both domains for various domain adaptation approaches.
pdf
bib
abs
Rethinking Supervised Learning and Reinforcement Learning in Task-Oriented Dialogue Systems
Ziming Li
|
Julia Kiseleva
|
Maarten de Rijke
Dialogue policy learning for task-oriented dialogue systems has enjoyed great progress recently mostly through employing reinforcement learning methods. However, these approaches have become very sophisticated. It is time to re-evaluate it. Are we really making progress developing dialogue agents only based on reinforcement learning? We demonstrate how (1) traditional supervised learning together with (2) a simulator-free adversarial learning method can be used to achieve performance comparable to state-of-the-art reinforcement learning-based methods. First, we introduce a simple dialogue action decoder to predict the appropriate actions. Then, the traditional multi-label classification solution for dialogue policy learning is extended by adding dense layers to improve the dialogue agent performance. Finally, we employ the Gumbel-Softmax estimator to alternatively train the dialogue agent and the dialogue reward model without using reinforcement learning. Based on our extensive experimentation, we can conclude the proposed methods can achieve more stable and higher performance with fewer efforts, such as the domain knowledge required to design a user simulator and the intractable parameter tuning in reinforcement learning. Our main goal is not to beat RL with supervised learning, but to demonstrate the value of rethinking the role of reinforcement learning and supervised learning in optimizing task-oriented dialogue systems.
pdf
bib
abs
What do we expect from Multiple-choice QA Systems?
Krunal Shah
|
Nitish Gupta
|
Dan Roth
The recent success of machine learning systems on various QA datasets could be interpreted as a significant improvement in models’ language understanding abilities. However, using various perturbations, multiple recent works have shown that good performance on a dataset might not indicate performance that correlates well with human’s expectations from models that “understand” language. In this work we consider a top performing model on several Multiple Choice Question Answering (MCQA) datasets, and evaluate it against a set of expectations one might have from such a model, using a series of zero-information perturbations of the model’s inputs. Our results show that the model clearly falls short of our expectations, and motivates a modified training approach that forces the model to better attend to the inputs. We show that the new training paradigm leads to a model that performs on par with the original model while better satisfying our expectations.
pdf
bib
abs
Resource-Enhanced Neural Model for Event Argument Extraction
Jie Ma
|
Shuai Wang
|
Rishita Anubhai
|
Miguel Ballesteros
|
Yaser Al-Onaizan
Event argument extraction (EAE) aims to identify the arguments of an event and classify the roles that those arguments play. Despite great efforts made in prior work, there remain many challenges: (1) Data scarcity. (2) Capturing the long-range dependency, specifically, the connection between an event trigger and a distant event argument. (3) Integrating event trigger information into candidate argument representation. For (1), we explore using unlabeled data. For (2), we use Transformer that uses dependency parses to guide the attention mechanism. For (3), we propose a trigger-aware sequence encoder with several types of trigger-dependent sequence representations. We also support argument extraction either from text annotated with gold entities or from plain text. Experiments on the English ACE 2005 benchmark show that our approach achieves a new state-of-the-art.
pdf
bib
abs
Improving Target-side Lexical Transfer in Multilingual Neural Machine Translation
Luyu Gao
|
Xinyi Wang
|
Graham Neubig
To improve the performance of Neural Machine Translation (NMT) for low-resource languages (LRL), one effective strategy is to leverage parallel data from a related high-resource language (HRL). However, multilingual data has been found more beneficial for NMT models that translate from the LRL to a target language than the ones that translate into the LRLs. In this paper, we aim to improve the effectiveness of multilingual transfer for NMT models that translate into the LRL, by designing a better decoder word embedding. Extending upon a general-purpose multilingual encoding method Soft Decoupled Encoding (Wang et al., 2019), we propose DecSDE, an efficient character n-gram based embedding specifically designed for the NMT decoder. Our experiments show that DecSDE leads to consistent gains of up to 1.8 BLEU on translation from English to four different languages.
pdf
bib
abs
Accurate polyglot semantic parsing with DAG grammars
Federico Fancellu
|
Ákos Kádár
|
Ran Zhang
|
Afsaneh Fazly
Semantic parses are directed acyclic graphs (DAGs), but in practice most parsers treat them as strings or trees, mainly because models that predict graphs are far less understood. This simplification, however, comes at a cost: there is no guarantee that the output is a well-formed graph. A recent work by Fancellu et al. (2019) addressed this problem by proposing a graph-aware sequence model that utilizes a DAG grammar to guide graph generation. We significantly improve upon this work, by proposing a simpler architecture as well as more efficient training and inference algorithms that can always guarantee the well-formedness of the generated graphs. Importantly, unlike Fancellu et al., our model does not require language-specific features, and hence can harness the inherent ability of DAG-grammar parsing in multilingual settings. We perform monolingual as well as multilingual experiments on the Parallel Meaning Bank (Abzianidze et al., 2017). Our parser outperforms previous graph-aware models by a large margin, and closes the performance gap between string-based and DAG-grammar parsing.
pdf
bib
abs
Approximation of Response Knowledge Retrieval in Knowledge-grounded Dialogue Generation
Wen Zheng
|
Natasa Milic-Frayling
|
Ke Zhou
This paper is concerned with improving dialogue generation models through injection of knowledge, e.g., content relevant to the post that can increase the quality of responses. Past research extends the training of the generative models by incorporating statistical properties of posts, responses and related knowledge, without explicitly assessing the knowledge quality. In our work, we demonstrate the importance of knowledge relevance and adopt a two-phase approach. We first apply a novel method, Transformer & Post based Posterior Approximation (TPPA) to select knowledge, and then use the Transformer with Expanded Decoder (TED) model to generate responses from both the post and the knowledge. TPPA method processes posts, post related knowledge, and response related knowledge at both word and sentence level. Our experiments with the TED generative model demonstrate the effectiveness of TPPA as it outperforms a set of strong baseline models. Our TPPA method is extendable and supports further optimization of knowledge retrieval and injection.
pdf
bib
abs
Evaluating Factuality in Generation with Dependency-level Entailment
Tanya Goyal
|
Greg Durrett
Despite significant progress in text generation models, a serious limitation is their tendency to produce text that is factually inconsistent with information in the input. Recent work has studied whether textual entailment systems can be used to identify factual errors; however, these sentence-level entailment models are trained to solve a different problem than generation filtering and they do not localize which part of a generation is non-factual. In this paper, we propose a new formulation of entailment that decomposes it at the level of dependency arcs. Rather than focusing on aggregate decisions, we instead ask whether the semantic relationship manifested by individual dependency arcs in the generated output is supported by the input. Human judgments on this task are difficult to obtain; we therefore propose a method to automatically create data based on existing entailment or paraphrase corpora. Experiments show that our dependency arc entailment model trained on this data can identify factual inconsistencies in paraphrasing and summarization better than sentence-level methods or those based on question generation, while additionally localizing the erroneous parts of the generation.
pdf
bib
abs
Cross-Lingual Text Classification with Minimal Resources by Transferring a Sparse Teacher
Giannis Karamanolakis
|
Daniel Hsu
|
Luis Gravano
Cross-lingual text classification alleviates the need for manually labeled documents in a target language by leveraging labeled documents from other languages. Existing approaches for transferring supervision across languages require expensive cross-lingual resources, such as parallel corpora, while less expensive cross-lingual representation learning approaches train classifiers without target labeled documents. In this work, we propose a cross-lingual teacher-student method, CLTS, that generates “weak” supervision in the target language using minimal cross-lingual resources, in the form of a small number of word translations. Given a limited translation budget, CLTS extracts and transfers only the most important task-specific seed words across languages and initializes a teacher classifier based on the translated seed words. Then, CLTS iteratively trains a more powerful student that also exploits the context of the seed words in unlabeled target documents and outperforms the teacher. CLTS is simple and surprisingly effective in 18 diverse languages: by transferring just 20 seed words, even a bag-of-words logistic regression student outperforms state-of-the-art cross-lingual methods (e.g., based on multilingual BERT). Moreover, CLTS can accommodate any type of student classifier: leveraging a monolingual BERT student leads to further improvements and outperforms even more expensive approaches by up to 12% in accuracy. Finally, CLTS addresses emerging tasks in low-resource languages using just a small number of word translations.
pdf
bib
abs
A Multi-Persona Chatbot for Hotline Counselor Training
Orianna Demasi
|
Yu Li
|
Zhou Yu
Suicide prevention hotline counselors aid individuals during difficult times through millions of calls and chats. A chatbot cannot safely replace a counselor, but we explore whether a chatbot can be developed to help train human counselors. Such a system needs to simulate intimate situations across multiple practice sessions. Open-domain dialogue systems frequently suffer from generic responses that do not characterize personal stories, so we look to infuse conversations with persona information by mimicking prototype conversations. Towards building a “Crisisbot” hotline visitor simulation, we propose a counseling strategy annotation scheme and a multi-task framework that leverages these counselor strategies to retrieve similar examples, generate diverse sub-utterances, and interleave prototype and generated sub-utterances into complex responses. We evaluate this framework with crowdworkers and experienced hotline counselors. The framework considerably increases response diversity and specificity, with limited impact to coherence. Our results also show a considerable discrepancy between crowdworker and counselor judgements, which emphasizes the importance of including target populations in system development and evaluation.
pdf
bib
abs
Narrative Text Generation with a Latent Discrete Plan
Harsh Jhamtani
|
Taylor Berg-Kirkpatrick
Past work on story generation has demonstrated the usefulness of conditioning on a generation plan to generate coherent stories. However, these approaches have used heuristics or off-the-shelf models to first tag training stories with the desired type of plan, and then train generation models in a supervised fashion. In this paper, we propose a deep latent variable model that first samples a sequence of anchor words, one per sentence in the story, as part of its generative process. During training, our model treats the sequence of anchor words as a latent variable and attempts to induce anchoring sequences that help guide generation in an unsupervised fashion. We conduct experiments with several types of sentence decoder distributions – left-to-right and non-monotonic, with different degrees of restriction. Further, since we use amortized variational inference to train our model, we introduce two corresponding types of inference network for predicting the posterior on anchor words. We conduct human evaluations which demonstrate that the stories produced by our model are rated better in comparison with baselines which do not consider story plans, and are similar or better in quality relative to baselines which use external supervision for plans. Additionally, the proposed model gets favorable scores when evaluated on perplexity, diversity, and control of story via discrete plan
pdf
bib
abs
Graph Transformer Networks with Syntactic and Semantic Structures for Event Argument Extraction
Amir Pouran Ben Veyseh
|
Tuan Ngo Nguyen
|
Thien Huu Nguyen
The goal of Event Argument Extraction (EAE) is to find the role of each entity mention for a given event trigger word. It has been shown in the previous works that the syntactic structures of the sentences are helpful for the deep learning models for EAE. However, a major problem in such prior works is that they fail to exploit the semantic structures of the sentences to induce effective representations for EAE. Consequently, in this work, we propose a novel model for EAE that exploits both syntactic and semantic structures of the sentences with the Graph Transformer Networks (GTNs) to learn more effective sentence structures for EAE. In addition, we introduce a novel inductive bias based on information bottleneck to improve generalization of the EAE models. Extensive experiments are performed to demonstrate the benefits of the proposed model, leading to state-of-the-art performance for EAE on standard datasets.
pdf
bib
abs
The Box is in the Pen: Evaluating Commonsense Reasoning in Neural Machine Translation
Jie He
|
Tao Wang
|
Deyi Xiong
|
Qun Liu
Does neural machine translation yield translations that are congenial with common sense? In this paper, we present a test suite to evaluate the commonsense reasoning capability of neural machine translation. The test suite consists of three test sets, covering lexical and contextless/contextual syntactic ambiguity that requires commonsense knowledge to resolve. We manually create 1,200 triples, each of which contain a source sentence and two contrastive translations, involving 7 different common sense types. Language models pretrained on large-scale corpora, such as BERT, GPT-2, achieve a commonsense reasoning accuracy of lower than 72% on target translations of this test suite. We conduct extensive experiments on the test suite to evaluate commonsense reasoning in neural machine translation and investigate factors that have impact on this capability. Our experiments and analyses demonstrate that neural machine translation performs poorly on commonsense reasoning of the three ambiguity types in terms of both reasoning accuracy ( 6 60.1%) and reasoning consistency (6 31%). We will release our test suite as a machine translation commonsense reasoning testbed to promote future work in this direction.
pdf
bib
abs
Using Visual Feature Space as a Pivot Across Languages
Ziyan Yang
|
Leticia Pinto-Alva
|
Franck Dernoncourt
|
Vicente Ordonez
Our work aims to leverage visual feature space to pass information across languages. We show that models trained to generate textual captions in more than one language conditioned on an input image can leverage their jointly trained feature space during inference to pivot across languages. We particularly demonstrate improved quality on a caption generated from an input image, by leveraging a caption in a second language. More importantly, we demonstrate that even without conditioning on any visual input, the model demonstrates to have learned implicitly to perform to some extent machine translation from one language to another in their shared visual feature space. We show results in German-English, and Japanese-English language pairs that pave the way for using the visual world to learn a common representation for language.
pdf
bib
abs
CDEvalSumm: An Empirical Study of Cross-Dataset Evaluation for Neural Summarization Systems
Yiran Chen
|
Pengfei Liu
|
Ming Zhong
|
Zi-Yi Dou
|
Danqing Wang
|
Xipeng Qiu
|
Xuanjing Huang
Neural network-based models augmented with unsupervised pre-trained knowledge have achieved impressive performance on text summarization. However, most existing evaluation methods are limited to an in-domain setting, where summarizers are trained and evaluated on the same dataset. We argue that this approach can narrow our understanding of the generalization ability for different summarization systems. In this paper, we perform an in-depth analysis of characteristics of different datasets and investigate the performance of different summarization models under a cross-dataset setting, in which a summarizer trained on one corpus will be evaluated on a range of out-of-domain corpora. A comprehensive study of 11 representative summarization systems on 5 datasets from different domains reveals the effect of model architectures and generation ways (i.e. abstractive and extractive) on model generalization ability. Further, experimental results shed light on the limitations of existing summarizers. Brief introduction and supplementary code can be found in
https://github.com/zide05/CDEvalSumm.
pdf
bib
abs
Attending to Long-Distance Document Context for Sequence Labeling
Matthew Jörke
|
Jon Gillick
|
Matthew Sims
|
David Bamman
We present in this work a method for incorporating global context in long documents when making local decisions in sequence labeling problems like NER. Inspired by work in featurized log-linear models (Chieu and Ng, 2002; Sutton and McCallum, 2004), our model learns to attend to multiple mentions of the same word type in generating a representation for each token in context, extending that work to learning representations that can be incorporated into modern neural models. Attending to broader context at test time provides complementary information to pretraining (Gururangan et al., 2020), yields strong gains over equivalently parameterized models lacking such context, and performs best at recognizing entities with high TF-IDF scores (i.e., those that are important within a document).
pdf
bib
abs
Global Bootstrapping Neural Network for Entity Set Expansion
Lingyong Yan
|
Xianpei Han
|
Ben He
|
Le Sun
Bootstrapping for entity set expansion (ESE) has been studied for a long period, which expands new entities using only a few seed entities as supervision. Recent end-to-end bootstrapping approaches have shown their advantages in information capturing and bootstrapping process modeling. However, due to the sparse supervision problem, previous end-to-end methods often only leverage information from near neighborhoods (local semantics) rather than those propagated from the co-occurrence structure of the whole corpus (global semantics). To address this issue, this paper proposes Global Bootstrapping Network (GBN) with the “pre-training and fine-tuning” strategies for effective learning. Specifically, it contains a global-sighted encoder to capture and encode both local and global semantics into entity embedding, and an attention-guided decoder to sequentially expand new entities based on these embeddings. The experimental results show that the GBN learned by “pre-training and fine-tuning” strategies achieves state-of-the-art performance on two bootstrapping datasets.
pdf
bib
abs
Document Classification for COVID-19 Literature
Bernal Jimenez Gutierrez
|
Jucheng Zeng
|
Dongdong Zhang
|
Ping Zhang
|
Yu Su
The global pandemic has made it more important than ever to quickly and accurately retrieve relevant scientific literature for effective consumption by researchers in a wide range of fields. We provide an analysis of several multi-label document classification models on the LitCovid dataset, a growing collection of 23,000 research papers regarding the novel 2019 coronavirus. We find that pre-trained language models fine-tuned on this dataset outperform all other baselines and that BioBERT surpasses the others by a small margin with micro-F1 and accuracy scores of around 86% and 75% respectively on the test set. We evaluate the data efficiency and generalizability of these models as essential features of any system prepared to deal with an urgent situation like the current health crisis. We perform a data ablation study to determine how important article titles are for achieving reasonable performance on this dataset. Finally, we explore 50 errors made by the best performing models on LitCovid documents and find that they often (1) correlate certain labels too closely together and (2) fail to focus on discriminative sections of the articles; both of which are important issues to address in future work. Both data and code are available on GitHub.
pdf
bib
abs
Adversarial Augmentation Policy Search for Domain and Cross-Lingual Generalization in Reading Comprehension
Adyasha Maharana
|
Mohit Bansal
Reading comprehension models often overfit to nuances of training datasets and fail at adversarial evaluation. Training with adversarially augmented dataset improves robustness against those adversarial attacks but hurts generalization of the models. In this work, we present several effective adversaries and automated data augmentation policy search methods with the goal of making reading comprehension models more robust to adversarial evaluation, but also improving generalization to the source domain as well as new domains and languages. We first propose three new methods for generating QA adversaries, that introduce multiple points of confusion within the context, show dependence on insertion location of the distractor, and reveal the compounding effect of mixing adversarial strategies with syntactic and semantic paraphrasing methods. Next, we find that augmenting the training datasets with uniformly sampled adversaries improves robustness to the adversarial attacks but leads to decline in performance on the original unaugmented dataset. We address this issue via RL and more efficient Bayesian policy search methods for automatically learning the best augmentation policy combinations of the transformation probability for each adversary in a large search space. Using these learned policies, we show that adversarial training can lead to significant improvements in in-domain, out-of-domain, and cross-lingual (German, Russian, Turkish) generalization.
pdf
bib
abs
Denoising Multi-Source Weak Supervision for Neural Text Classification
Wendi Ren
|
Yinghao Li
|
Hanting Su
|
David Kartchner
|
Cassie Mitchell
|
Chao Zhang
We study the problem of learning neural text classifiers without using any labeled data, but only easy-to-provide rules as multiple weak supervision sources. This problem is challenging because rule-induced weak labels are often noisy and incomplete. To address these two challenges, we design a label denoiser, which estimates the source reliability using a conditional soft attention mechanism and then reduces label noise by aggregating rule-annotated weak labels. The denoised pseudo labels then supervise a neural classifier to predicts soft labels for unmatched samples, which address the rule coverage issue. We evaluate our model on five benchmarks for sentiment, topic, and relation classifications. The results show that our model outperforms state-of-the-art weakly-supervised and semi-supervised methods consistently, and achieves comparable performance with fully-supervised methods even without any labeled data. Our code can be found at
https://github.com/weakrules/Denoise-multi-weak-sources.
pdf
bib
abs
Dr. Summarize: Global Summarization of Medical Dialogue by Exploiting Local Structures.
Anirudh Joshi
|
Namit Katariya
|
Xavier Amatriain
|
Anitha Kannan
Understanding a medical conversation between a patient and a physician poses unique natural language understanding challenge since it combines elements of standard open-ended conversation with very domain-specific elements that require expertise and medical knowledge. Summarization of medical conversations is a particularly important aspect of medical conversation understanding since it addresses a very real need in medical practice: capturing the most important aspects of a medical encounter so that they can be used for medical decision making and subsequent follow ups. In this paper we present a novel approach to medical conversation summarization that leverages the unique and independent local structures created when gathering a patient’s medical history. Our approach is a variation of the pointer generator network where we introduce a penalty on the generator distribution, and we explicitly model negations. The model also captures important properties of medical conversations such as medical knowledge coming from standardized medical ontologies better than when those concepts are introduced explicitly. Through evaluation by doctors, we show that our approach is preferred on twice the number of summaries to the baseline pointer generator model and captures most or all of the information in 80% of the conversations making it a realistic alternative to costly manual summarization by medical experts.
pdf
bib
abs
Generating Accurate Electronic Health Assessment from Medical Graph
Zhichao Yang
|
Hong Yu
One of the fundamental goals of artificial intelligence is to build computer-based expert systems. Inferring clinical diagnoses to generate a clinical assessment during a patient encounter is a crucial step towards building a medical diagnostic system. Previous works were mainly based on either medical domain-specific knowledge, or patients’ prior diagnoses and clinical encounters. In this paper, we propose a novel model for automated clinical assessment generation (MCAG). MCAG is built on an innovative graph neural network, where rich clinical knowledge is incorporated into an end-to-end corpus-learning system. Our evaluation results against physician generated gold standard show that MCAG significantly improves the BLEU and rouge score compared with competitive baseline models. Further, physicians’ evaluation showed that MCAG could generate high-quality assessments.
pdf
bib
abs
Do Models of Mental Health Based on Social Media Data Generalize?
Keith Harrigian
|
Carlos Aguirre
|
Mark Dredze
Proxy-based methods for annotating mental health status in social media have grown popular in computational research due to their ability to gather large training samples. However, an emerging body of literature has raised new concerns regarding the validity of these types of methods for use in clinical applications. To further understand the robustness of distantly supervised mental health models, we explore the generalization ability of machine learning classifiers trained to detect depression in individuals across multiple social media platforms. Our experiments not only reveal that substantial loss occurs when transferring between platforms, but also that there exist several unreliable confounding factors that may enable researchers to overestimate classification performance. Based on these results, we enumerate recommendations for future mental health dataset construction.
pdf
bib
abs
Context Analysis for Pre-trained Masked Language Models
Yi-An Lai
|
Garima Lalwani
|
Yi Zhang
Pre-trained language models that learn contextualized word representations from a large un-annotated corpus have become a standard component for many state-of-the-art NLP systems. Despite their successful applications in various downstream NLP tasks, the extent of contextual impact on the word representation has not been explored. In this paper, we present a detailed analysis of contextual impact in Transformer- and BiLSTM-based masked language models. We follow two different approaches to evaluate the impact of context: a masking based approach that is architecture agnostic, and a gradient based approach that requires back-propagation through networks. The findings suggest significant differences on the contextual impact between the two model architectures. Through further breakdown of analysis by syntactic categories, we find the contextual impact in Transformer-based MLM aligns well with linguistic intuition. We further explore the Transformer attention pruning based on our findings in contextual analysis.
pdf
bib
abs
Controllable Text Generation with Focused Variation
Lei Shu
|
Alexandros Papangelis
|
Yi-Chia Wang
|
Gokhan Tur
|
Hu Xu
|
Zhaleh Feizollahi
|
Bing Liu
|
Piero Molino
This work introduces Focused-Variation Network (FVN), a novel model to control language generation. The main problems in previous controlled language generation models range from the difficulty of generating text according to the given attributes, to the lack of diversity of the generated texts. FVN addresses these issues by learning disjoint discrete latent spaces for each attribute inside codebooks, which allows for both controllability and diversity, while at the same time generating fluent text. We evaluate FVN on two text generation datasets with annotated content and style, and show state-of-the-art performance as assessed by automatic and human evaluations.
pdf
bib
abs
Modeling Preconditions in Text with a Crowd-sourced Dataset
Heeyoung Kwon
|
Mahnaz Koupaee
|
Pratyush Singh
|
Gargi Sawhney
|
Anmol Shukla
|
Keerthi Kumar Kallur
|
Nathanael Chambers
|
Niranjan Balasubramanian
Preconditions provide a form of logical connection between events that explains why some events occur together and information that is complementary to the more widely studied relations such as causation, temporal ordering, entailment, and discourse relations. Modeling preconditions in text has been hampered in part due to the lack of large scale labeled data grounded in text. This paper introduces PeKo, a crowd-sourced annotation of preconditions between event pairs in newswire, an order of magnitude larger than prior text annotations. To complement this new corpus, we also introduce two challenge tasks aimed at modeling preconditions: (i) Precondition Identification – a standard classification task defined over pairs of event mentions, and (ii) Precondition Generation – a generative task aimed at testing a more general ability to reason about a given event. Evaluation on both tasks shows that modeling preconditions is challenging even for today’s large language models (LM). This suggests that precondition knowledge is not easily accessible in LM-derived representations alone. Our generation results show that fine-tuning an LM on PeKo yields better conditional relations than when trained on raw text or temporally-ordered corpora.
pdf
bib
abs
Reevaluating Adversarial Examples in Natural Language
John Morris
|
Eli Lifland
|
Jack Lanchantin
|
Yangfeng Ji
|
Yanjun Qi
State-of-the-art attacks on NLP models lack a shared definition of a what constitutes a successful attack. We distill ideas from past work into a unified framework: a successful natural language adversarial example is a perturbation that fools the model and follows some linguistic constraints. We then analyze the outputs of two state-of-the-art synonym substitution attacks. We find that their perturbations often do not preserve semantics, and 38% introduce grammatical errors. Human surveys reveal that to successfully preserve semantics, we need to significantly increase the minimum cosine similarities between the embeddings of swapped words and between the sentence encodings of original and perturbed sentences. With constraints adjusted to better preserve semantics and grammaticality, the attack success rate drops by over 70 percentage points.
pdf
bib
abs
Question Answering with Long Multiple-Span Answers
Ming Zhu
|
Aman Ahuja
|
Da-Cheng Juan
|
Wei Wei
|
Chandan K. Reddy
Answering questions in many real-world applications often requires complex and precise information excerpted from texts spanned across a long document. However, currently no such annotated dataset is publicly available, which hinders the development of neural question-answering (QA) systems. To this end, we present MASH-QA, a Multiple Answer Spans Healthcare Question Answering dataset from the consumer health domain, where answers may need to be excerpted from multiple, non-consecutive parts of text spanned across a long document. We also propose MultiCo, a neural architecture that is able to capture the relevance among multiple answer spans, by using a query-based contextualized sentence selection approach, for forming the answer to the given question. We also demonstrate that conventional QA models are not suitable for this type of task and perform poorly in this setting. Extensive experiments are conducted, and the experimental results confirm the proposed model significantly outperforms the state-of-the-art QA models in this multi-span QA setting.
pdf
bib
abs
Inserting Information Bottlenecks for Attribution in Transformers
Zhiying Jiang
|
Raphael Tang
|
Ji Xin
|
Jimmy Lin
Pretrained transformers achieve the state of the art across tasks in natural language processing, motivating researchers to investigate their inner mechanisms. One common direction is to understand what features are important for prediction. In this paper, we apply information bottlenecks to analyze the attribution of each feature for prediction on a black-box model. We use BERT as the example and evaluate our approach both quantitatively and qualitatively. We show the effectiveness of our method in terms of attribution and the ability to provide insight into how information flows through layers. We demonstrate that our technique outperforms two competitive methods in degradation tests on four datasets. Code is available at
https://github.com/bazingagin/IBA.
pdf
bib
abs
Event-Related Bias Removal for Real-time Disaster Events
Salvador Medina Maza
|
Evangelia Spiliopoulou
|
Eduard Hovy
|
Alexander Hauptmann
Social media has become an important tool to share information about crisis events such as natural disasters and mass attacks. Detecting actionable posts that contain useful information requires rapid analysis of huge volumes of data in real-time. This poses a complex problem due to the large amount of posts that do not contain any actionable information. Furthermore, the classification of information in real-time systems requires training on out-of-domain data, as we do not have any data from a new emerging crisis. Prior work focuses on models pre-trained on similar event types. However, those models capture unnecessary event-specific biases, like the location of the event, which affect the generalizability and performance of the classifiers on new unseen data from an emerging new event. In our work, we train an adversarial neural model to remove latent event-specific biases and improve the performance on tweet importance classification.
pdf
bib
abs
It’s not a Non-Issue: Negation as a Source of Error in Machine Translation
Md Mosharaf Hossain
|
Antonios Anastasopoulos
|
Eduardo Blanco
|
Alexis Palmer
As machine translation (MT) systems progress at a rapid pace, questions of their adequacy linger. In this study we focus on negation, a universal, core property of human language that significantly affects the semantics of an utterance. We investigate whether translating negation is an issue for modern MT systems using 17 translation directions as test bed. Through thorough analysis, we find that indeed the presence of negation can significantly impact downstream quality, in some cases resulting in quality reductions of more than 60%. We also provide a linguistically motivated analysis that directly explains the majority of our findings. We release our annotations and code to replicate our analysis here:
https://github.com/mosharafhossain/negation-mt.
pdf
bib
abs
Incremental Text-to-Speech Synthesis with Prefix-to-Prefix Framework
Mingbo Ma
|
Baigong Zheng
|
Kaibo Liu
|
Renjie Zheng
|
Hairong Liu
|
Kainan Peng
|
Kenneth Church
|
Liang Huang
Text-to-speech synthesis (TTS) has witnessed rapid progress in recent years, where neural methods became capable of producing audios with high naturalness. However, these efforts still suffer from two types of latencies: (a) the computational latency (synthesizing time), which grows linearly with the sentence length, and (b) the input latency in scenarios where the input text is incrementally available (such as in simultaneous translation, dialog generation, and assistive technologies). To reduce these latencies, we propose a neural incremental TTS approach using the prefix-to-prefix framework from simultaneous translation. We synthesize speech in an online fashion, playing a segment of audio while generating the next, resulting in an O(1) rather than O(n) latency. Experiments on English and Chinese TTS show that our approach achieves similar speech naturalness compared to full sentence TTS, but only with a constant (1-2 words) latency.
pdf
bib
abs
Joint Turn and Dialogue level User Satisfaction Estimation on Multi-Domain Conversations
Praveen Kumar Bodigutla
|
Aditya Tiwari
|
Spyros Matsoukas
|
Josep Valls-Vargas
|
Lazaros Polymenakos
Dialogue level quality estimation is vital for optimizing data driven dialogue management. Current automated methods to estimate turn and dialogue level user satisfaction employ hand-crafted features and rely on complex annotation schemes, which reduce the generalizability of the trained models. We propose a novel user satisfaction estimation approach which minimizes an adaptive multi-task loss function in order to jointly predict turn-level Response Quality labels provided by experts and explicit dialogue-level ratings provided by end users. The proposed BiLSTM based deep neural net model automatically weighs each turn’s contribution towards the estimated dialogue-level rating, implicitly encodes temporal dependencies, and removes the need to hand-craft features. On dialogues sampled from 28 Alexa domains, two dialogue systems and three user groups, the joint dialogue-level satisfaction estimation model achieved up to an absolute 27% (0.43 -> 0.70) and 7% (0.63 -> 0.70) improvement in linear correlation performance over baseline deep neural net and benchmark Gradient boosting regression models, respectively.
pdf
bib
abs
ArraMon: A Joint Navigation-Assembly Instruction Interpretation Task in Dynamic Environments
Hyounghun Kim
|
Abhaysinh Zala
|
Graham Burri
|
Hao Tan
|
Mohit Bansal
For embodied agents, navigation is an important ability but not an isolated goal. Agents are also expected to perform specific tasks after reaching the target location, such as picking up objects and assembling them into a particular arrangement. We combine Vision-andLanguage Navigation, assembling of collected objects, and object referring expression comprehension, to create a novel joint navigation-and-assembly task, named ARRAMON. During this task, the agent (similar to a PokeMON GO player) is asked to find and collect different target objects one-by-one by navigating based on natural language (English) instructions in a complex, realistic outdoor environment, but then also ARRAnge the collected objects part-by-part in an egocentric grid-layout environment. To support this task, we implement a 3D dynamic environment simulator and collect a dataset with human-written navigation and assembling instructions, and the corresponding ground truth trajectories. We also filter the collected instructions via a verification stage, leading to a total of 7.7K task instances (30.8K instructions and paths). We present results for several baseline models (integrated and biased) and metrics (nDTW, CTC, rPOD, and PTC), and the large model-human performance gap demonstrates that our task is challenging and presents a wide scope for future work.
pdf
bib
abs
Fluent and Low-latency Simultaneous Speech-to-Speech Translation with Self-adaptive Training
Renjie Zheng
|
Mingbo Ma
|
Baigong Zheng
|
Kaibo Liu
|
Jiahong Yuan
|
Kenneth Church
|
Liang Huang
Simultaneous speech-to-speech translation is an extremely challenging but widely useful scenario that aims to generate target-language speech only a few seconds behind the source-language speech. In addition, we have to continuously translate a speech of multiple sentences, but all recent solutions merely focus on the single-sentence scenario. As a result, current approaches will accumulate more and more latencies in later sentences when the speaker talks faster and introduce unnatural pauses into translated speech when the speaker talks slower. To overcome these issues, we propose Self-Adaptive Translation which flexibly adjusts the length of translations to accommodate different source speech rates. At similar levels of translation quality (as measured by BLEU), our method generates more fluent target speech latency than the baseline, in both Zh<->En directions.
pdf
bib
abs
Towards Context-Aware Code Comment Generation
Xiaohan Yu
|
Quzhe Huang
|
Zheng Wang
|
Yansong Feng
|
Dongyan Zhao
Code comments are vital for software maintenance and comprehension, but many software projects suffer from the lack of meaningful and up-to-date comments in practice. This paper presents a novel approach to automatically generate code comments at a function level by targeting object-oriented programming languages. Unlike prior work that only uses information locally available within the target function, our approach leverages broader contextual information by considering all other functions of the same class. To propagate and integrate information beyond the scope of the target function, we design a novel learning framework based on the bidirectional gated recurrent unit and a graph attention network with a pointer mechanism. We apply our approach to produce code comments for Java methods and compare it against four strong baseline methods. Experimental results show that our approach outperforms most methods by a large margin and achieves a comparable result with the state-of-the-art method.
pdf
bib
abs
MCMH: Learning Multi-Chain Multi-Hop Rules for Knowledge Graph Reasoning
Lu Zhang
|
Mo Yu
|
Tian Gao
|
Yue Yu
Multi-hop reasoning approaches over knowledge graphs infer a missing relationship between entities with a multi-hop rule, which corresponds to a chain of relationships. We extend existing works to consider a generalized form of multi-hop rules, where each rule is a set of relation chains. To learn such generalized rules efficiently, we propose a two-step approach that first selects a small set of relation chains as a rule and then evaluates the confidence of the target relationship by jointly scoring the selected chains. A game-theoretical framework is proposed to this end to simultaneously optimize the rule selection and prediction steps. Empirical results show that our multi-chain multi-hop (MCMH) rules result in superior results compared to the standard single-chain approaches, justifying both our formulation of generalized rules and the effectiveness of the proposed learning framework.
pdf
bib
abs
Finding the Optimal Vocabulary Size for Neural Machine Translation
Thamme Gowda
|
Jonathan May
We cast neural machine translation (NMT) as a classification task in an autoregressive setting and analyze the limitations of both classification and autoregression components. Classifiers are known to perform better with balanced class distributions during training. Since the Zipfian nature of languages causes imbalanced classes, we explore its effect on NMT. We analyze the effect of various vocabulary sizes on NMT performance on multiple languages with many data sizes, and reveal an explanation for why certain vocabulary sizes are better than others.
pdf
bib
abs
Weakly- and Semi-supervised Evidence Extraction
Danish Pruthi
|
Bhuwan Dhingra
|
Graham Neubig
|
Zachary C. Lipton
For many prediction tasks, stakeholders desire not only predictions but also supporting evidence that a human can use to verify its correctness. However, in practice, evidence annotations may only be available for a minority of training examples (if available at all). In this paper, we propose new methods to combine few evidence annotations (strong semi-supervision) with abundant document-level labels (weak supervision) for the task of evidence extraction. Evaluating on two classification tasks that feature evidence annotations, we find that our methods outperform baselines adapted from the interpretability literature to our task. Our approach yields gains with as few as hundred evidence annotations.
pdf
bib
abs
Making Information Seeking Easier: An Improved Pipeline for Conversational Search
Vaibhav Kumar
|
Jamie Callan
This paper presents a highly effective pipeline for passage retrieval in a conversational search setting. The pipeline comprises of two components: Conversational Term Selection (CTS) and Multi-View Reranking (MVR). CTS is responsible for performing the first-stage of passage retrieval. Given an input question, it uses a BERT-based classifier (trained with weak supervision) to de-contextualize the input by selecting relevant terms from the dialog history. Using the question and the selected terms, it issues a query to a search engine to perform the first-stage of passage retrieval. On the other hand, MVR is responsible for contextualized passage reranking. It first constructs multiple views of the information need embedded within an input question. The views are based on the dialog history and the top documents obtained in the first-stage of retrieval. It then uses each view to rerank passages using BERT (fine-tuned for passage ranking). Finally, MVR performs a fusion over the rankings produced by the individual views. Experiments show that the above combination improves first-state retrieval as well as the overall accuracy in a reranking pipeline. On the key metric of NDCG@3, the proposed combination achieves a relative performance improvement of 14.8% over the state-of-the-art baseline and is also able to surpass the Oracle.
pdf
bib
abs
Generalizable and Explainable Dialogue Generation via Explicit Action Learning
Xinting Huang
|
Jianzhong Qi
|
Yu Sun
|
Rui Zhang
Response generation for task-oriented dialogues implicitly optimizes two objectives at the same time: task completion and language quality. Conditioned response generation serves as an effective approach to separately and better optimize these two objectives. Such an approach relies on system action annotations which are expensive to obtain. To alleviate the need of action annotations, latent action learning is introduced to map each utterance to a latent representation. However, this approach is prone to over-dependence on the training data, and the generalization capability is thus restricted. To address this issue, we propose to learn natural language actions that represent utterances as a span of words. This explicit action representation promotes generalization via the compositional structure of language. It also enables an explainable generation process. Our proposed unsupervised approach learns a memory component to summarize system utterances into a short span of words. To further promote a compact action representation, we propose an auxiliary task that restores state annotations as the summarized dialogue context using the memory component. Our proposed approach outperforms latent action baselines on MultiWOZ, a benchmark multi-domain dataset.
pdf
bib
abs
More Embeddings, Better Sequence Labelers?
Xinyu Wang
|
Yong Jiang
|
Nguyen Bach
|
Tao Wang
|
Zhongqiang Huang
|
Fei Huang
|
Kewei Tu
Recent work proposes a family of contextual embeddings that significantly improves the accuracy of sequence labelers over non-contextual embeddings. However, there is no definite conclusion on whether we can build better sequence labelers by combining different kinds of embeddings in various settings. In this paper, we conduct extensive experiments on 3 tasks over 18 datasets and 8 languages to study the accuracy of sequence labeling with various embedding concatenations and make three observations: (1) concatenating more embedding variants leads to better accuracy in rich-resource and cross-domain settings and some conditions of low-resource settings; (2) concatenating contextual sub-word embeddings with contextual character embeddings hurts the accuracy in extremely low-resource settings; (3) based on the conclusion of (1), concatenating additional similar contextual embeddings cannot lead to further improvements. We hope these conclusions can help people build stronger sequence labelers in various settings.
pdf
bib
abs
NLP Service APIs and Models for Efficient Registration of New Clients
Sahil Shah
|
Vihari Piratla
|
Soumen Chakrabarti
|
Sunita Sarawagi
State-of-the-art NLP inference uses enormous neural architectures and models trained for GPU-months, well beyond the reach of most consumers of NLP. This has led to one-size-fits-all public API-based NLP service models by major AI companies, serving millions of clients. They cannot afford traditional fine tuning for individual clients. Many clients cannot even afford significant fine tuning, and own little or no labeled data. Recognizing that word usage and salience diversity across clients leads to reduced accuracy, we initiate a study of practical and lightweight adaptation of centralized NLP services to clients. Each client uses an unsupervised, corpus-based sketch to register to the service. The server modifies its network mildly to accommodate client sketches, and occasionally trains the augmented network over existing clients. When a new client registers with its sketch, it gets immediate accuracy benefits. We demonstrate the proposed architecture using sentiment labeling, NER, and predictive language modeling.
pdf
bib
abs
Effects of Naturalistic Variation in Goal-Oriented Dialog
Jatin Ganhotra
|
Robert Moore
|
Sachindra Joshi
|
Kahini Wadhawan
Existing benchmarks used to evaluate the performance of end-to-end neural dialog systems lack a key component: natural variation present in human conversations. Most datasets are constructed through crowdsourcing, where the crowd workers follow a fixed template of instructions while enacting the role of a user/agent. This results in straight-forward, somewhat routine, and mostly trouble-free conversations, as crowd workers do not think to represent the full range of actions that occur naturally with real users. In this work, we investigate the impact of naturalistic variation on two goal-oriented datasets: bAbI dialog task and Stanford Multi-Domain Dataset (SMD). We also propose new and more effective testbeds for both datasets, by introducing naturalistic variation by the user. We observe that there is a significant drop in performance (more than 60% in Ent. F1 on SMD and 85% in per-dialog accuracy on bAbI task) of recent state-of-the-art end-to-end neural methods such as BossNet and GLMP on both datasets.
pdf
bib
abs
Determining Event Outcomes: The Case of #fail
Srikala Murugan
|
Dhivya Chinnappa
|
Eduardo Blanco
This paper targets the task of determining event outcomes in social media. We work with tweets containing either #cookingFail or #bakingFail, and show that many of the events described in them resulted in something edible. Tweets that contain images are more likely to result in edible albeit imperfect outcomes. Experimental results show that edibility is easier to predict than outcome quality.
pdf
bib
abs
WikiLingua: A New Benchmark Dataset for Cross-Lingual Abstractive Summarization
Faisal Ladhak
|
Esin Durmus
|
Claire Cardie
|
Kathleen McKeown
We introduce WikiLingua, a large-scale, multilingual dataset for the evaluation of cross-lingual abstractive summarization systems. We extract article and summary pairs in 18 languages from WikiHow, a high quality, collaborative resource of how-to guides on a diverse set of topics written by human authors. We create gold-standard article-summary alignments across languages by aligning the images that are used to describe each how-to step in an article. As a set of baselines for further studies, we evaluate the performance of existing cross-lingual abstractive summarization methods on our dataset. We further propose a method for direct cross-lingual summarization (i.e., without requiring translation at inference time) by leveraging synthetic data and Neural Machine Translation as a pre-training step. Our method significantly outperforms the baseline approaches, while being more cost efficient during inference.
pdf
bib
abs
Adversarial Training for Code Retrieval with Question-Description Relevance Regularization
Jie Zhao
|
Huan Sun
Code retrieval is a key task aiming to match natural and programming languages. In this work, we propose adversarial learning for code retrieval, that is regularized by question-description relevance. First, we adapt a simple adversarial learning technique to generate difficult code snippets given the input question, which can help the learning of code retrieval that faces bi-modal and data-scarce challenges. Second, we propose to leverage question-description relevance to regularize adversarial learning, such that a generated code snippet should contribute more to the code retrieval training loss, only if its paired natural language description is predicted to be less relevant to the user given question. Experiments on large-scale code retrieval datasets of two programming languages show that our adversarial learning method is able to improve the performance of state-of-the-art models. Moreover, using an additional duplicated question detection model to regularize adversarial learning further improves the performance, and this is more effective than using the duplicated questions in strong multi-task learning baselines.
pdf
bib
abs
Large Product Key Memory for Pretrained Language Models
Gyuwan Kim
|
Tae Hwan Jung
Product key memory (PKM) proposed by Lample et al. (2019) enables to improve prediction accuracy by increasing model capacity efficiently with insignificant computational overhead. However, their empirical application is only limited to causal language modeling. Motivated by the recent success of pretrained language models (PLMs), we investigate how to incorporate large PKM into PLMs that can be finetuned for a wide variety of downstream NLP tasks. We define a new memory usage metric, and careful observation using this metric reveals that most memory slots remain outdated during the training of PKM-augmented models. To train better PLMs by tackling this issue, we propose simple but effective solutions: (1) initialization from the model weights pretrained without memory and (2) augmenting PKM by addition rather than replacing a feed-forward network. We verify that both of them are crucial for the pretraining of PKM-augmented PLMs, enhancing memory utilization and downstream performance. Code and pretrained weights are available at
https://github.com/clovaai/pkm-transformers.
pdf
bib
abs
Temporal Reasoning in Natural Language Inference
Siddharth Vashishtha
|
Adam Poliak
|
Yash Kumar Lal
|
Benjamin Van Durme
|
Aaron Steven White
We introduce five new natural language inference (NLI) datasets focused on temporal reasoning. We recast four existing datasets annotated for event duration—how long an event lasts—and event ordering—how events are temporally arranged—into more than one million NLI examples. We use these datasets to investigate how well neural models trained on a popular NLI corpus capture these forms of temporal reasoning.
pdf
bib
abs
A Pilot Study of Text-to-SQL Semantic Parsing for Vietnamese
Anh Tuan Nguyen
|
Mai Hoang Dao
|
Dat Quoc Nguyen
Semantic parsing is an important NLP task. However, Vietnamese is a low-resource language in this research area. In this paper, we present the first public large-scale Text-to-SQL semantic parsing dataset for Vietnamese. We extend and evaluate two strong semantic parsing baselines EditSQL (Zhang et al., 2019) and IRNet (Guo et al., 2019) on our dataset. We compare the two baselines with key configurations and find that: automatic Vietnamese word segmentation improves the parsing results of both baselines; the normalized pointwise mutual information (NPMI) score (Bouma, 2009) is useful for schema linking; latent syntactic features extracted from a neural dependency parser for Vietnamese also improve the results; and the monolingual language model PhoBERT for Vietnamese (Nguyen and Nguyen, 2020) helps produce higher performances than the recent best multilingual language model XLM-R (Conneau et al., 2020).
pdf
bib
abs
STANDER: An Expert-Annotated Dataset for News Stance Detection and Evidence Retrieval
Costanza Conforti
|
Jakob Berndt
|
Mohammad Taher Pilehvar
|
Chryssi Giannitsarou
|
Flavio Toxvaerd
|
Nigel Collier
We present a new challenging news dataset that targets both stance detection (SD) and fine-grained evidence retrieval (ER). With its 3,291 expert-annotated articles, the dataset constitutes a high-quality benchmark for future research in SD and multi-task learning. We provide a detailed description of the corpus collection methodology and carry out an extensive analysis on the sources of disagreement between annotators, observing a correlation between their disagreement and the diffusion of uncertainty around a target in the real world. Our experiments show that the dataset poses a strong challenge to recent state-of-the-art models. Notably, our dataset aligns with an existing Twitter SD dataset: their union thus addresses a key shortcoming of previous works, by providing the first dedicated resource to study multi-genre SD as well as the interplay of signals from social media and news sources in rumour verification.
pdf
bib
abs
An Empirical Methodology for Detecting and Prioritizing Needs during Crisis Events
M. Janina Sarol
|
Ly Dinh
|
Rezvaneh Rezapour
|
Chieh-Li Chin
|
Pingjing Yang
|
Jana Diesner
In times of crisis, identifying essential needs is crucial to providing appropriate resources and services to affected entities. Social media platforms such as Twitter contain a vast amount of information about the general public’s needs. However, the sparsity of information and the amount of noisy content present a challenge for practitioners to effectively identify relevant information on these platforms. This study proposes two novel methods for two needs detection tasks: 1) extracting a list of needed resources, such as masks and ventilators, and 2) detecting sentences that specify who-needs-what resources (e.g., we need testing). We evaluate our methods on a set of tweets about the COVID-19 crisis. For extracting a list of needs, we compare our results against two official lists of resources, achieving 0.64 precision. For detecting who-needs-what sentences, we compared our results against a set of 1,000 annotated tweets and achieved a 0.68 F1-score.
pdf
bib
abs
SupMMD: A Sentence Importance Model for Extractive Summarization using Maximum Mean Discrepancy
Umanga Bista
|
Alexander Mathews
|
Aditya Menon
|
Lexing Xie
Most work on multi-document summarization has focused on generic summarization of information present in each individual document set. However, the under-explored setting of update summarization, where the goal is to identify the new information present in each set, is of equal practical interest (e.g., presenting readers with updates on an evolving news topic). In this work, we present SupMMD, a novel technique for generic and update summarization based on the maximum mean discrepancy from kernel two-sample testing. SupMMD combines both supervised learning for salience and unsupervised learning for coverage and diversity. Further, we adapt multiple kernel learning to make use of similarity across multiple information sources (e.g., text features and knowledge based concepts). We show the efficacy of SupMMD in both generic and update summarization tasks by meeting or exceeding the current state-of-the-art on the DUC-2004 and TAC-2009 datasets.
pdf
bib
abs
Towards Low-Resource Semi-Supervised Dialogue Generation with Meta-Learning
Yi Huang
|
Junlan Feng
|
Shuo Ma
|
Xiaoyu Du
|
Xiaoting Wu
In this paper, we propose a meta-learning based semi-supervised explicit dialogue state tracker (SEDST) for neural dialogue generation, denoted as MEDST. Our main motivation is to further bridge the chasm between the need for high accuracy dialogue state tracker and the common reality that only scarce annotated data is available for most real-life dialogue tasks. Specifically, MEDST has two core steps: meta-training with adequate unlabelled data in an automatic way and meta-testing with a few annotated data by supervised learning. In particular, we enhance SEDST via entropy regularization, and investigate semi-supervised learning frameworks based on model-agnostic meta-learning (MAML) that are able to reduce the amount of required intermediate state labelling. We find that by leveraging un-annotated data in meta-way instead, the amount of dialogue state annotations can be reduced below 10% while maintaining equivalent system performance. Experimental results show MEDST outperforms SEDST substantially by 18.7% joint goal accuracy and 14.3% entity match rate on the KVRET corpus with 2% labelled data in semi-supervision.
pdf
bib
abs
Connecting the Dots: A Knowledgeable Path Generator for Commonsense Question Answering
Peifeng Wang
|
Nanyun Peng
|
Filip Ilievski
|
Pedro Szekely
|
Xiang Ren
Commonsense question answering (QA) requires background knowledge which is not explicitly stated in a given context. Prior works use commonsense knowledge graphs (KGs) to obtain this knowledge for reasoning. However, relying entirely on these KGs may not suffice, considering their limited coverage and the contextual dependence of their knowledge. In this paper, we augment a general commonsense QA framework with a knowledgeable path generator. By extrapolating over existing paths in a KG with a state-of-the-art language model, our generator learns to connect a pair of entities in text with a dynamic, and potentially novel, multi-hop relational path. Such paths can provide structured evidence for solving commonsense questions without fine-tuning the path generator. Experiments on two datasets show the superiority of our method over previous works which fully rely on knowledge from KGs (with up to 6% improvement in accuracy), across various amounts of training data. Further evaluation suggests that the generated paths are typically interpretable, novel, and relevant to the task.
pdf
bib
abs
No Answer is Better Than Wrong Answer: A Reflection Model for Document Level Machine Reading Comprehension
Xuguang Wang
|
Linjun Shou
|
Ming Gong
|
Nan Duan
|
Daxin Jiang
The Natural Questions (NQ) benchmark set brings new challenges to Machine Reading Comprehension: the answers are not only at different levels of granularity (long and short), but also of richer types (including no-answer, yes/no, single-span and multi-span). In this paper, we target at this challenge and handle all answer types systematically. In particular, we propose a novel approach called Reflection Net which leverages a two-step training procedure to identify the no-answer and wrong-answer cases. Extensive experiments are conducted to verify the effectiveness of our approach. At the time of paper writing (May. 20, 2020), our approach achieved the top 1 on both long and short answer leaderboard, with F1 scores of 77.2 and 64.1, respectively.
pdf
bib
abs
Reference Language based Unsupervised Neural Machine Translation
Zuchao Li
|
Hai Zhao
|
Rui Wang
|
Masao Utiyama
|
Eiichiro Sumita
Exploiting a common language as an auxiliary for better translation has a long tradition in machine translation and lets supervised learning-based machine translation enjoy the enhancement delivered by the well-used pivot language in the absence of a source language to target language parallel corpus. The rise of unsupervised neural machine translation (UNMT) almost completely relieves the parallel corpus curse, though UNMT is still subject to unsatisfactory performance due to the vagueness of the clues available for its core back-translation training. Further enriching the idea of pivot translation by extending the use of parallel corpora beyond the source-target paradigm, we propose a new reference language-based framework for UNMT, RUNMT, in which the reference language only shares a parallel corpus with the source, but this corpus still indicates a signal clear enough to help the reconstruction training of UNMT through a proposed reference agreement mechanism. Experimental results show that our methods improve the quality of UNMT over that of a strong baseline that uses only one auxiliary language, demonstrating the usefulness of the proposed reference language-based UNMT and establishing a good start for the community.
pdf
bib
abs
TinyBERT: Distilling BERT for Natural Language Understanding
Xiaoqi Jiao
|
Yichun Yin
|
Lifeng Shang
|
Xin Jiang
|
Xiao Chen
|
Linlin Li
|
Fang Wang
|
Qun Liu
Language model pre-training, such as BERT, has significantly improved the performances of many natural language processing tasks. However, pre-trained language models are usually computationally expensive, so it is difficult to efficiently execute them on resource-restricted devices. To accelerate inference and reduce model size while maintaining accuracy, we first propose a novel Transformer distillation method that is specially designed for knowledge distillation (KD) of the Transformer-based models. By leveraging this new KD method, the plenty of knowledge encoded in a large “teacher” BERT can be effectively transferred to a small “student” TinyBERT. Then, we introduce a new two-stage learning framework for TinyBERT, which performs Transformer distillation at both the pre-training and task-specific learning stages. This framework ensures that TinyBERT can capture the general-domain as well as the task-specific knowledge in BERT. TinyBERT4 with 4 layers is empirically effective and achieves more than 96.8% the performance of its teacher BERT-Base on GLUE benchmark, while being 7.5x smaller and 9.4x faster on inference. TinyBERT4 is also significantly better than 4-layer state-of-the-art baselines on BERT distillation, with only ~28% parameters and ~31% inference time of them. Moreover, TinyBERT6 with 6 layers performs on-par with its teacher BERT-Base.
pdf
bib
abs
Poison Attacks against Text Datasets with Conditional Adversarially Regularized Autoencoder
Alvin Chan
|
Yi Tay
|
Yew-Soon Ong
|
Aston Zhang
This paper demonstrates a fatal vulnerability in natural language inference (NLI) and text classification systems. More concretely, we present a ‘backdoor poisoning’ attack on NLP models. Our poisoning attack utilizes conditional adversarially regularized autoencoder (CARA) to generate poisoned training samples by poison injection in latent space. Just by adding 1% poisoned data, our experiments show that a victim BERT finetuned classifier’s predictions can be steered to the poison target class with success rates of >80% when the input hypothesis is injected with the poison signature, demonstrating that NLI and text classification systems face a huge security risk.
pdf
bib
abs
#Turki$hTweets: A Benchmark Dataset for Turkish Text Correction
Asiye Tuba Koksal
|
Ozge Bozal
|
Emre Yürekli
|
Gizem Gezici
#Turki$hTweets is a benchmark dataset for the task of correcting the user misspellings, with the purpose of introducing the first public Turkish dataset in this area. #Turki$hTweets provides correct/incorrect word annotations with a detailed misspelling category formulation based on the real user data. We evaluated four state-of-the-art approaches on our dataset to present a preliminary analysis for the sake of reproducibility.
pdf
bib
abs
Assessing Human-Parity in Machine Translation on the Segment Level
Yvette Graham
|
Christian Federmann
|
Maria Eskevich
|
Barry Haddow
Recent machine translation shared tasks have shown top-performing systems to tie or in some cases even outperform human translation. Such conclusions about system and human performance are, however, based on estimates aggregated from scores collected over large test sets of translations and unfortunately leave some remaining questions unanswered. For instance, simply because a system significantly outperforms the human translator on average may not necessarily mean that it has done so for every translation in the test set. Firstly, are there remaining source segments present in evaluation test sets that cause significant challenges for top-performing systems and can such challenging segments go unnoticed due to the opacity of current human evaluation procedures? To provide insight into these issues we carefully inspect the outputs of top-performing systems in the most recent WMT-19 news translation shared task for all language pairs in which a system either tied or outperformed human translation. Our analysis provides a new method of identifying the remaining segments for which either machine or human perform poorly. For example, in our close inspection of WMT-19 English to German and German to English we discover the segments that disjointly proved a challenge for human and machine. For English to Russian, there were no segments included in our sample of translations that caused a significant challenge for the human translator, while we again identify the set of segments that caused issues for the top-performing system.
pdf
bib
abs
Multichannel Generative Language Model: Learning All Possible Factorizations Within and Across Channels
Harris Chan
|
Jamie Kiros
|
William Chan
A channel corresponds to a viewpoint or transformation of an underlying meaning. A pair of parallel sentences in English and French express the same underlying meaning, but through two separate channels corresponding to their languages. In this work, we present the Multichannel Generative Language Model (MGLM). MGLM is a generative joint distribution model over channels. MGLM marginalizes over all possible factorizations within and across all channels. MGLM endows flexible inference, including unconditional generation, conditional generation (where 1 channel is observed and other channels are generated), and partially observed generation (where incomplete observations are spread across all the channels). We experiment with the Multi30K dataset containing English, French, Czech, and German. We demonstrate experiments with unconditional, conditional, and partially conditional generation. We provide qualitative samples sampled unconditionally from the generative joint distribution. We also quantitatively analyze the quality-diversity trade-offs and find MGLM outperforms traditional bilingual discriminative models.
pdf
bib
abs
Factorized Transformer for Multi-Domain Neural Machine Translation
Yongchao Deng
|
Hongfei Yu
|
Heng Yu
|
Xiangyu Duan
|
Weihua Luo
Multi-Domain Neural Machine Translation (NMT) aims at building a single system that performs well on a range of target domains. However, along with the extreme diversity of cross-domain wording and phrasing style, the imperfections of training data distribution and the inherent defects of the current sequential learning process all contribute to making the task of multi-domain NMT very challenging. To mitigate these problems, we propose the Factorized Transformer, which consists of an in-depth factorization of the parameters of an NMT model, namely Transformer in this paper, into two categories: domain-shared ones that encode common cross-domain knowledge and domain-specific ones that are private for each constituent domain. We experiment with various designs of our model and conduct extensive validations on English to French open multi-domain dataset. Our approach achieves state-of-the-art performance and opens up new perspectives for multi-domain and open-domain applications.
pdf
bib
abs
Improving Named Entity Recognition with Attentive Ensemble of Syntactic Information
Yuyang Nie
|
Yuanhe Tian
|
Yan Song
|
Xiang Ao
|
Xiang Wan
Named entity recognition (NER) is highly sensitive to sentential syntactic and semantic properties where entities may be extracted according to how they are used and placed in the running text. To model such properties, one could rely on existing resources to providing helpful knowledge to the NER task; some existing studies proved the effectiveness of doing so, and yet are limited in appropriately leveraging the knowledge such as distinguishing the important ones for particular context. In this paper, we improve NER by leveraging different types of syntactic information through attentive ensemble, which functionalizes by the proposed key-value memory networks, syntax attention, and the gate mechanism for encoding, weighting and aggregating such syntactic information, respectively. Experimental results on six English and Chinese benchmark datasets suggest the effectiveness of the proposed model and show that it outperforms previous studies on all experiment datasets.
pdf
bib
abs
Query-Key Normalization for Transformers
Alex Henry
|
Prudhvi Raj Dachapally
|
Shubham Shantaram Pawar
|
Yuxuan Chen
Low-resource language translation is a challenging but socially valuable NLP task. Building on recent work adapting the Transformer’s normalization to this setting, we propose QKNorm, a normalization technique that modifies the attention mechanism to make the softmax function less prone to arbitrary saturation without sacrificing expressivity. Specifically, we apply l2-normalization along the head dimension of each query and key matrix prior to multiplying them and then scale up by a learnable parameter instead of dividing by the square root of the embedding dimension. We show improvements averaging 0.928 BLEU over state-of-the-art bilingual benchmarks for 5 low-resource translation pairs from the TED Talks corpus and IWSLT’15.
pdf
bib
abs
Contract Discovery: Dataset and a Few-Shot Semantic Retrieval Challenge with Competitive Baselines
Łukasz Borchmann
|
Dawid Wisniewski
|
Andrzej Gretkowski
|
Izabela Kosmala
|
Dawid Jurkiewicz
|
Łukasz Szałkiewicz
|
Gabriela Pałka
|
Karol Kaczmarek
|
Agnieszka Kaliska
|
Filip Graliński
We propose a new shared task of semantic retrieval from legal texts, in which a so-called contract discovery is to be performed – where legal clauses are extracted from documents, given a few examples of similar clauses from other legal acts. The task differs substantially from conventional NLI and shared tasks on legal information extraction (e.g., one has to identify text span instead of a single document, page, or paragraph). The specification of the proposed task is followed by an evaluation of multiple solutions within the unified framework proposed for this branch of methods. It is shown that state-of-the-art pretrained encoders fail to provide satisfactory results on the task proposed. In contrast, Language Model-based solutions perform better, especially when unsupervised fine-tuning is applied. Besides the ablation studies, we addressed questions regarding detection accuracy for relevant text fragments depending on the number of examples available. In addition to the dataset and reference results, LMs specialized in the legal domain were made publicly available.
pdf
bib
abs
Vocabulary Adaptation for Domain Adaptation in Neural Machine Translation
Shoetsu Sato
|
Jin Sakuma
|
Naoki Yoshinaga
|
Masashi Toyoda
|
Masaru Kitsuregawa
Neural network methods exhibit strong performance only in a few resource-rich domains. Practitioners therefore employ domain adaptation from resource-rich domains that are, in most cases, distant from the target domain. Domain adaptation between distant domains (e.g., movie subtitles and research papers), however, cannot be performed effectively due to mismatches in vocabulary; it will encounter many domain-specific words (e.g., “angstrom”) and words whose meanings shift across domains (e.g., “conductor”). In this study, aiming to solve these vocabulary mismatches in domain adaptation for neural machine translation (NMT), we propose vocabulary adaptation, a simple method for effective fine-tuning that adapts embedding layers in a given pretrained NMT model to the target domain. Prior to fine-tuning, our method replaces the embedding layers of the NMT model by projecting general word embeddings induced from monolingual data in a target domain onto a source-domain embedding space. Experimental results indicate that our method improves the performance of conventional fine-tuning by 3.86 and 3.28 BLEU points in En-Ja and De-En translation, respectively.
pdf
bib
abs
A Shared-Private Representation Model with Coarse-to-Fine Extraction for Target Sentiment Analysis
Peiqin Lin
|
Meng Yang
Target sentiment analysis aims to detect opinion targets along with recognizing their sentiment polarities from a sentence. Some models with span-based labeling have achieved promising results in this task. However, the relation between the target extraction task and the target classification task has not been well exploited. Besides, the span-based target extraction algorithm has a poor performance on target phrases due to the maximum target length setting or length penalty factor. To address these problems, we propose a novel framework of Shared-Private Representation Model (SPRM) with a coarse-to-fine extraction algorithm. For jointly learning target extraction and classification, we design a Shared-Private Network, which encodes not only shared information for both tasks but also private information for each task. To avoid missing correct target phrases, we also propose a heuristic coarse-to-fine extraction algorithm that first gets the approximate interval of the targets by matching the nearest predicted start and end indexes and then extracts the targets by adopting an extending strategy. Experimental results show that our model achieves state-of-the-art performance.
pdf
bib
abs
Detecting Media Bias in News Articles using Gaussian Bias Distributions
Wei-Fan Chen
|
Khalid Al Khatib
|
Benno Stein
|
Henning Wachsmuth
Media plays an important role in shaping public opinion. Biased media can influence people in undesirable directions and hence should be unmasked as such. We observe that feature-based and neural text classification approaches which rely only on the distribution of low-level lexical information fail to detect media bias. This weakness becomes most noticeable for articles on new events, where words appear in new contexts and hence their “bias predictiveness” is unclear. In this paper, we therefore study how second-order information about biased statements in an article helps to improve detection effectiveness. In particular, we utilize the probability distributions of the frequency, positions, and sequential order of lexical and informational sentence-level bias in a Gaussian Mixture Model. On an existing media bias dataset, we find that the frequency and positions of biased statements strongly impact article-level bias, whereas their exact sequential order is secondary. Using a standard model for sentence-level bias detection, we provide empirical evidence that article-level bias detectors that use second-order information clearly outperform those without.
pdf
bib
abs
How Can Self-Attention Networks Recognize Dyck-n Languages?
Javid Ebrahimi
|
Dhruv Gelda
|
Wei Zhang
We focus on the recognition of Dyck-n (Dn) languages with self-attention (SA) networks, which has been deemed to be a difficult task for these networks. We compare the performance of two variants of SA, one with a starting symbol (SA+) and one without (SA-). Our results show that SA+ is able to generalize to longer sequences and deeper dependencies. For D2, we find that SA- completely breaks down on long sequences whereas the accuracy of SA+ is 58.82%. We find attention maps learned by SA+ to be amenable to interpretation and compatible with a stack-based language recognizer. Surprisingly, the performance of SA networks is at par with LSTMs, which provides evidence on the ability of SA to learn hierarchies without recursion.
pdf
bib
abs
Training Flexible Depth Model by Multi-Task Learning for Neural Machine Translation
Qiang Wang
|
Tong Xiao
|
Jingbo Zhu
The standard neural machine translation model can only decode with the same depth configuration as training. Restricted by this feature, we have to deploy models of various sizes to maintain the same translation latency, because the hardware conditions on different terminal devices (e.g., mobile phones) may vary greatly. Such individual training leads to increased model maintenance costs and slower model iterations, especially for the industry. In this work, we propose to use multi-task learning to train a flexible depth model that can adapt to different depth configurations during inference. Experimental results show that our approach can simultaneously support decoding in 24 depth configurations and is superior to the individual training and another flexible depth model training method——LayerDrop.
pdf
bib
abs
Looking inside Noun Compounds: Unsupervised Prepositional and Free Paraphrasing
Girishkumar Ponkiya
|
Rudra Murthy
|
Pushpak Bhattacharyya
|
Girish Palshikar
A noun compound is a sequence of contiguous nouns that acts as a single noun, although the predicate denoting the semantic relation between its components is dropped. Noun Compound Interpretation is the task of uncovering the relation, in the form of a preposition or a free paraphrase. Prepositional paraphrasing refers to the use of preposition to explain the semantic relation, whereas free paraphrasing refers to invoking an appropriate predicate denoting the semantic relation. In this paper, we propose an unsupervised methodology for these two types of paraphrasing. We use pre-trained contextualized language models to uncover the ‘missing’ words (preposition or predicate). These language models are usually trained to uncover the missing word/words in a given input sentence. Our approach uses templates to prepare the input sequence for the language model. The template uses a special token to indicate the missing predicate. As the model has already been pre-trained to uncover a missing word (or a sequence of words), we exploit it to predict missing words for the input sequence. Our experiments using four datasets show that our unsupervised approach (a) performs comparably to supervised approaches for prepositional paraphrasing, and (b) outperforms supervised approaches for free paraphrasing. Paraphrasing (prepositional or free) using our unsupervised approach is potentially helpful for NLP tasks like machine translation and information extraction.
pdf
bib
abs
The birth of Romanian BERT
Stefan Dumitrescu
|
Andrei-Marius Avram
|
Sampo Pyysalo
Large-scale pretrained language models have become ubiquitous in Natural Language Processing. However, most of these models are available either in high-resource languages, in particular English, or as multilingual models that compromise performance on individual languages for coverage. This paper introduces Romanian BERT, the first purely Romanian transformer-based language model, pretrained on a large text corpus. We discuss corpus com-position and cleaning, the model training process, as well as an extensive evaluation of the model on various Romanian datasets. We opensource not only the model itself, but also a repository that contains information on how to obtain the corpus, fine-tune and use this model in production (with practical examples), and how to fully replicate the evaluation process.
pdf
bib
abs
BERT for Monolingual and Cross-Lingual Reverse Dictionary
Hang Yan
|
Xiaonan Li
|
Xipeng Qiu
|
Bocao Deng
Reverse dictionary is the task to find the proper target word given the word description. In this paper, we tried to incorporate BERT into this task. However, since BERT is based on the byte-pair-encoding (BPE) subword encoding, it is nontrivial to make BERT generate a word given the description. We propose a simple but effective method to make BERT generate the target word for this specific task. Besides, the cross-lingual reverse dictionary is the task to find the proper target word described in another language. Previous models have to keep two different word embeddings and learn to align these embeddings. Nevertheless, by using the Multilingual BERT (mBERT), we can efficiently conduct the cross-lingual reverse dictionary with one subword embedding, and the alignment between languages is not necessary. More importantly, mBERT can achieve remarkable cross-lingual reverse dictionary performance even without the parallel corpus, which means it can conduct the cross-lingual reverse dictionary with only corresponding monolingual data. Code is publicly available at
https://github.com/yhcc/BertForRD.git.
pdf
bib
abs
What’s so special about BERT’s layers? A closer look at the NLP pipeline in monolingual and multilingual models
Wietse de Vries
|
Andreas van Cranenburgh
|
Malvina Nissim
Peeking into the inner workings of BERT has shown that its layers resemble the classical NLP pipeline, with progressively more complex tasks being concentrated in later layers. To investigate to what extent these results also hold for a language other than English, we probe a Dutch BERT-based model and the multilingual BERT model for Dutch NLP tasks. In addition, through a deeper analysis of part-of-speech tagging, we show that also within a given task, information is spread over different parts of the network and the pipeline might not be as neat as it seems. Each layer has different specialisations, so that it may be more useful to combine information from different layers, instead of selecting a single one based on the best overall performance.
pdf
bib
abs
Leakage-Adjusted Simulatability: Can Models Generate Non-Trivial Explanations of Their Behavior in Natural Language?
Peter Hase
|
Shiyue Zhang
|
Harry Xie
|
Mohit Bansal
Data collection for natural language (NL) understanding tasks has increasingly included human explanations alongside data points, allowing past works to introduce models that both perform a task and generate NL explanations for their outputs. Yet to date, model-generated explanations have been evaluated on the basis of surface-level similarities to human explanations, both through automatic metrics like BLEU and human evaluations. We argue that these evaluations are insufficient, since they fail to indicate whether explanations support actual model behavior (faithfulness), rather than simply match what a human would say (plausibility). In this work, we address the problem of evaluating explanations from the the model simulatability perspective. Our contributions are as follows: (1) We introduce a leakage-adjusted simulatability (LAS) metric for evaluating NL explanations, which measures how well explanations help an observer predict a model’s output, while controlling for how explanations can directly leak the output. We use a model as a proxy for a human observer, and validate this choice with two human subject experiments. (2) Using the CoS-E and e-SNLI datasets, we evaluate two existing generative graphical models and two new approaches; one rationalizing method we introduce achieves roughly human-level LAS scores. (3) Lastly, we frame explanation generation as a multi-agent game and optimize explanations for simulatability while penalizing label leakage, which can improve LAS scores.
pdf
bib
abs
A Pointer Network Architecture for Joint Morphological Segmentation and Tagging
Amit Seker
|
Reut Tsarfaty
Morphologically Rich Languages (MRLs) such as Arabic, Hebrew and Turkish often require Morphological Disambiguation (MD), i.e., the prediction of morphological decomposition of tokens into morphemes, early in the pipeline. Neural MD may be addressed as a simple pipeline, where segmentation is followed by sequence tagging, or as an end-to-end model, predicting morphemes from raw tokens. Both approaches are sub-optimal; the former is heavily prone to error propagation, and the latter does not enjoy explicit access to the basic processing units called morphemes. This paper offers MD architecture that combines the symbolic knowledge of morphemes with the learning capacity of neural end-to-end modeling. We propose a new, general and easy-to-implement Pointer Network model where the input is a morphological lattice and the output is a sequence of indices pointing at a single disambiguated path of morphemes. We demonstrate the efficacy of the model on segmentation and tagging, for Hebrew and Turkish texts, based on their respective Universal Dependencies (UD) treebanks. Our experiments show that with complete lattices, our model outperforms all shared-task results on segmenting and tagging these languages. On the SPMRL treebank, our model outperforms all previously reported results for Hebrew MD in realistic scenarios.
pdf
bib
abs
Beyond Language: Learning Commonsense from Images for Reasoning
Wanqing Cui
|
Yanyan Lan
|
Liang Pang
|
Jiafeng Guo
|
Xueqi Cheng
This paper proposes a novel approach to learn commonsense from images, instead of limited raw texts or costly constructed knowledge bases, for the commonsense reasoning problem in NLP. Our motivation comes from the fact that an image is worth a thousand words, where richer scene information could be leveraged to help distill the commonsense knowledge, which is often hidden in languages. Our approach, namely Loire, consists of two stages. In the first stage, a bi-modal sequence-to-sequence approach is utilized to conduct the scene layout generation task, based on a text representation model ViBERT. In this way, the required visual scene knowledge, such as spatial relations, will be encoded in ViBERT by the supervised learning process with some bi-modal data like COCO. Then ViBERT is concatenated with a pre-trained language model to perform the downstream commonsense reasoning tasks. Experimental results on two commonsense reasoning problems, i.e.commonsense question answering and pronoun resolution, demonstrate that Loire outperforms traditional language-based methods. We also give some case studies to show what knowledge is learned from images and explain how the generated scene layout helps the commonsense reasoning process.
pdf
bib
abs
A BERT-based Distractor Generation Scheme with Multi-tasking and Negative Answer Training Strategies.
Ho-Lam Chung
|
Ying-Hong Chan
|
Yao-Chung Fan
In this paper, we investigate the following two limitations for the existing distractor generation (DG) methods. First, the quality of the existing DG methods are still far from practical use. There are still room for DG quality improvement. Second, the existing DG designs are mainly for single distractor generation. However, for practical MCQ preparation, multiple distractors are desired. Aiming at these goals, in this paper, we present a new distractor generation scheme with multi-tasking and negative answer training strategies for effectively generating multiple distractors. The experimental results show that (1) our model advances the state-of-the-art result from 28.65 to 39.81 (BLEU 1 score) and (2) the generated multiple distractors are diverse and shows strong distracting power for multiple choice question.
pdf
bib
abs
How Effective is Task-Agnostic Data Augmentation for Pretrained Transformers?
Shayne Longpre
|
Yu Wang
|
Chris DuBois
Task-agnostic forms of data augmentation have proven widely effective in computer vision, even on pretrained models. In NLP similar results are reported most commonly for low data regimes, non-pretrained models, or situationally for pretrained models. In this paper we ask how effective these techniques really are when applied to pretrained transformers. Using two popular varieties of task-agnostic data augmentation (not tailored to any particular task), Easy Data Augmentation (Wei andZou, 2019) and Back-Translation (Sennrichet al., 2015), we conduct a systematic examination of their effects across 5 classification tasks, 6 datasets, and 3 variants of modern pretrained transformers, including BERT, XLNet, and RoBERTa. We observe a negative result, finding that techniques which previously reported strong improvements for non-pretrained models fail to consistently improve performance for pretrained transformers, even when training data is limited. We hope this empirical analysis helps inform practitioners where data augmentation techniques may confer improvements.
pdf
bib
abs
Visually-Grounded Planning without Vision: Language Models Infer Detailed Plans from High-level Instructions
Peter Jansen
The recently proposed ALFRED challenge task aims for a virtual robotic agent to complete complex multi-step everyday tasks in a virtual home environment from high-level natural language directives, such as “put a hot piece of bread on a plate”. Currently, the best-performing models are able to complete less than 1% of these tasks successfully. In this work we focus on modeling the translation problem of converting natural language directives into detailed multi-step sequences of actions that accomplish those goals in the virtual environment. We empirically demonstrate that it is possible to generate gold multi-step plans from language directives alone without any visual input in 26% of unseen cases. When a small amount of visual information, the starting location in the virtual environment, is incorporated, our best-performing GPT-2 model successfully generates gold command sequences in 58% of cases, suggesting contextualized language models may provide strong planning modules for grounded virtual agents.
pdf
bib
abs
Consistent Response Generation with Controlled Specificity
Junya Takayama
|
Yuki Arase
We propose a method to control the specificity of responses while maintaining the consistency with the utterances. We first design a metric based on pointwise mutual information, which measures the co-occurrence degree between an utterance and a response. To control the specificity of generated responses, we add the distant supervision based on the co-occurrence degree and a PMI-based word prediction mechanism to a sequence-to-sequence model. With these mechanisms, our model outputs the words with optimal specificity for a given specificity control variable. In experiments with open-domain dialogue corpora, automatic and human evaluation results confirm that our model controls the specificity of the response more sensitively than the conventional model and can generate highly consistent responses.
pdf
bib
abs
Internal and external pressures on language emergence: least effort, object constancy and frequency
Diana Rodríguez Luna
|
Edoardo Maria Ponti
|
Dieuwke Hupkes
|
Elia Bruni
In previous work, artificial agents were shown to achieve almost perfect accuracy in referential games where they have to communicate to identify images. Nevertheless, the resulting communication protocols rarely display salient features of natural languages, such as compositionality. In this paper, we propose some realistic sources of pressure on communication that avert this outcome. More specifically, we formalise the principle of least effort through an auxiliary objective. Moreover, we explore several game variants, inspired by the principle of object constancy, in which we alter the frequency, position, and luminosity of the objects in the images. We perform an extensive analysis on their effect through compositionality metrics, diagnostic classifiers, and zero-shot evaluation. Our findings reveal that the proposed sources of pressure result in emerging languages with less redundancy, more focus on high-level conceptual information, and better abilities of generalisation. Overall, our contributions reduce the gap between emergent and natural languages.
pdf
bib
abs
Parsing All: Syntax and Semantics, Dependencies and Spans
Junru Zhou
|
Zuchao Li
|
Hai Zhao
Both syntactic and semantic structures are key linguistic contextual clues, in which parsing the latter has been well shown beneficial from parsing the former. However, few works ever made an attempt to let semantic parsing help syntactic parsing. As linguistic representation formalisms, both syntax and semantics may be represented in either span (constituent/phrase) or dependency, on both of which joint learning was also seldom explored. In this paper, we propose a novel joint model of syntactic and semantic parsing on both span and dependency representations, which incorporates syntactic information effectively in the encoder of neural network and benefits from two representation formalisms in a uniform way. The experiments show that semantics and syntax can benefit each other by optimizing joint objectives. Our single model achieves new state-of-the-art or competitive results on both span and dependency semantic parsing on Propbank benchmarks and both dependency and constituent syntactic parsing on Penn Treebank.
pdf
bib
abs
LIMIT-BERT : Linguistics Informed Multi-Task BERT
Junru Zhou
|
Zhuosheng Zhang
|
Hai Zhao
|
Shuailiang Zhang
In this paper, we present Linguistics Informed Multi-Task BERT (LIMIT-BERT) for learning language representations across multiple linguistics tasks by Multi-Task Learning. LIMIT-BERT includes five key linguistics tasks: Part-Of-Speech (POS) tags, constituent and dependency syntactic parsing, span and dependency semantic role labeling (SRL). Different from recent Multi-Task Deep Neural Networks (MT-DNN), our LIMIT-BERT is fully linguistics motivated and thus is capable of adopting an improved masked training objective according to syntactic and semantic constituents. Besides, LIMIT-BERT takes a semi-supervised learning strategy to offer the same large amount of linguistics task data as that for the language model training. As a result, LIMIT-BERT not only improves linguistics tasks performance but also benefits from a regularization effect and linguistics information that leads to more general representations to help adapt to new tasks and domains. LIMIT-BERT outperforms the strong baseline Whole Word Masking BERT on both dependency and constituent syntactic/semantic parsing, GLUE benchmark, and SNLI task. Our practice on the proposed LIMIT-BERT also enables us to release a well pre-trained model for multi-purpose of natural language processing tasks once for all.
pdf
bib
abs
Improving Limited Labeled Dialogue State Tracking with Self-Supervision
Chien-Sheng Wu
|
Steven C.H. Hoi
|
Caiming Xiong
Existing dialogue state tracking (DST) models require plenty of labeled data. However, collecting high-quality labels is costly, especially when the number of domains increases. In this paper, we address a practical DST problem that is rarely discussed, i.e., learning efficiently with limited labeled data. We present and investigate two self-supervised objectives: preserving latent consistency and modeling conversational behavior. We encourage a DST model to have consistent latent distributions given a perturbed input, making it more robust to an unseen scenario. We also add an auxiliary utterance generation task, modeling a potential correlation between conversational behavior and dialogue states. The experimental results show that our proposed self-supervised signals can improve joint goal accuracy by 8.95% when only 1% labeled data is used on the MultiWOZ dataset. We can achieve an additional 1.76% improvement if some unlabeled data is jointly trained as semi-supervised learning. We analyze and visualize how our proposed self-supervised signals help the DST task and hope to stimulate future data-efficient DST research.
pdf
bib
abs
On the Branching Bias of Syntax Extracted from Pre-trained Language Models
Huayang Li
|
Lemao Liu
|
Guoping Huang
|
Shuming Shi
Many efforts have been devoted to extracting constituency trees from pre-trained language models, often proceeding in two stages: feature definition and parsing. However, this kind of methods may suffer from the branching bias issue, which will inflate the performances on languages with the same branch it biases to. In this work, we propose quantitatively measuring the branching bias by comparing the performance gap on a language and its reversed language, which is agnostic to both language models and extracting methods. Furthermore, we analyze the impacts of three factors on the branching bias, namely feature definitions, parsing algorithms, and language models. Experiments show that several existing works exhibit branching biases, and some implementations of these three factors can introduce the branching bias.
pdf
bib
abs
The Pragmatics behind Politics: Modelling Metaphor, Framing and Emotion in Political Discourse
Pere-Lluís Huguet Cabot
|
Verna Dankers
|
David Abadi
|
Agneta Fischer
|
Ekaterina Shutova
There has been an increased interest in modelling political discourse within the natural language processing (NLP) community, in tasks such as political bias and misinformation detection, among others. Metaphor-rich and emotion-eliciting communication strategies are ubiquitous in political rhetoric, according to social science research. Yet, none of the existing computational models of political discourse has incorporated these phenomena. In this paper, we present the first joint models of metaphor, emotion and political rhetoric, and demonstrate that they advance performance in three tasks: predicting political perspective of news articles, party affiliation of politicians and framing of policy issues.
pdf
bib
abs
SMRT Chatbots: Improving Non-Task-Oriented Dialog with Simulated Multiple Reference Training
Huda Khayrallah
|
João Sedoc
Non-task-oriented dialog models suffer from poor quality and non-diverse responses. To overcome limited conversational data, we apply Simulated Multiple Reference Training (SMRT; Khayrallah et al., 2020), and use a paraphraser to simulate multiple responses per training prompt. We find SMRT improves over a strong Transformer baseline as measured by human and automatic quality scores and lexical diversity. We also find SMRT is comparable to pretraining in human evaluation quality, and outperforms pretraining on automatic quality and lexical diversity, without requiring related-domain dialog data.
pdf
bib
abs
PrivNet: Safeguarding Private Attributes in Transfer Learning for Recommendation
Guangneng Hu
|
Qiang Yang
Transfer learning is an effective technique to improve a target recommender system with the knowledge from a source domain. Existing research focuses on the recommendation performance of the target domain while ignores the privacy leakage of the source domain. The transferred knowledge, however, may unintendedly leak private information of the source domain. For example, an attacker can accurately infer user demographics from their historical purchase provided by a source domain data owner. This paper addresses the above privacy-preserving issue by learning a privacy-aware neural representation by improving target performance while protecting source privacy. The key idea is to simulate the attacks during the training for protecting unseen users’ privacy in the future, modeled by an adversarial game, so that the transfer learning model becomes robust to attacks. Experiments show that the proposed PrivNet model can successfully disentangle the knowledge benefitting the transfer from leaking the privacy.
pdf
bib
abs
Learning to Learn to Disambiguate: Meta-Learning for Few-Shot Word Sense Disambiguation
Nithin Holla
|
Pushkar Mishra
|
Helen Yannakoudakis
|
Ekaterina Shutova
The success of deep learning methods hinges on the availability of large training datasets annotated for the task of interest. In contrast to human intelligence, these methods lack versatility and struggle to learn and adapt quickly to new tasks, where labeled data is scarce. Meta-learning aims to solve this problem by training a model on a large number of few-shot tasks, with an objective to learn new tasks quickly from a small number of examples. In this paper, we propose a meta-learning framework for few-shot word sense disambiguation (WSD), where the goal is to learn to disambiguate unseen words from only a few labeled instances. Meta-learning approaches have so far been typically tested in an N-way, K-shot classification setting where each task has N classes with K examples per class. Owing to its nature, WSD deviates from this controlled setup and requires the models to handle a large number of highly unbalanced classes. We extend several popular meta-learning approaches to this scenario, and analyze their strengths and weaknesses in this new challenging setting.
pdf
bib
abs
An Empirical Investigation of Beam-Aware Training in Supertagging
Renato Negrinho
|
Matthew R. Gormley
|
Geoff Gordon
Structured prediction is often approached by training a locally normalized model with maximum likelihood and decoding approximately with beam search. This approach leads to mismatches as, during training, the model is not exposed to its mistakes and does not use beam search. Beam-aware training aims to address these problems, but unfortunately, it is not yet widely used due to a lack of understanding about how it impacts performance, when it is most useful, and whether it is stable. Recently, Negrinho et al. (2018) proposed a meta-algorithm that captures beam-aware training algorithms and suggests new ones, but unfortunately did not provide empirical results. In this paper, we begin an empirical investigation: we train the supertagging model of Vaswani et al. (2018) and a simpler model with instantiations of the meta-algorithm. We explore the influence of various design choices and make recommendations for choosing them. We observe that beam-aware training improves performance for both models, with large improvements for the simpler model which must effectively manage uncertainty during decoding. Our results suggest that a model must be learned with search to maximize its effectiveness.
pdf
bib
abs
Improving Aspect-based Sentiment Analysis with Gated Graph Convolutional Networks and Syntax-based Regulation
Amir Pouran Ben Veyseh
|
Nasim Nouri
|
Franck Dernoncourt
|
Quan Hung Tran
|
Dejing Dou
|
Thien Huu Nguyen
Aspect-based Sentiment Analysis (ABSA) seeks to predict the sentiment polarity of a sentence toward a specific aspect. Recently, it has been shown that dependency trees can be integrated into deep learning models to produce the state-of-the-art performance for ABSA. However, these models tend to compute the hidden/representation vectors without considering the aspect terms and fail to benefit from the overall contextual importance scores of the words that can be obtained from the dependency tree for ABSA. In this work, we propose a novel graph-based deep learning model to overcome these two issues of the prior work on ABSA. In our model, gate vectors are generated from the representation vectors of the aspect terms to customize the hidden vectors of the graph-based models toward the aspect terms. In addition, we propose a mechanism to obtain the importance scores for each word in the sentences based on the dependency trees that are then injected into the model to improve the representation vectors for ABSA. The proposed model achieves the state-of-the-art performance on three benchmark datasets.
pdf
bib
abs
Decoding Language Spatial Relations to 2D Spatial Arrangements
Gorjan Radevski
|
Guillem Collell
|
Marie-Francine Moens
|
Tinne Tuytelaars
We address the problem of multimodal spatial understanding by decoding a set of language-expressed spatial relations to a set of 2D spatial arrangements in a multi-object and multi-relationship setting. We frame the task as arranging a scene of clip-arts given a textual description. We propose a simple and effective model architecture Spatial-Reasoning Bert (SR-Bert), trained to decode text to 2D spatial arrangements in a non-autoregressive manner. SR-Bert can decode both explicit and implicit language to 2D spatial arrangements, generalizes to out-of-sample data to a reasonable extent and can generate complete abstract scenes if paired with a clip-arts predictor. Finally, we qualitatively evaluate our method with a user study, validating that our generated spatial arrangements align with human expectation.
pdf
bib
abs
The Dots Have Their Values: Exploiting the Node-Edge Connections in Graph-based Neural Models for Document-level Relation Extraction
Hieu Minh Tran
|
Minh Trung Nguyen
|
Thien Huu Nguyen
The goal of Document-level Relation Extraction (DRE) is to recognize the relations between entity mentions that can span beyond sentence boundary. The current state-of-the-art method for this problem has involved the graph-based edge-oriented model where the entity mentions, entities, and sentences in the documents are used as the nodes of the document graphs for representation learning. However, this model does not capture the representations for the nodes in the graphs, thus preventing it from effectively encoding the specific and relevant information of the nodes for DRE. To address this issue, we propose to explicitly compute the representations for the nodes in the graph-based edge-oriented model for DRE. These node representations allow us to introduce two novel representation regularization mechanisms to improve the representation vectors for DRE. The experiments show that our model achieves state-of-the-art performance on two benchmark datasets.
pdf
bib
abs
Why and when should you pool? Analyzing Pooling in Recurrent Architectures
Pratyush Maini
|
Keshav Kolluru
|
Danish Pruthi
|
Mausam
Pooling-based recurrent neural architectures consistently outperform their counterparts without pooling on sequence classification tasks. However, the reasons for their enhanced performance are largely unexamined. In this work, we examine three commonly used pooling techniques (mean-pooling, max-pooling, and attention, and propose *max-attention*, a novel variant that captures interactions among predictive tokens in a sentence. Using novel experiments, we demonstrate that pooling architectures substantially differ from their non-pooling equivalents in their learning ability and positional biases: (i) pooling facilitates better gradient flow than BiLSTMs in initial training epochs, and (ii) BiLSTMs are biased towards tokens at the beginning and end of the input, whereas pooling alleviates this bias. Consequently, we find that pooling yields large gains in low resource scenarios, and instances when salient words lie towards the middle of the input. Across several text classification tasks, we find max-attention to frequently outperform other pooling techniques.
pdf
bib
abs
Structural and Functional Decomposition for Personality Image Captioning in a Communication Game
Minh Thu Nguyen
|
Duy Phung
|
Minh Hoai
|
Thien Huu Nguyen
Personality image captioning (PIC) aims to describe an image with a natural language caption given a personality trait. In this work, we introduce a novel formulation for PIC based on a communication game between a speaker and a listener. The speaker attempts to generate natural language captions while the listener encourages the generated captions to contain discriminative information about the input images and personality traits. In this way, we expect that the generated captions can be improved to naturally represent the images and express the traits. In addition, we propose to adapt the language model GPT2 to perform caption generation for PIC. This enables the speaker and listener to benefit from the language encoding capacity of GPT2. Our experiments show that the proposed model achieves the state-of-the-art performance for PIC.
pdf
bib
abs
Long Document Ranking with Query-Directed Sparse Transformer
Jyun-Yu Jiang
|
Chenyan Xiong
|
Chia-Jung Lee
|
Wei Wang
The computing cost of transformer self-attention often necessitates breaking long documents to fit in pretrained models in document ranking tasks. In this paper, we design Query-Directed Sparse attention that induces IR-axiomatic structures in transformer self-attention. Our model, QDS-Transformer, enforces the principle properties desired in ranking: local contextualization, hierarchical representation, and query-oriented proximity matching, while it also enjoys efficiency from sparsity. Experiments on four fully supervised and few-shot TREC document ranking benchmarks demonstrate the consistent and robust advantage of QDS-Transformer over previous approaches, as they either retrofit long documents into BERT or use sparse attention without emphasizing IR principles. We further quantify the computing complexity and demonstrates that our sparse attention with TVM implementation is twice more efficient that the fully-connected self-attention. All source codes, trained model, and predictions of this work are available at
https://github.com/hallogameboy/QDS-Transformer.
pdf
bib
abs
Visuo-Linguistic Question Answering (VLQA) Challenge
Shailaja Keyur Sampat
|
Yezhou Yang
|
Chitta Baral
Understanding images and text together is an important aspect of cognition and building advanced Artificial Intelligence (AI) systems. As a community, we have achieved good benchmarks over language and vision domains separately, however joint reasoning is still a challenge for state-of-the-art computer vision and natural language processing (NLP) systems. We propose a novel task to derive joint inference about a given image-text modality and compile the Visuo-Linguistic Question Answering (VLQA) challenge corpus in a question answering setting. Each dataset item consists of an image and a reading passage, where questions are designed to combine both visual and textual information i.e., ignoring either modality would make the question unanswerable. We first explore the best existing vision-language architectures to solve VLQA subsets and show that they are unable to reason well. We then develop a modular method with slightly better baseline performance, but it is still far behind human performance. We believe that VLQA will be a good benchmark for reasoning over a visuo-linguistic context. The dataset, code and leaderboard is available at
https://shailaja183.github.io/vlqa/.
pdf
bib
abs
Byte Pair Encoding is Suboptimal for Language Model Pretraining
Kaj Bostrom
|
Greg Durrett
The success of pretrained transformer language models (LMs) in natural language processing has led to a wide range of pretraining setups. In particular, these models employ a variety of subword tokenization methods, most notably byte-pair encoding (BPE) (Sennrich et al., 2016; Gage, 1994), the WordPiece method (Schuster and Nakajima, 2012), and unigram language modeling (Kudo, 2018), to segment text. However, to the best of our knowledge, the literature does not contain a direct evaluation of the impact of tokenization on language model pretraining. We analyze differences between BPE and unigram LM tokenization, finding that the latter method recovers subword units that align more closely with morphology and avoids problems stemming from BPE’s greedy construction procedure. We then compare the fine-tuned task performance of identical transformer masked language models pretrained with these tokenizations. Across downstream tasks and two languages (English and Japanese), we find that the unigram LM tokenization method matches or outperforms BPE. We hope that developers of future pretrained LMs will consider adopting the unigram LM method over the more prevalent BPE.
pdf
bib
abs
Exploring BERT’s Sensitivity to Lexical Cues using Tests from Semantic Priming
Kanishka Misra
|
Allyson Ettinger
|
Julia Rayz
Models trained to estimate word probabilities in context have become ubiquitous in natural language processing. How do these models use lexical cues in context to inform their word probabilities? To answer this question, we present a case study analyzing the pre-trained BERT model with tests informed by semantic priming. Using English lexical stimuli that show priming in humans, we find that BERT too shows “priming”, predicting a word with greater probability when the context includes a related word versus an unrelated one. This effect decreases as the amount of information provided by the context increases. Follow-up analysis shows BERT to be increasingly distracted by related prime words as context becomes more informative, assigning lower probabilities to related words. Our findings highlight the importance of considering contextual constraint effects when studying word prediction in these models, and highlight possible parallels with human processing.
pdf
bib
abs
Multi-hop Question Generation with Graph Convolutional Network
Dan Su
|
Yan Xu
|
Wenliang Dai
|
Ziwei Ji
|
Tiezheng Yu
|
Pascale Fung
Multi-hop Question Generation (QG) aims to generate answer-related questions by aggregating and reasoning over multiple scattered evidence from different paragraphs. It is a more challenging yet under-explored task compared to conventional single-hop QG, where the questions are generated from the sentence containing the answer or nearby sentences in the same paragraph without complex reasoning. To address the additional challenges in multi-hop QG, we propose Multi-Hop Encoding Fusion Network for Question Generation (MulQG), which does context encoding in multiple hops with Graph Convolutional Network and encoding fusion via an Encoder Reasoning Gate. To the best of our knowledge, we are the first to tackle the challenge of multi-hop reasoning over paragraphs without any sentence-level information. Empirical results on HotpotQA dataset demonstrate the effectiveness of our method, in comparison with baselines on automatic evaluation metrics. Moreover, from the human evaluation, our proposed model is able to generate fluent questions with high completeness and outperforms the strongest baseline by 20.8% in the multi-hop evaluation. on. The code is publicly availableat
https://github.com/HLTCHKUpdf
bib
abs
MMFT-BERT: Multimodal Fusion Transformer with BERT Encodings for Visual Question Answering
Aisha Urooj
|
Amir Mazaheri
|
Niels Da vitoria lobo
|
Mubarak Shah
We present MMFT-BERT(MultiModal FusionTransformer with BERT encodings), to solve Visual Question Answering (VQA) ensuring individual and combined processing of multiple input modalities. Our approach benefits from processing multimodal data (video and text) adopting the BERT encodings individually and using a novel transformer-based fusion method to fuse them together. Our method decomposes the different sources of modalities, into different BERT instances with similar architectures, but variable weights. This achieves SOTA results on the TVQA dataset. Additionally, we provide TVQA-Visual, an isolated diagnostic subset of TVQA, which strictly requires the knowledge of visual (V) modality based on a human annotator’s judgment. This set of questions helps us to study the model’s behavior and the challenges TVQA poses to prevent the achievement of super human performance. Extensive experiments show the effectiveness and superiority of our method.
pdf
bib
abs
Thinking Like a Skeptic: Defeasible Inference in Natural Language
Rachel Rudinger
|
Vered Shwartz
|
Jena D. Hwang
|
Chandra Bhagavatula
|
Maxwell Forbes
|
Ronan Le Bras
|
Noah A. Smith
|
Yejin Choi
Defeasible inference is a mode of reasoning in which an inference (X is a bird, therefore X flies) may be weakened or overturned in light of new evidence (X is a penguin). Though long recognized in classical AI and philosophy, defeasible inference has not been extensively studied in the context of contemporary data-driven research on natural language inference and commonsense reasoning. We introduce Defeasible NLI (abbreviated 𝛿-NLI), a dataset for defeasible inference in natural language. Defeasible NLI contains extensions to three existing inference datasets covering diverse modes of reasoning: common sense, natural language inference, and social norms. From Defeasible NLI, we develop both a classification and generation task for defeasible inference, and demonstrate that the generation task is much more challenging. Despite lagging human performance, however, generative models trained on this data are capable of writing sentences that weaken or strengthen a specified inference up to 68% of the time.
pdf
bib
abs
Guiding Attention for Self-Supervised Learning with Transformers
Ameet Deshpande
|
Karthik Narasimhan
In this paper, we propose a simple and effective technique to allow for efficient self-supervised learning with bi-directional Transformers. Our approach is motivated by recent studies demonstrating that self-attention patterns in trained models contain a majority of non-linguistic regularities. We propose a computationally efficient auxiliary loss function to guide attention heads to conform to such patterns. Our method is agnostic to the actual pre-training objective and results in faster convergence of models as well as better performance on downstream tasks compared to the baselines, achieving state of the art results in low-resource settings. Surprisingly, we also find that linguistic properties of attention heads are not necessarily correlated with language modeling performance.
pdf
bib
abs
Language-Conditioned Feature Pyramids for Visual Selection Tasks
Taichi Iki
|
Akiko Aizawa
Referring expression comprehension, which is the ability to locate language to an object in an image, plays an important role in creating common ground. Many models that fuse visual and linguistic features have been proposed. However, few models consider the fusion of linguistic features with multiple visual features with different sizes of receptive fields, though the proper size of the receptive field of visual features intuitively varies depending on expressions. In this paper, we introduce a neural network architecture that modulates visual features with varying sizes of receptive field by linguistic features. We evaluate our architecture on tasks related to referring expression comprehension in two visual dialogue games. The results show the advantages and broad applicability of our architecture. Source code is available at
https://github.com/Alab-NII/lcfp .
pdf
bib
abs
Learning to Classify Events from Human Needs Category Descriptions
Haibo Ding
|
Zhe Feng
We study the problem of learning an event classifier from human needs category descriptions, which is challenging due to: (1) the use of highly abstract concepts in natural language descriptions, (2) the difficulty of choosing key concepts. To tackle these two challenges, we propose LeaPI, a zero-shot learning method that first automatically generate weak labels by instantiating high-level concepts with prototypical instances and then trains a human needs classifier with the weakly labeled data. To filter noisy concepts, we design a reinforced selection algorithm to choose high-quality concepts for instantiation. Experimental results on the human needs categorization task show that our method outperforms baseline methods, producing substantially better precision.
pdf
bib
abs
Automatic Term Name Generation for Gene Ontology: Task and Dataset
Yanjian Zhang
|
Qin Chen
|
Yiteng Zhang
|
Zhongyu Wei
|
Yixu Gao
|
Jiajie Peng
|
Zengfeng Huang
|
Weijian Sun
|
Xuanjing Huang
Terms contained in Gene Ontology (GO) have been widely used in biology and bio-medicine. Most previous research focuses on inferring new GO terms, while the term names that reflect the gene function are still named by the experts. To fill this gap, we propose a novel task, namely term name generation for GO, and build a large-scale benchmark dataset. Furthermore, we present a graph-based generative model that incorporates the relations between genes, words and terms for term name generation, which exhibits great advantages over the strong baselines.
pdf
bib
abs
Compressing Transformer-Based Semantic Parsing Models using Compositional Code Embeddings
Prafull Prakash
|
Saurabh Kumar Shashidhar
|
Wenlong Zhao
|
Subendhu Rongali
|
Haidar Khan
|
Michael Kayser
The current state-of-the-art task-oriented semantic parsing models use BERT or RoBERTa as pretrained encoders; these models have huge memory footprints. This poses a challenge to their deployment for voice assistants such as Amazon Alexa and Google Assistant on edge devices with limited memory budgets. We propose to learn compositional code embeddings to greatly reduce the sizes of BERT-base and RoBERTa-base. We also apply the technique to DistilBERT, ALBERT-base, and ALBERT-large, three already compressed BERT variants which attain similar state-of-the-art performances on semantic parsing with much smaller model sizes. We observe 95.15% 98.46% embedding compression rates and 20.47% 34.22% encoder compression rates, while preserving >97.5% semantic parsing performances. We provide the recipe for training and analyze the trade-off between code embedding sizes and downstream performances.
pdf
bib
abs
BERT-QE: Contextualized Query Expansion for Document Re-ranking
Zhi Zheng
|
Kai Hui
|
Ben He
|
Xianpei Han
|
Le Sun
|
Andrew Yates
Query expansion aims to mitigate the mismatch between the language used in a query and in a document. However, query expansion methods can suffer from introducing non-relevant information when expanding the query. To bridge this gap, inspired by recent advances in applying contextualized models like BERT to the document retrieval task, this paper proposes a novel query expansion model that leverages the strength of the BERT model to select relevant document chunks for expansion. In evaluation on the standard TREC Robust04 and GOV2 test collections, the proposed BERT-QE model significantly outperforms BERT-Large models.
pdf
bib
abs
ZEN: Pre-training Chinese Text Encoder Enhanced by N-gram Representations
Shizhe Diao
|
Jiaxin Bai
|
Yan Song
|
Tong Zhang
|
Yonggang Wang
The pre-training of text encoders normally processes text as a sequence of tokens corresponding to small text units, such as word pieces in English and characters in Chinese. It omits information carried by larger text granularity, and thus the encoders cannot easily adapt to certain combinations of characters. This leads to a loss of important semantic information, which is especially problematic for Chinese because the language does not have explicit word boundaries. In this paper, we propose ZEN, a BERT-based Chinese text encoder enhanced by n-gram representations, where different combinations of characters are considered during training, thus potential word or phrase boundaries are explicitly pre-trained and fine-tuned with the character encoder (BERT). Therefore ZEN incorporates the comprehensive information of both the character sequence and words or phrases it contains. Experimental results illustrated the effectiveness of ZEN on a series of Chinese NLP tasks, where state-of-the-art results is achieved on most tasks with requiring less resource than other published encoders. It is also shown that reasonable performance is obtained when ZEN is trained on a small corpus, which is important for applying pre-training techniques to scenarios with limited data. The code and pre-trained models of ZEN are available at
https://github.com/sinovation/ZEN.
pdf
bib
abs
Finding Friends and Flipping Frenemies: Automatic Paraphrase Dataset Augmentation Using Graph Theory
Hannah Chen
|
Yangfeng Ji
|
David Evans
Most NLP datasets are manually labeled, so suffer from inconsistent labeling or limited size. We propose methods for automatically improving datasets by viewing them as graphs with expected semantic properties. We construct a paraphrase graph from the provided sentence pair labels, and create an augmented dataset by directly inferring labels from the original sentence pairs using a transitivity property. We use structural balance theory to identify likely mislabelings in the graph, and flip their labels. We evaluate our methods on paraphrase models trained using these datasets starting from a pretrained BERT model, and find that the automatically-enhanced training sets result in more accurate models.
pdf
bib
abs
Probabilistic Case-based Reasoning for Open-World Knowledge Graph Completion
Rajarshi Das
|
Ameya Godbole
|
Nicholas Monath
|
Manzil Zaheer
|
Andrew McCallum
A case-based reasoning (CBR) system solves a new problem by retrieving ‘cases’ that are similar to the given problem. If such a system can achieve high accuracy, it is appealing owing to its simplicity, interpretability, and scalability. In this paper, we demonstrate that such a system is achievable for reasoning in knowledge-bases (KBs). Our approach predicts attributes for an entity by gathering reasoning paths from similar entities in the KB. Our probabilistic model estimates the likelihood that a path is effective at answering a query about the given entity. The parameters of our model can be efficiently computed using simple path statistics and require no iterative optimization. Our model is non-parametric, growing dynamically as new entities and relations are added to the KB. On several benchmark datasets our approach significantly outperforms other rule learning approaches and performs comparably to state-of-the-art embedding-based approaches. Furthermore, we demonstrate the effectiveness of our model in an “open-world” setting where new entities arrive in an online fashion, significantly outperforming state-of-the-art approaches and nearly matching the best offline method.
pdf
bib
abs
TLDR: Extreme Summarization of Scientific Documents
Isabel Cachola
|
Kyle Lo
|
Arman Cohan
|
Daniel Weld
We introduce TLDR generation, a new form of extreme summarization, for scientific papers. TLDR generation involves high source compression and requires expert background knowledge and understanding of complex domain-specific language. To facilitate study on this task, we introduce SCITLDR, a new multi-target dataset of 5.4K TLDRs over 3.2K papers. SCITLDR contains both author-written and expert-derived TLDRs, where the latter are collected using a novel annotation protocol that produces high-quality summaries while minimizing annotation burden. We propose CATTS, a simple yet effective learning strategy for generating TLDRs that exploits titles as an auxiliary training signal. CATTS improves upon strong baselines under both automated metrics and human evaluations. Data and code are publicly available at
https://github.com/allenai/scitldr.
pdf
bib
abs
Tri-Train: Automatic Pre-Fine Tuning between Pre-Training and Fine-Tuning for SciNER
Qingkai Zeng
|
Wenhao Yu
|
Mengxia Yu
|
Tianwen Jiang
|
Tim Weninger
|
Meng Jiang
The training process of scientific NER models is commonly performed in two steps: i) Pre-training a language model by self-supervised tasks on huge data and ii) fine-tune training with small labelled data. The success of the strategy depends on the relevance between the data domains and between the tasks. However, gaps are found in practice when the target domains are specific and small. We propose a novel framework to introduce a “pre-fine tuning” step between pre-training and fine-tuning. It constructs a corpus by selecting sentences from unlabeled documents that are the most relevant with the labelled training data. Instead of predicting tokens in random spans, the pre-fine tuning task is to predict tokens in entity candidates identified by text mining methods. Pre-fine tuning is automatic and light-weight because the corpus size can be much smaller than pre-training data to achieve a better performance. Experiments on seven benchmarks demonstrate the effectiveness.
pdf
bib
abs
Hierarchical Region Learning for Nested Named Entity Recognition
Xinwei Long
|
Shuzi Niu
|
Yucheng Li
Named Entity Recognition (NER) is deeply explored and widely used in various tasks. Usually, some entity mentions are nested in other entities, which leads to the nested NER problem. Leading region based models face both the efficiency and effectiveness challenge due to the high subsequence enumeration complexity. To tackle these challenges, we propose a hierarchical region learning framework to automatically generate a tree hierarchy of candidate regions with nearly linear complexity and incorporate structure information into the region representation for better classification. Experiments on benchmark datasets ACE-2005, GENIA and JNLPBA demonstrate competitive or better results than state-of-the-art baselines.
pdf
bib
abs
Understanding User Resistance Strategies in Persuasive Conversations
Youzhi Tian
|
Weiyan Shi
|
Chen Li
|
Zhou Yu
Persuasive dialog systems have various usages, such as donation persuasion and physical exercise persuasion. Previous persuasive dialog systems research mostly focused on analyzing the persuader’s strategies and paid little attention to the persuadee (user). However, understanding and addressing users’ resistance strategies is an essential job of a persuasive dialog system. So, we adopt a preliminary framework on persuasion resistance in psychology and design a fine-grained resistance strategy annotation scheme. We annotate the PersuasionForGood dataset with the scheme. With the enriched annotations, we build a classifier to predict the resistance strategies. Furthermore, we analyze the relationships between persuasion strategies and persuasion resistance strategies. Our work lays the ground for developing a persuasive dialogue system that can understand and address user resistance strategy appropriately. The code and data will be released.
pdf
bib
abs
On the Sub-layer Functionalities of Transformer Decoder
Yilin Yang
|
Longyue Wang
|
Shuming Shi
|
Prasad Tadepalli
|
Stefan Lee
|
Zhaopeng Tu
There have been significant efforts to interpret the encoder of Transformer-based encoder-decoder architectures for neural machine translation (NMT); meanwhile, the decoder remains largely unexamined despite its critical role. During translation, the decoder must predict output tokens by considering both the source-language text from the encoder and the target-language prefix produced in previous steps. In this work, we study how Transformer-based decoders leverage information from the source and target languages – developing a universal probe task to assess how information is propagated through each module of each decoder layer. We perform extensive experiments on three major translation datasets (WMT En-De, En-Fr, and En-Zh). Our analysis provides insight on when and where decoders leverage different sources. Based on these insights, we demonstrate that the residual feed-forward module in each Transformer decoder layer can be dropped with minimal loss of performance – a significant reduction in computation and number of parameters, and consequently a significant boost to both training and inference speed.
pdf
bib
abs
Extremely Low Bit Transformer Quantization for On-Device Neural Machine Translation
Insoo Chung
|
Byeongwook Kim
|
Yoonjung Choi
|
Se Jung Kwon
|
Yongkweon Jeon
|
Baeseong Park
|
Sangha Kim
|
Dongsoo Lee
The deployment of widely used Transformer architecture is challenging because of heavy computation load and memory overhead during inference, especially when the target device is limited in computational resources such as mobile or edge devices. Quantization is an effective technique to address such challenges. Our analysis shows that for a given number of quantization bits, each block of Transformer contributes to translation quality and inference computations in different manners. Moreover, even inside an embedding block, each word presents vastly different contributions. Correspondingly, we propose a mixed precision quantization strategy to represent Transformer weights by an extremely low number of bits (e.g., under 3 bits). For example, for each word in an embedding block, we assign different quantization bits based on statistical property. Our quantized Transformer model achieves 11.8× smaller model size than the baseline model, with less than -0.5 BLEU. We achieve 8.3× reduction in run-time memory footprints and 3.5× speed up (Galaxy N10+) such that our proposed compression strategy enables efficient implementation for on-device NMT.
pdf
bib
abs
Robust Backed-off Estimation of Out-of-Vocabulary Embeddings
Nobukazu Fukuda
|
Naoki Yoshinaga
|
Masaru Kitsuregawa
Out-of-vocabulary (oov) words cause serious troubles in solving natural language tasks with a neural network. Existing approaches to this problem resort to using subwords, which are shorter and more ambiguous units than words, in order to represent oov words with a bag of subwords. In this study, inspired by the processes for creating words from known words, we propose a robust method of estimating oov word embeddings by referring to pre-trained word embeddings for known words with similar surfaces to target oov words. We collect known words by segmenting oov words and by approximate string matching, and we then aggregate their pre-trained embeddings. Experimental results show that the obtained oov word embeddings improve not only word similarity tasks but also downstream tasks in Twitter and biomedical domains where oov words often appear, even when the computed oov embeddings are integrated into a bert-based strong baseline.
pdf
bib
abs
Exploiting Unsupervised Data for Emotion Recognition in Conversations
Wenxiang Jiao
|
Michael Lyu
|
Irwin King
Emotion Recognition in Conversations (ERC) aims to predict the emotional state of speakers in conversations, which is essentially a text classification task. Unlike the sentence-level text classification problem, the available supervised data for the ERC task is limited, which potentially prevents the models from playing their maximum effect. In this paper, we propose a novel approach to leverage unsupervised conversation data, which is more accessible. Specifically, we propose the Conversation Completion (ConvCom) task, which attempts to select the correct answer from candidate answers to fill a masked utterance in a conversation. Then, we Pre-train a basic COntext-Dependent Encoder (Pre-CODE) on the ConvCom task. Finally, we fine-tune the Pre-CODE on the datasets of ERC. Experimental results demonstrate that pre-training on unsupervised data achieves significant improvement of performance on the ERC datasets, particularly on the minority emotion classes.
pdf
bib
abs
Tensorized Embedding Layers
Oleksii Hrinchuk
|
Valentin Khrulkov
|
Leyla Mirvakhabova
|
Elena Orlova
|
Ivan Oseledets
The embedding layers transforming input words into real vectors are the key components of deep neural networks used in natural language processing. However, when the vocabulary is large, the corresponding weight matrices can be enormous, which precludes their deployment in a limited resource setting. We introduce a novel way of parameterizing embedding layers based on the Tensor Train decomposition, which allows compressing the model significantly at the cost of a negligible drop or even a slight gain in performance. We evaluate our method on a wide range of benchmarks in natural language processing and analyze the trade-off between performance and compression ratios for a wide range of architectures, from MLPs to LSTMs and Transformers.
pdf
bib
abs
Speaker or Listener? The Role of a Dialog Agent
Yafei Liu
|
Hongjin Qian
|
Hengpeng Xu
|
Jinmao Wei
For decades, chitchat bots are designed as a listener to passively answer what people ask. This passive and relatively simple dialogue mechanism gains less attention from humans and consumes the interests of human beings rapidly. Therefore some recent researches attempt to endow the bots with proactivity through external knowledge to transform the role from a listener to a speaker with a hypothesis that the speaker expresses more just like a knowledge disseminator. However, along with the proactive manner introduced into a dialogue agent, an issue arises that, with too many knowledge facts to express, the agent starts to talks endlessly, and even completely ignores what the other expresses in dialogue sometimes, which greatly harms the interest of the other chatter to continue the conversation. To the end, we propose a novel model named Initiative-Imitate to interact with adaptive initiative throughout a dialogue. It forces the agent to express in parallel with the appropriate role during the whole conversation. The corresponding experiments show the proposed Initiative-Imitate obtains competitive results both on the automatic and manual metrics. And the fluency and engagement of the chatbot have also been improved significantly. Besides, the case study indicates the Initiative-Imitate can constantly transfer to appropriate role timely and response more properly during the whole continuous conversation.
pdf
bib
abs
Bridging Textual and Tabular Data for Cross-Domain Text-to-SQL Semantic Parsing
Xi Victoria Lin
|
Richard Socher
|
Caiming Xiong
We present BRIDGE, a powerful sequential architecture for modeling dependencies between natural language questions and relational databases in cross-DB semantic parsing. BRIDGE represents the question and DB schema in a tagged sequence where a subset of the fields are augmented with cell values mentioned in the question. The hybrid sequence is encoded by BERT with minimal subsequent layers and the text-DB contextualization is realized via the fine-tuned deep attention in BERT. Combined with a pointer-generator decoder with schema-consistency driven search space pruning, BRIDGE attained state-of-the-art performance on the well-studied Spider benchmark (65.5% dev, 59.2% test), despite being much simpler than most recently proposed models for this task. Our analysis shows that BRIDGE effectively captures the desired cross-modal dependencies and has the potential to generalize to more text-DB related tasks. Our model implementation is available at
https://github.com/salesforce/TabularSemanticParsing.
pdf
bib
abs
Do Language Embeddings capture Scales?
Xikun Zhang
|
Deepak Ramachandran
|
Ian Tenney
|
Yanai Elazar
|
Dan Roth
Pretrained Language Models (LMs) have been shown to possess significant linguistic, common sense and factual knowledge. One form of knowledge that has not been studied yet in this context is information about the scalar magnitudes of objects. We show that pretrained language models capture a significant amount of this information but are short of the capability required for general common-sense reasoning. We identify contextual information in pre-training and numeracy as two key factors affecting their performance, and show that a simple method of canonicalizing numbers can have a significant effect on the results.
pdf
bib
abs
Paraphrasing vs Coreferring: Two Sides of the Same Coin
Yehudit Meged
|
Avi Caciularu
|
Vered Shwartz
|
Ido Dagan
We study the potential synergy between two different NLP tasks, both confronting predicate lexical variability: identifying predicate paraphrases, and event coreference resolution. First, we used annotations from an event coreference dataset as distant supervision to re-score heuristically-extracted predicate paraphrases. The new scoring gained more than 18 points in average precision upon their ranking by the original scoring method. Then, we used the same re-ranking features as additional inputs to a state-of-the-art event coreference resolution model, which yielded modest but consistent improvements to the model’s performance. The results suggest a promising direction to leverage data and models for each of the tasks to the benefit of the other.
pdf
bib
abs
Active Sentence Learning by Adversarial Uncertainty Sampling in Discrete Space
Dongyu Ru
|
Jiangtao Feng
|
Lin Qiu
|
Hao Zhou
|
Mingxuan Wang
|
Weinan Zhang
|
Yong Yu
|
Lei Li
Active learning for sentence understanding aims at discovering informative unlabeled data for annotation and therefore reducing the demand for labeled data. We argue that the typical uncertainty sampling method for active learning is time-consuming and can hardly work in real-time, which may lead to ineffective sample selection. We propose adversarial uncertainty sampling in discrete space (AUSDS) to retrieve informative unlabeled samples more efficiently. AUSDS maps sentences into latent space generated by the popular pre-trained language models, and discover informative unlabeled text samples for annotation via adversarial attack. The proposed approach is extremely efficient compared with traditional uncertainty sampling with more than 10x speedup. Experimental results on five datasets show that AUSDS outperforms strong baselines on effectiveness.
pdf
bib
abs
Coming to Terms: Automatic Formation of Neologisms in Hebrew
Moran Mizrahi
|
Stav Yardeni Seelig
|
Dafna Shahaf
Spoken languages are ever-changing, with new words entering them all the time. However, coming up with new words (neologisms) today relies exclusively on human creativity. In this paper we propose a system to automatically suggest neologisms. We focus on the Hebrew language as a test case due to the unusual regularity of its noun formation. User studies comparing our algorithm to experts and non-experts demonstrate that our algorithm is capable of generating high-quality outputs, as well as enhance human creativity. More broadly, we seek to inspire more computational work around the topic of linguistic creativity, which we believe offers numerous unexplored opportunities.
pdf
bib
abs
Dual Inference for Improving Language Understanding and Generation
Shang-Yu Su
|
Yung-Sung Chuang
|
Yun-Nung Chen
Natural language understanding (NLU) and Natural language generation (NLG) tasks hold a strong dual relationship, where NLU aims at predicting semantic labels based on natural language utterances and NLG does the opposite. The prior work mainly focused on exploiting the duality in model training in order to obtain the models with better performance. However, regarding the fast-growing scale of models in the current NLP area, sometimes we may have difficulty retraining whole NLU and NLG models. To better address the issue, this paper proposes to leverage the duality in the inference stage without the need of retraining. The experiments on three benchmark datasets demonstrate the effectiveness of the proposed method in both NLU and NLG, providing the great potential of practical usage.
pdf
bib
abs
Joint Intent Detection and Entity Linking on Spatial Domain Queries
Lei Zhang
|
Runze Wang
|
Jingbo Zhou
|
Jingsong Yu
|
Zhenhua Ling
|
Hui Xiong
Continuous efforts have been devoted to language understanding (LU) for conversational queries with the fast and wide-spread popularity of voice assistants. In this paper, we first study the LU problem in the spatial domain, which is a critical problem for providing location-based services by voice assistants but is without in-depth investigation in existing studies. Spatial domain queries have several unique properties making them be more challenging for language understanding than common conversational queries, including lexical-similar but diverse intents and highly ambiguous words. Thus, a special tailored LU framework for spatial domain queries is necessary. To the end, a dataset was extracted and annotated based on the real-life queries from a voice assistant service. We then proposed a new multi-task framework that jointly learns the intent detection and entity linking tasks on the with invented hierarchical intent detection method and triple-scoring mechanism for entity linking. A specially designed spatial GCN is also utilized to model spatial context information among entities. We have conducted extensive experimental evaluations with state-of-the-art entity linking and intent detection methods, which demonstrated that can outperform all baselines with a significant margin.
pdf
bib
abs
IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages
Divyanshu Kakwani
|
Anoop Kunchukuttan
|
Satish Golla
|
Gokul N.C.
|
Avik Bhattacharyya
|
Mitesh M. Khapra
|
Pratyush Kumar
In this paper, we introduce NLP resources for 11 major Indian languages from two major language families. These resources include: (a) large-scale sentence-level monolingual corpora, (b) pre-trained word embeddings, (c) pre-trained language models, and (d) multiple NLU evaluation datasets (
IndicGLUE benchmark). The monolingual corpora contains a total of 8.8 billion tokens across all 11 languages and Indian English, primarily sourced from news crawls. The word embeddings are based on
FastText, hence suitable for handling morphological complexity of Indian languages. The pre-trained language models are based on the compact ALBERT model. Lastly, we compile the (
IndicGLUE benchmark for Indian language NLU. To this end, we create datasets for the following tasks: Article Genre Classification, Headline Prediction, Wikipedia Section-Title Prediction, Cloze-style Multiple choice QA, Winograd NLI and COPA. We also include publicly available datasets for some Indic languages for tasks like Named Entity Recognition, Cross-lingual Sentence Retrieval, Paraphrase detection,
etc. Our embeddings are competitive or better than existing pre-trained embeddings on multiple tasks. We hope that the availability of the dataset will accelerate Indic NLP research which has the potential to impact more than a billion people. It can also help the community in evaluating advances in NLP over a more diverse pool of languages. The data and models are available at
https://indicnlp.ai4bharat.org.
pdf
bib
abs
Weakly-Supervised Modeling of Contextualized Event Embedding for Discourse Relations
I-Ta Lee
|
Maria Leonor Pacheco
|
Dan Goldwasser
Representing, and reasoning over, long narratives requires models that can deal with complex event structures connected through multiple relationship types. This paper suggests to represent this type of information as a narrative graph and learn contextualized event representations over it using a relational graph neural network model. We train our model to capture event relations, derived from the Penn Discourse Tree Bank, on a huge corpus, and show that our multi-relational contextualized event representation can improve performance when learning script knowledge without direct supervision and provide a better representation for the implicit discourse sense classification task.
pdf
bib
abs
Enhancing Generalization in Natural Language Inference by Syntax
Qi He
|
Han Wang
|
Yue Zhang
Pre-trained language models such as BERT have achieved the state-of-the-art performance on natural language inference (NLI). However, it has been shown that such models can be tricked by variations of surface patterns such as syntax. We investigate the use of dependency trees to enhance the generalization of BERT in the NLI task, leveraging on a graph convolutional network to represent a syntax-based matching graph with heterogeneous matching patterns. Experimental results show that, our syntax-based method largely enhance generalization of BERT on a test set where the sentence pair has high lexical overlap but diverse syntactic structures, and do not degrade performance on the standard test set. In other words, the proposed method makes BERT more robust on syntactic changes.